九年级上册几何模型压轴题单元练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册几何模型压轴题单元练习(Word 版 含答案)
一、初三数学 旋转易错题压轴题(难)
1.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2
y ax bx c =++的顶点是A(1,3),将OA 绕点O 顺时针旋转90︒后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C .
(1)求抛物线的解析式;
(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与OAB ∆的边分别交于M ,N 两点,将AMN ∆以直线MN 为对称轴翻折,得到A MN '∆. 设点P 的纵坐标为m .
①当A MN '∆在OAB ∆内部时,求m 的取值范围;
②是否存在点P ,使'
56
A MN OA
B S S ∆'∆=,若存在,求出满足m 的值;若不存在,请说明理由.
【答案】()21y x 22x =-++;(2)①433m <<;②存在,满足m 的值为619-或639-. 【解析】
【分析】
(1)作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,然后证明△AOD ≌△BOE ,则AD=BE ,OD=OE ,即可得到点B 的坐标,然后利用待定系数法,即可求出解析式;
(2)①由点P 为线段AC 上的动点,则讨论动点的位置是解题的突破口,有点P 与点A 重合时;点P 与点C 重合时,两种情况进行分析计算,即可得到答案;
②根据题意,可分为两种情况进行分析:当点M 在线段OA 上,点N 在AB 上时;当点M 在线段OB 上,点N 在AB 上时;先求出直线OA 和直线AB 的解析式,然后利用m 的式子表示出两个三角形的面积,根据等量关系列出方程,解方程即可求出m 的值.
【详解】
解:(1)如图:作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,
∴∠ADO=∠BEO=90°,
∵将OA 绕点O 逆时针旋转90︒后得到OB ,
∴OA=OB ,∠AOB=90°,
∴∠AOD+∠AOE=∠BOE+∠AOE=90°,
∴∠AOD=∠BOE ,
∴△AOD ≌△BOE ,
∴AD=BE ,OD=OE ,
∵顶点A 为(1,3),
∴AD=BE=1,OD=OE=3,
∴点B 的坐标为(3,1-),
设抛物线的解析式为2
(1)3=-+y a x ,
把点B 代入,得 2(31)31a -+=-,
∴1a =-,
∴抛物线的解析式为2
(1)3y x =--+,
即222y x x =-++;
(2)①∵P 是线段AC 上一动点,
∴3m <,
∵当A MN '∆在OAB ∆内部时,
当点'A 恰好与点C 重合时,如图:
∵点B 为(3,1-),
∴直线OB 的解析式为13y x =-
, 令1x =,则13
y =-, ∴点C 的坐标为(1,1
3-),
∴AC=1103()33
--=
, ∵P 为AC 的中点,
∴AP=1105233⨯=, ∴54333
m =-=, ∴m 的取值范围是
433m <<; ②当点M 在线段OA 上,点N 在AB 上时,如图:
∵点P 在线段AC 上,则点P 为(1,m ),
∵点'A 与点A 关于MN 对称,则点'A 的坐标为(1,2m -3),
∴'3A P m =-,18'(23)233
A C m m =-+=-, 设直接OA 为y ax =,直线A
B 为y kx b =+,
分别把点A ,点B 代入计算,得
直接OA 为3y x =;直线AB 为25y x =-+, 令y m =,
则点M 的横坐标为3m ,点N 的横坐标为52m --, ∴5552326
m m MN m -=-=--; ∵2'11555515'()(3)22261224A MN S MN A P m m m m ∆=
•=•-•-=-+; '138'3(2)34223
OA B S A C m m ∆=••=•-=-; 又∵'56A MN OA B S S ∆'∆=
, ∴255155(34)12246
m m m -+=⨯-, 解得:619m =-或619m =+(舍去);
当点M 在边OB 上,点N 在边AB 上时,如图:
把y m =代入13y x =-
,则3x m , ∴5553222m MN m m -=+=+-,18'(23)233
A C m m =---=-, ∴2'11555515'()(3)2222424A MN S MN A P m m m m ∆=
•=•+•-=-++, '138'3(2)43223
OA B S A C m m ∆=••=•-=-, ∵'56A MN OA B S S ∆'∆=
,
∴255155(43)4246
m m m -++=⨯-, 解得:6393m -=
或6393m +=(舍去); 综合上述,m 的值为:619m =-或6393
m -=
. 【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转、解一元二次方程、全等三角形的判定和性质、三角形的面积公式等,解题的关键是熟练掌握所学的性质,正确得到点P 的位置.注意运用数形结合的思想和分类讨论的思想进行解题.
2.在Rt △ACB 和Rt △AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE .
(1) 如图1,若点E ,F 分别落在边AB ,AC 上,求证:PC =PE ;
(2) 如图2,把图1中的△AEF 绕着点A 顺时针旋转,当点E 落在边CA 的延长线上时,探索PC 与PE 的数量关系,并说明理由.
(3) 如图3,把图2中的△AEF 绕着点A 顺时针旋转,点F 落在边AB 上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.
【答案】(1)见解析;(2)PC =PE ,理由见解析;(3)成立,理由见解析
【解析】
【分析】
(1)利用直角三角形斜边的中线等于斜边的一半,即可;
(2)先判断△CBP ≌△HPF ,再利用直角三角形斜边的中线等于斜边的一半;
(3)先判断△DAF ≌△EAF ,再判断△DAP ≌△EAP ,然后用比例式即可;
【详解】
解:(1)证明:如图:
∵∠ACB =∠AEF =90°,
∴△FCB 和△BEF 都为直角三角形.
∵
点P是BF的中点,
∴CP=1
2BF,EP=
1
2
BF,
∴PC=PE.
(2)PC=PE理由如下:
如图2,延长CP,EF交于点H,
∵∠ACB=∠AEF=90°,
∴EH//CB,
∴∠CBP=∠PFH,∠H=∠BCP,
∵点P是BF的中点,
∴PF=PB,
∴△CBP≌△HFP(AAS),
∴PC=PH,
∵∠AEF=90°,
∴在Rt△CEH中,EP=1
2
CH,
∴PC=PE.
(3)(2)中的结论,仍然成立,即PC=PE,理由如下:
如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,
在△DAF和△EAF中,
DAF,
,
,
EAF FDA FEA AF AF
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△DAF≌△EAF(AAS),∴AD=AE,
在△DAP≌△EAP中,
,
,
,
AD AE
DAP EAP AP AP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△DAP≌△EAP (SAS),
∴PD=PF,
∵FD⊥AC,BC⊥AC,PM⊥AC,
∴FD//BC//PM,
∴DM FP
,
MC PB
∵点P是BF的中点,
∴DM=MC,
又∵PM⊥AC,
∴PC=PD,
又∵PD=PE,
∴PC=PE.
【点睛】
此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.
3.在△ABC中,∠C=90°,AC=BC=6.
(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.
(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;
(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.
【答案】(1)36;(2)详见解析;(3)存在,最小值为3.
【解析】
【分析】
(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;
(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;
(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.
【详解】
解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,
∴△ABD是等腰直角三角形,
∵∠ACB=90°,
∴BC⊥AD,
∴AD=2BC=12,
∴△ABD的面积=1
2
AD•BC=
1
2
12×6=36,
故答案为:36;
(2)如图,过Q作QH⊥CA交CA的延长线于H,
∴∠H=∠C=90°,
∵△BPQ是等腰直角三角形,
∴PQ=PB,∠BPQ=90°,
∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,
∴∠PQH=∠BPC,
∴△PQH≌△BPC(AAS),
∴PH=BC,QH=CP,
∵AC=BC,
∴PH=AC,
∴CP=AH,
∴QH=AH,
∴∠HAQ=45°,
∵∠BAC=45°,
∴∠BAQ=180°﹣45°﹣45°=90°,
∴AB⊥AQ;
(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,
∵∠CAF =∠EAF =∠BAE ,∠BAC =45°,
∴∠CAF =∠EAF =∠BAE =15°,
∴∠EAC =30°,
则此时,CM +NM 的值最小,且最小值=DN ,
∵点C 和点D 关于AF 对称,
∴AD =AC =6,
∵∠AND =90°,
∴DN =12AD =12
⨯6=3, ∴CM +NM 最小值为3.
【点睛】
本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.
4.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.
(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;
(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC
=-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,
在BE 左侧作矩形BEFG 且始终保持
BE n BG m
=,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.
【答案】(15;(23;(3)存在,63
【解析】 【分析】 (1)作A 1H ⊥AB 于
H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.解直角三角形,求出∠ABA 1,得到旋转角即可解决问题;
(2)由△BCE ∽△BA 2D 2,推出222A D CE n CB A B m ==,可得CE=2n m ,由161A E EC =-推出16A C EC =,推出A 1C=26n m •,推出BH=A 1C=26n m
•,然后由勾股定理建立方程,解方程即可解决问题;
(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.
【详解】
解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.
∴AD=HA 1=n=1,
在Rt △A 1HB 中,∵BA 1=BA=m=2,
∴BA 1=2HA 1,
∴∠ABA 1=30°,
∴旋转角为30°,
∵22125+=
∴D 到点D 1所经过路径的长度3055π⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m
==, ∴2
n CE m
=, ∵161EA EC
=,
∴
16A C
EC
=, ∴A 1C=2
6n m
⋅,
∴BH=A 1C=2
2
2
6n m n m
-=⋅,
∴4
2
2
26n m n m
-=⋅,
∴m 4﹣m 2n 2=6n 4,
∴24
2416n n m m
-=•,
∴
3
n m =
(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;
由(2)可知,
3
BE n BG m ==
, ∵四边形BEFG 是矩形, ∴
3FG FE =
∵∠DFG+∠GFM=∠GFM+∠MFE=90°, ∴∠DFG=∠MFE , ∵DF ⊥PF ,即∠DFM=90°,
∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°, ∴∠FDG=∠FME , ∴△FDG ∽△FME , ∴
3
3
FG F FM FE D ==
, ∵∠DFM=90°,tan 3
FD FMD FM ∠=
=
,
∴∠FDM=60°,∠FMD=30°,
∴FM DM =
;
在矩形ABCD 中,有
AD AB =
=3AD =, ∵MN ⊥AB ,
∴四边形ANMD 是矩形, ∴MN=AD=3,
∵∠NPM=∠DMF=30°, ∴PM=2MN=6,
∴NP=AB =, ∴DM=AN=BP=2,
∴2FM DM =
==
∴6PF PM MF =+=+ 【点睛】
本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.
5.边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD 绕D 点顺时针旋转,当A 点第一次落在DF 上时停止旋转,旋转过程中, AB 边交DF 于点M ,BC 边交DG 于点N. (1)求边DA 在旋转过程中所扫过的面积;
(2)旋转过程中,当MN 和AC 平行时(如图2),求正方形ABCD 旋转的度数; (3)如图3,设△MBN 的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化?请证明你的结论.
【答案】(1);(2);(3)不变化,证明见解析.
【解析】
试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.
(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.
(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.
∴DA在旋转过程中所扫过的面积为.
(2)∵MN∥AC,∴,.
∴.∴.
又∵,∴.
又∵,∴.
∴.∴.
∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.
(3)不变化,证明如下:
如图,延长BA交DE轴于H点,则
,,
∴.
又∵.∴.
∴.
又∵, ,∴.
∴.∴.
∴.
∴在旋转正方形ABCD的过程中,值无变化.
考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.
6.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
【答案】(1)D(1,3);(2)①详见解析;②H(17
5
,3);(3)
30334
-
≤S 30334
+
【解析】
【分析】
(1)如图①,在Rt△ACD中求出CD即可解决问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD=22
AD AC
=4,
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=17
5
,
∴BH=17
5
,
∴H(17
5
,3).
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值
=1
2
•DE•DK=
1
2
×3×(5-
34
2
)=30334
4
-,
当点D在BA的延长线上时,△D′E′K的面积最大,最大面积
=1
2
×D′E′×KD′=
1
2
×3×(5+
34
2
)=30334
4
+.30334
-
S
30334
+
【点睛】
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
7.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.
【解析】
【分析】
(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.
(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;
(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】
(1)结论:AD=BE,AD⊥BE.
理由:如图1中,
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,
∠ACB=∠ACD=90°,
在Rt△ACD和Rt△BCE中
AC BC
ACD BCE
CD CE
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
∴△ACD≌△BCE(SAS),
∴AD=BE,∠EBC=∠CAD
延长BE交AD于点F,
∵BC⊥AD,
∴∠EBC+∠CEB=90°,
∵∠CEB=AEF,
∴∠EAD+∠AEF=90°,
∴∠AFE=90°,即AD⊥BE.
∴AD=BE,AD⊥BE.
故答案为AD=BE,AD⊥BE.
(2)结论:AD=BE,AD⊥BE.
理由:如图2中,设AD交BE于H,AD交BC于O.
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=90°,
∴ACD=∠BCE,
在Rt△ACD和Rt△BCE中
AC BC
ACD BCE
CD CE
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CAD=∠CBE,
∵∠CAO+∠AOC=90°,∠AOC=∠BOH,
∴∠BOH+∠OBH=90°,
∴∠OHB=90°,
∴AD⊥BE,
∴AD=BE,AD⊥BE.
(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,
图3-1中,当P、E、B共线时,BE最小,最小值2,
图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,
∴5-32≤BE≤5+32,
即5-32≤PC≤5+32.
【点睛】
本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.
8.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:
(1)求证:EP2+GQ2=PQ2;
(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;
(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).
【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.
【解析】
【分析】
(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到
EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证
△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.
【详解】
(1)过点E作EH∥FG,连接AH、FH,如图所示:
∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵FA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,
∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵PA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PH2.
在Rt△PFQ中,
∵PF2+FQ2=PQ2,
∴PF2+FQ2=EP2+GQ2.
(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.
【点睛】
本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.
二、初三数学圆易错题压轴题(难)
9.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.
⑴当t为何值时,线段CD的长为4;
⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;
⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?
【答案】(1); (2) 4-<t≤; (3)或.
【解析】
试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;
(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切
时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当
OG<时,直线与圆相交,据此即可求得t的范围;
(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.
(1)过点C作CF⊥AD于点F,
在Rt△AOB中,OA=4,OB=4,
∴∠ABO=30°,
由题意得:BC=2t,AD=t,
∵CE⊥BO,
∴在Rt△CEB中,CE=t,EB=t,
∵CF⊥AD,AO⊥BO,
∴四边形CFOE是矩形,
∴OF=CE=t,OE=CF=4-t,
在Rt△CFD中,DF2+CF2=CD2,
∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,
解得:t=,t=4,
∵0<t<4,
∴当t=时,线段CD的长是4;
(2)过点O作OG⊥DE于点G(如图2),
∵AD∥CE,AD=CE=t
∴四边形ADEC是平行四边形,
∴DE∥AB
∴∠GEO=30°,
∴OG=OE=(4-t)
当线段DE与⊙O相切时,则OG=,
∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;
(3)当⊙C与⊙O外切时,t=;
当⊙C与⊙O内切时,t=;
∴当t=或秒时,两圆相切.
考点:圆的综合题.
10.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
(1)求证:直线AB是⊙O的切线;
(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE 的值.
【答案】(1)见解析;(2)
5
【解析】
【分析】
(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;
(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出
DC=35
x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.
【详解】
(1)证明:连接OC,如图1,
∵OA=OB,AC=BC,
∴OC⊥AB,
∵OC过O,
∴直线AB是⊙O的切线;
(2)解:连接OC、DC,如图2,
∵AB=4AD,
∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,
∴∠DCF=90°,
∵OC⊥AB,
∴∠ACO=∠DCF=90°,
∴∠OCF=∠ACD=90°﹣∠DCO,
∵OF=OC,
∴∠AFC=∠OCF,
∴∠ACD=∠AFC,
∵∠A=∠A,
∴△ADC∽△ACF,
∴
1
22 AC AD DC x
AF AC CF x
====,
∴AF=2AC=4x,FC=2DC,
∵AD=x,
∴DF=4x﹣x=3x,
在Rt△DCF中,(3x)2=DC2+(2DC)2,
解得:DC 35
x,
∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC
=,
∴∠CFE=∠AFC,
∴sin∠CFE=sin∠AFC=DC
DF
=
35
5
5
3
x
x
=
.
【点睛】
本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.
11.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分
题甲:已知矩形两邻边的长、是方程的两根.
(1)求的取值范围;
(2)当矩形的对角线长为时,求的值;
(3)当为何值时,矩形变为正方形?
题乙:如图,是直径,于点,交于
点,且.
(1)判断直线和的位置关系,并给出证明;
(2)当,时,求的面积.
【答案】题甲(1)(2)(3)
题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=
【解析】
试题分析:题甲:(1)、是方程的两根,则其;
由得
(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方
程的两根,则;因为
,所以;解得
由得
(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得
题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,
;因为,所以;于点,,所以,,在三角形OBD中
,所以OB ⊥BD ;BD 是
切线
(2),AB 是圆的直径,所以OB=5;
于点
,交
于
点,F 是BC 的中点;
,BF=4;在直角三角形OBF 中由勾股定理得
OF=
;根据题意,,则,所以
,从而
,解得DF=
,
的面积
=
考点:直线与圆相切,相似三角形
点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似
12.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .
(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,
①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)
【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或104
33
与△ABC 的边相切.②点F 11365
72
【解析】
试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.
(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3
cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.
(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设
O 切AC 于H ,连接OH .
当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设
O 切AC 于H .连接
OH .如图4中,设O 切BC 于N ,连接ON .
分别求解即可.
②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,
在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,
3
cos30cos30FG EF PE EP ∴=⋅=⋅=
, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553
AC BC EP AB ⨯⨯=
==,
3
tan30(2)3
EP AP m =⋅=+⋅
, 533
(2)m ∴
=+⋅,
∴m =5.5
(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设
O 切AC 于H ,连接OH .
则有AD =2DH =2, ∴DH =DQ =1,即m =1.
当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设
O 切AC 于H .连接OH .
则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设
O 切BC 于N ,连接ON .
在Rt △OBN 中, 43
sin60OB ON ==
43
10AO ∴=- 43
12AP ∴=-
43
212m ∴+= 3
103
m ∴=-
综上所述,当m =1或4或43
10O 与△ABC 的边相切。
②如图5中,点F 的运动轨迹是F 1→F 2→B .
易知122353
,,53AF CF AC =
==,
122353113
53F F ∴=-
-=,
60,30FEP PEB ∠=∠=,
90FEB ∴∠=,
tan EF EP EBF EB EB
∴∠=
=为定值, ∴点F 的第二段的轨迹是线段2BF , 在2Rt BF C 中, 222222535
5(
)722
BF BC F C =+=+=,
∴点F 的运动路径的长为
115
37.62
+
13.四边形ABCD 内接于⊙O ,连接AC 、BD ,2∠BDC +∠ADB =180°.
(1)如图1,求证:AC =BC ;
(2)如图2,E 为⊙O 上一点,AE =BE ,F 为AC 上一点,DE 与BF 相交于点T ,连接AT ,若∠BFC =∠BDC +
1
2
∠ABD ,求证:AT 平分∠DAB ; (3)在(2)的条件下,DT =TE ,AD =8,BD =12,求DE 的长. 【答案】(1)见解析;(2)见解析;(3)2
【解析】
【分析】
(1)只要证明∠CAB=∠CBA即可.
(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.
(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明
Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,
由S△ADB=1
2
•BD•AQ=
1
2
•AD•h+
1
2
•AB•h+
1
2
•DB•h,可得AQ=
5
2
h,再根据
sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】
解:(1)如图1中,
∵四边形ABCD内接于⊙O,
∴∠ADC+∠ABC=180°,
即∠ADB+∠BDC+∠ABC=180°,
∵2∠BDC+∠ADB=180°,
∴∠ABC=∠BDC,
∵∠BAC=∠BDC,
∴∠BAC=∠ABC,
∴AC=BC.
(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.
∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,
∴∠BFC=∠BDC+∠ABF,
∵∠BFC=∠BDC+1
2
∠ABD,
∴∠ABF=1
2
∠ABD,
∴BT平分∠ABD,
∵AE=BE
∴∠ADE=∠BDE,
∴DT平分∠ADB,
∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.
∴TR=TL,TR=TH,
∴TL=TH,
∴AT平分∠DAB.
(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.
∵AE=BE
∴∠EAB=∠EDB=∠EDA,AE=BE,
∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,
∴∠TAE=∠ATE,
∴AE=TE,
∵DT=TE,
∴AE=DT,
∵∠AGE=∠DHT=90°,
∴△EAG≌△TDH(AAS),
∴AG=DH,
∵AE=EB,EG⊥AB,
∴AG=BG,
∴2DH=AB,
∵Rt△TDR≌Rt△TDH(HL),
∴DH=DR,同理可得AL=AH,BR=BL,
设DH=x,则AB=2x,
∵AD=8,DB=12,
∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,
∴DH=5,AB=10,
设TR=TL=TH=h,DT=m,
∵S△ADB=1
2
•BD•AQ=
1
2
•AD•h+
1
2
•AB•h+
1
2
•DB•h,
∴12AQ=(8+12+10)h,
∴AQ=5
2 h,
∵sin∠BDE=sin∠ADE,可得h
m
=
AP
AD
=
AP
8
,
sin∠AED=sin∠ABD,可得AP
m
=
AQ
AB
=
AQ
10
=
5
2
10
h
,
∴AP
m
=
5
28
10
mAP
,
解得m=
或﹣
(舍弃),
∴DE=2m=
.
【点睛】
本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.
14.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连
接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=1
3
,BC=
8.
(1)求证:CF是⊙O的切线;
(2)求⊙O的半径OC;
(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.
【答案】(1)见解析;(2)3233
2
2
32
【解析】【分析】
(1)由DF=2OD,得到OF=3OD=3OC,求得
1
3
OE OC
OC OF
==,推出△COE∽△FOE,根据相
似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;
(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.
【详解】
解:(1)∵DF=2OD,
∴OF=3OD=3OC,
∴
1
3 OE OC
OC OF
==,
∵∠COE=∠FOC,
∴△COE∽△FOE,
∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,
∴cos∠BAC=cos∠COE=
1
3 OE
OC
=,
∴设OE=x,OC=3x,
∵BC=8,
∴CE=4,
∵CE⊥AD,
∴OE2+CE2=OC2,
∴x2+42=9x2,
∴x2(负值已舍去),
∴OC =3x =32,
∴⊙O 的半径OC 为32;
(3)如图,连结BD ,
由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,
∵BC ⊥AD ,
∴AC AB =,
∴∠ADC=∠ADB ,
∴2AOF ADC BDM ∠=∠=∠,
∴△AOF ∽△BDM ;
∵点F 是OC 的中点,
∴AO :OF=BD :DM=2,
又∵BD=DC ,
∴DM=CM ,
∴FM 为中位线,
∴322, ∴S △AOF : S △BDM =(326 2 34=
; ∵111118(322)4222222
BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯= ∴S △AOF =3424=32 【点睛】
本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.
15.在平面直角坐标系xOy 中,⊙C 的半径为r (r >1),点P 是圆内与圆心C 不重合的点,⊙C 的“完美点”的定义如下:过圆心C 的任意直线CP 与⊙C 交于点A ,B ,若满足|PA ﹣PB |=2,则称点P 为⊙C 的“完美点”,如图点P 为⊙C 的一个“完美点”.
(1)当⊙O 的半径为2时
①点M(3
2
,0)⊙O的“完美点”,点(﹣
3
2
,﹣
1
2
)⊙O的“完美点”;(填
“是”或者“不是”)
②若⊙O的“完美点”P在直线y=3
4
x上,求PO的长及点P的坐标;
(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.
【答案】(1)①不是,是;②PO的长为1,点P的坐标为(4
5
,
3
5
)或(﹣
4
5
,﹣
3
5
);(2)t的
取值范围为﹣1≤t≤3.
【解析】
【分析】
(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.
【详解】
解:(1)①∵点M(3
2
,0),
∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,
∴取A(﹣2,0),B(2,0),
∴|MA﹣MB|=|(3
2
+2)﹣(2﹣
3
2
)|=3≠2,
∴点M不是⊙O的“完美点”,
同理:点(31
2
)是⊙O的“完美点”.
故答案为不是,是.②如图1,
根据题意,|PA﹣PB|=2,
∴|OP+2﹣(2﹣OP)|=2,
∴OP=1.
若点P在第一象限内,作PQ⊥x轴于点Q,
∵点P在直线y=3
4
x上,OP=1,
∴
43
,
55 OQ PQ
==.
∴P(43
,
55
).
若点P在第三象限内,根据对称性可知其坐标为(﹣4
5
,﹣
3
5
).
综上所述,PO的长为1,点P的坐标为(43
,
55
)或(
43
,
55
--)).
(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,
∴|CP+r﹣(r﹣CP)|=2.
∴CP=1.
∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.
因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,
当⊙C 移动到与y 轴相切且切点在点D 的上方时,t 的值最大.
设切点为E ,连接CE ,
∵⊙C 的圆心在直线y =﹣2x +1上,
∴此直线和y 轴,x 轴的交点D (0,1),F (12
,0), ∴OF =
12
,OD =1, ∵CE ∥OF ,
∴△DOF ∽△DEC ,
∴OD OF DE CE
= , ∴112
DE = , ∴DE =2,
∴OE =3,
t 的最大值为3, 当⊙C 移动到与y 轴相切且切点在点D 的下方时,t 的值最小.
同理可得t 的最小值为﹣1.
综上所述,t 的取值范围为﹣1≤t ≤3.
【点睛】
此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.
16.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.
(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;
(2)如图2,如果AO OB ⊥,求:AD DB 的值;
(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.
【答案】(1)证明见解析;(2)
3
3
(3)51
和22
【解析】
【分析】
(1)由题意利用弦心距即可求证结果,
(2)此题关键先求出AO,做辅助线构造特殊三角形,并求证出∠AOD,再根据平行线分线段成比例求出比值即可,
(3)分情况讨论两种情况:OE=BE时或OB=BE时两种情况,利用三角形相似即
△COE~△CBO找到相似比,利用相似比求解即可.
【详解】
(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,
∵BO平分∠ABC,
∴OP=OQ,
∵OP,OQ分别是弦AB、BC 的弦心距,
∴AB= BC;
(2)∵OA=OB,
∴∠A=∠OBD,
∵CD=CB,
∴∠CDB =∠CBD,
∴∠A+∠AOD =∠CBO +∠OBD,
∴∠AOD =∠CBO,
∵OC=OB,
∴∠C =∠CBO,
∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,
∵AO⊥OB,
∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,
∴∠AOD=30°,
过点D作DH⊥AO,垂足为点H,
∴∠AHD=∠DHO=90°,。