实验报告 分治与递归

合集下载

递归与分治算法心得

递归与分治算法心得

递归与分治算法心得
递归与分治算法都是常用的算法思想,可以很好地解决复杂问题。

递归算法是通过将问题分解为相同或相似的子问题来解决整个问题,然后再逐步合并回原问题的过程。

递归算法通常需要明确边界条件,以确保递归能够正确地停止。

分治算法是将问题分解成若干个相同或相似的子问题,递归地解决这些子问题,然后合并这些子问题的解来解决原始问题。

通常,分治算法可以高效地解决问题,但需要注意分解问题的方式和合并子问题的解的过程。

在实际应用中,递归和分治算法可以相互结合,以解决更加复杂的问题。

例如,可以使用分治算法来将问题分解成多个子问题,然后使用递归算法来解决这些子问题。

此外,还可以在递归算法中使用分治算法来对子问题进行分解和合并。

总而言之,递归与分治算法都是非常有用的算法思想,可以在许多领域中得到应用。

但是,在实际使用时,需要仔细考虑问题的性质和算法的复杂度,以确保算法的正确性和效率。

- 1 -。

递归与分治算法心得

递归与分治算法心得

递归与分治算法心得
递归与分治算法是算法设计中常见的两种方法,它们在解决问题时都采用了“分而治之”的思想,将问题分解成更小的子问题,然后通过递归调用或者合并子问题的解来得到原问题的解。

通过我的学习和实践,我深刻认识到了递归与分治算法的重要性和优势。

首先,递归算法可以使问题的描述更加简单明了。

通过将问题转化为自身的子问题,我们可以建立起更为简洁优美的数学模型。

其次,递归算法可以使问题的解决过程更加自然。

在递归过程中,我们可以利用已知的子问题解决同类问题,实现代码的复用和模块化。

此外,递归算法还可以解决一些重要的数学问题,如斐波那契数列和二分查找等。

分治算法则更加注重问题的分解和合并。

它将问题划分成若干个规模相同或相近的子问题,然后将子问题的解合并起来得到原问题的解。

这种方法在解决某些复杂问题时具有很大的优势。

例如,在排序算法中,归并排序采用了分治算法的思想,将待排序的序列分成两个长度相等的子序列,然后递归地对子序列排序,最后将子序列合并成有序序列。

这种算法具有较高的稳定性和灵活性,常常被应用于海量数据的排序任务中。

总之,递归与分治算法是算法设计中不可或缺的两种方法。

在解决问题时,我们应该根据具体情况选择合适的算法,并在实践中不断探索、总结和优化。

只有这样,我们才能更好地应对日益复杂多变的计算机科学挑战。

递归和分治法

递归和分治法

递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。

它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。

下面,我们来详细了解一下递归和分治法。

1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。

递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。

分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。

分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。

主函数负责将问题分解,子函数负责解决子问题。

2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。

(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。

3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。

分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。

4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。

分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。

总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。

算法实验报告

算法实验报告

实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。

2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。

3.学会利用分治算法解决实际问题。

二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。

假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。

并对自己的程序进行复杂性分析。

三.问题分析:一般思路:假设袋中有n 个金块。

可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。

找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。

这样,比较的总次数为2n-3。

分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。

当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。

第二步,分别找出在A和B中最重和最轻的金块。

设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。

第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。

在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。

该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。

当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。

首先处理n≤1的情况。

若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。

当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。

算法设计与分析的实验报告

算法设计与分析的实验报告

实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

二、实验内容1、①设a[0:n-1]是已排好序的数组。

请写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。

当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

②写出三分搜索法的程序。

三、实验要求(1)用分治法求解上面两个问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1、已知a[0:n-1]是一个已排好序的数组,可以采用折半查找(二分查找)算法。

如果搜索元素在数组中,则直接返回下表即可;否则比较搜索元素x与通过二分查找所得最终元素的大小,注意边界条件,从而计算出小于x的最大元素的位置i和大于x的最小元素位置j。

2、将n个元素分成大致相同的三部分,取在数组a的左三分之一部分中继续搜索x。

如果x>a[2(n-1)/3],则只需在数组a的右三分之一部分中继续搜索x。

上述两种情况不成立时,则在数组中间的三分之一部分中继续搜索x。

五、实验结果分析二分搜索法:三分搜索法:时间复杂性:二分搜索每次把搜索区域砍掉一半,很明显时间复杂度为O(log n)。

(n代表集合中元素的个数)三分搜索法:O(3log3n)空间复杂度:O(1)。

六、实验体会本次试验解决了二分查找和三分查找的问题,加深了对分治法的理解,收获很大,同时我也理解到学习算法是一个渐进的过程,算法可能一开始不是很好理解,但是只要多看几遍,只看是不够的还要动手分析一下,这样才能学好算法。

七、附录:(源代码)二分搜索法:#include<iostream.h>#include<stdio.h>int binarySearch(int a[],int x,int n){int left=0;int right=n-1;int i,j;while(left<=right){int middle=(left+right)/2;if(x==a[middle]){i=j=middle;return 1;}if(x>a[middle])left=middle+1;else right=middle-1;}i=right;j=left;return 0;}int main(){ int a[10]={0,1,2,3,4,5,6,7,8,9};int n=10;int x=9;if(binarySearch(a,x,n))cout<<"找到"<<endl;elsecout<<"找不到"<<endl;return 0;}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

分治算法的实验报告

分治算法的实验报告

一、实验背景分治算法是一种常用的算法设计方法,其基本思想是将一个复杂问题分解成若干个相互独立的小问题,然后将小问题递归求解,最终将子问题的解合并为原问题的解。

分治算法具有高效性、可扩展性和易于实现等优点,被广泛应用于各个领域。

本实验旨在通过实现分治算法解决实际问题,掌握分治算法的设计思想,并分析其时间复杂度。

二、实验目的1. 理解分治算法的基本思想;2. 掌握分治算法的递归实现方法;3. 分析分治算法的时间复杂度;4. 应用分治算法解决实际问题。

三、实验内容本实验选择两个分治算法:快速排序和合并排序。

1. 快速排序快速排序是一种高效的排序算法,其基本思想是将待排序序列分为两个子序列,其中一个子序列的所有元素均小于另一个子序列的所有元素,然后递归地对两个子序列进行快速排序。

(1)算法描述:① 选择一个基准值(pivot),通常取序列的第一个元素;② 将序列分为两个子序列,一个子序列包含所有小于基准值的元素,另一个子序列包含所有大于基准值的元素;③ 递归地对两个子序列进行快速排序。

(2)代码实现:```cvoid quickSort(int arr[], int left, int right) {if (left < right) {int pivot = arr[left];int i = left;int j = right;while (i < j) {while (i < j && arr[j] >= pivot) {j--;}arr[i] = arr[j];while (i < j && arr[i] <= pivot) {i++;}arr[j] = arr[i];}arr[i] = pivot;quickSort(arr, left, i - 1);quickSort(arr, i + 1, right);}}```2. 合并排序合并排序是一种稳定的排序算法,其基本思想是将待排序序列分为两个子序列,分别对两个子序列进行排序,然后将排序后的子序列合并为一个有序序列。

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。

1、求n个元素的全排。

(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。

(30分)3、设有n=2k个运动员要进行网球循环赛。

设计一个满足要求的比赛日程表。

(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。

三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。

实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。

递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。

2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。

②问题的规模可以通过递推式递减,最终递归终止。

③当问题的规模足够小时,可以直接求解。

3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。

可以使用动态规划技术,将算法改为非递归形式。

int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。

1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。

2)分治算法流程:②将问题分解成若干个规模较小的子问题。

③递归地解决各子问题。

④将各子问题的解合并成原问题的解。

3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。

排序流程:②分别对各子数组递归进行归并排序。

③将已经排序好的各子数组合并成最终的排序结果。

实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。

算法之2章递归与分治

算法之2章递归与分治

算法分析(第二章):递归与分治法一、递归的概念知识再现:等比数列求和公式:1、定义:直接或间接地调用自身的算法称为递归算法。

用函数自身给出定义的函数称为递归函数。

2、与分治法的关系:由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。

这自然导致递归过程的产生。

分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。

3、递推方程:(1)定义:设序列01,....na a a简记为{na},把n a与某些个()ia i n<联系起来的等式叫做关于该序列的递推方程。

(2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。

4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序5、优缺点:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。

缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。

二、递归算法改进:1、迭代法:(1)不断用递推方程的右部替代左部(2)每一次替换,随着n的降低在和式中多出一项(3)直到出现初值以后停止迭代(4)将初值代入并对和式求和(5)可用数学归纳法验证解的正确性2、举例:-----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1(1)1T n T nT=−+=()(1)1W n W n nW=−+−(1)=021n-23()2(1)12[2(2)1]12(2)21...2++2 (121)n n n T n T n T n T n T −−=−+=−++=−++==++=−(1)2 ()(1)1((n-2)+11)1(2)(2)(1)...(1)12...(2)(1)(1)/2W n W n n W n n W n n n W n n n n =−+−=−−+−=−+−+−==++++−+−=−3、换元迭代:(1)将对n 的递推式换成对其他变元k 的递推式 (2)对k 进行迭代(3)将解(关于k 的函数)转换成关于n 的函数4、举例:---------------二分归并排序---------------()2(/2)1W n W n n W =+−(1)=0(1)换元:假设2kn =,递推方程如下()2(/2)1W n W n n W =+−(1)=0 → 1(2)2(2)21k k k W W W−=+−(0)=0(2)迭代求解:12122222321332133212()2(2)212(2(2)21)212(2)22212(2)2*2212(2(2)21)2212(2)222212(2)3*2221...2(0)*2(22...21)22k k k k k k k k k k k k k k k k k k k k k k k k W n W W W W W W W W k k −−−−−−−+−+−−−=+−=+−+−=+−+−=+−−=+−+−−=+−+−−=+−−−==+−++++=−1log 1n n n +=−+(3)解的正确性—归纳验证: 证明递推方程的解是()(1)/2W n n n =−()(1)1W n W n n W =−+−(1)=0,(n 1)=n +n=n(n-1)/2+n =n[(n-1)/2+1]=n(n+1)/2n W W +方法:数学归纳法证 n=1,W(1)=1*(1-1)/2=0假设对于解满足方程,则()---------------快速排序--------------------->>>平均工作量:假设首元素排好序在每个位置是等概率的112()()()(1)0n i T n T i O n n T −==+=∑ >>>对于高阶方程应该先化简,然后迭代(1)差消化简:利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的。

分治法实验总结

分治法实验总结

分治法实验总结
分治法是一种常用的算法设计策略,它将问题分解成若干个子问题,然后递归地解决这些子问题,最后将子问题的解合并成原问题的解。

在本次实验中,我们通过实现归并排序和快速排序两个算法,深入理解了分治法的思想和实现方式。

我们实现了归并排序算法。

归并排序的基本思想是将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将子序列合并成一个有序的序列。

在实现过程中,我们采用了递归的方式,将序列不断地分成两半,直到每个子序列只有一个元素,然后再将这些子序列两两合并,直到最终得到一个有序的序列。

归并排序的时间复杂度为O(nlogn),是一种稳定的排序算法。

接着,我们实现了快速排序算法。

快速排序的基本思想是选择一个基准元素,将序列分成两个部分,一部分比基准元素小,一部分比基准元素大,然后递归地对这两个部分进行排序。

在实现过程中,我们选择了序列的第一个元素作为基准元素,然后使用两个指针分别从序列的两端开始扫描,将比基准元素小的元素放在左边,将比基准元素大的元素放在右边,最后将基准元素放在中间,然后递归地对左右两个部分进行排序。

快速排序的时间复杂度为O(nlogn),但是在最坏情况下,时间复杂度会退化为O(n^2)。

通过实现归并排序和快速排序两个算法,我们深入理解了分治法的
思想和实现方式。

分治法是一种非常重要的算法设计策略,可以用来解决很多复杂的问题,比如最近点对问题、矩阵乘法问题等。

在实际应用中,我们可以根据具体问题的特点选择合适的分治算法,以提高算法的效率和准确性。

分治法实验报告

分治法实验报告

算法实验报告一分治法实验一、实验目的及要求利用分治方法设计大整数乘法的递归算法,掌握分治法的基本思想和算法设计的基本步骤。

要求:设计十进制的大整数乘法,必须利用分治的思想编写算法,利用c语言(或者c++语言)实现算法,给出程序的正确运行结果。

(必须完成)设计二进制的大整数乘法,要求利用分治的思想编写递归算法,并可以实现多位数的乘法(利用数组实现),给出程序的正确运行结果。

(任选)二、算法描述1、输入两个相同位数的大整数u,v 输出uv的值判断大整数的位数i;w=u/10^(i/2);y=v/10^(i/2);x=u-w*10^(i/2);z= v-y*10^(i/2);然后将w,x,y,z代入公式求得最后结果uv=wy10^i+((w+x)(y+z)-wy-xz)10^(i/2)+xz三、调试过程及运行结果在实验中我遇到的问题:原来以为这两个大整数的位数不同,结果题目要求是相同位数的大整数在写10的多少次方时,写的是10^(i/2),10^(i),结果不对,我就将它改成了for循环语句四、实验总结在本次实验中,我知道了分治算法,以及分治算法的基本思想。

我还掌握了编写大整数乘法的算法与步骤,以及如何修改在编写程序时遇到的问题。

五、附录(源程序代码清单)1、#include&lt;iostream.h&gt; int weishu(int x){int i;while(x!=0){ x=x/10;i++;}return i;}void main(){int u,v;cout&lt;&lt;输入两个位数相同的大整数:&lt;&lt;endl; cin&gt;&gt;u;cin&gt;&gt;v;int i,j,m,n;int p,x,y,z,w;int a=1;int b=1;i=weishu(u);for(int k=1;k&lt;=i;k++){a=a*10;}for(int q=1;q&lt;=i/2;q++) {b=b*10;}w=u/b;y=v/b;x=u-w*b;z=v-y*b;p=w*y*a+((w+x)*(y+z)-w*y-x*z)*b+x*z; cout&lt;&lt;u&lt;&lt;*&lt;&lt;v&lt;&lt;=&lt;&lt;p; }教师评语:成绩:√优良中及格不及格算法实验报告二动态规划法实验一、实验目的及要求利用动态规划方法设计背包问题算法,掌握动态规划法的基本思想和算法设计的基本步骤。

递归实验报告分析总结

递归实验报告分析总结

递归实验报告分析总结递归是一种非常重要的编程思想和技巧,对于理解和解决问题具有非常大的帮助。

通过递归,我们可以将一个问题分解成为更小的子问题,从而简化问题的复杂度和难度。

在本次实验中,我深入学习了递归的原理和应用,并实践了一些递归算法。

通过这些实验,我对递归有了更深入和全面的理解,掌握了递归的使用方法和注意事项。

在实验中,我首先学习了递归的概念和原理。

递归是一种将大问题分解成小问题的算法思想,通过不断调用自己来解决问题。

递归算法通常包含两个部分:基本情况和递归情况。

基本情况是递归终止的条件,递归情况是递归调用自身的条件。

通过合理设置这两个条件,我们可以确保递归算法能够得到正确的结果并正常终止。

然后,我练习了递归的应用。

在实验中,我实现了一些常见的递归算法,如计算阶乘、斐波那契数列等。

通过这些实践,我更加熟悉了递归的写法和思维模式。

递归算法的核心思想是将大问题分解成小问题,然后通过递归调用解决这些小问题,最终得到整个问题的解。

这种思维模式非常灵活和高效,对于解决一些复杂和抽象的问题非常有帮助。

在实验过程中,我也遇到了一些递归算法的常见问题和注意事项。

例如,递归算法容易出现堆栈溢出的问题,因为每次递归调用都会占用一定的内存空间,如果递归层数过多,就容易导致栈溢出。

为了解决这个问题,我们可以在递归算法中加入递归深度的限制条件,或者考虑使用迭代算法等其他算法思想。

此外,递归算法的时间复杂度一般比较高,因为递归算法需要不断的调用自身,导致函数的调用次数非常多。

为了提高递归算法的效率,我们可以尝试使用尾递归优化、记忆化搜索等技巧。

尾递归优化是指在递归函数的最后一步调用中,直接返回递归函数的结果,而不再进行其他操作。

这样可以有效避免函数调用的堆栈积累,提高程序的性能。

总的来说,通过本次递归实验,我对递归算法有了更深入的理解和掌握。

递归是一种非常强大和灵活的算法思想,可以用来解决各种复杂的问题。

通过合理设置递归的基本情况和递归情况,我们可以通过递归算法简化问题的复杂度和难度,高效地解决问题。

递归算法的实验报告

递归算法的实验报告

递归算法的实验报告引言递归算法是计算机科学中一种重要的算法思想,通过将问题分解为更小的子问题并逐步解决,从而实现问题的求解。

本实验旨在探讨递归算法的原理,并通过具体例子来说明递归算法的应用。

算法原理1.递归定义:递归算法通过将问题分解为规模更小的子问题来解决。

通常,递归算法会有一个或多个基准情况,当问题的规模达到基准情况时,递归调用将停止。

2.递归调用:在递归算法中,函数会调用自身来解决规模更小的子问题。

通过递归调用,问题的规模逐步缩小,直到达到基准情况。

3.递归终止条件:递归算法必须定义一个或多个递归终止条件,当满足这些条件时,递归调用将停止。

实验步骤为了更好地理解递归算法的应用,我们选取了斐波那契数列作为示例,并通过递归算法计算斐波那契数列的第n项。

1.确定递归终止条件:斐波那契数列的第0项和第1项为预定义的基准情况,所以递归终止条件为n=0或n=1。

2.实现递归算法:创建一个递归函数fibonacci(n),用于计算斐波那契数列的第n项。

3.处理递归调用:在递归函数中,当n大于1时,调用fibonacci(n-1)和fibonacci(n-2)来计算第n-1项和第n-2项,并将它们相加得到第n项的值。

4.返回计算结果:将计算得到的结果返回给调用者。

实验结果通过上述步骤,我们成功实现了递归算法来计算斐波那契数列的第n项。

以下是一些示例结果:•当n=0时,第0项为0。

•当n=1时,第1项为1。

•当n=2时,第2项为1。

•当n=3时,第3项为2。

•当n=4时,第4项为3。

我们还可以通过增大n的值来计算更多项的斐波那契数列。

实验总结通过本次实验,我们深入了解了递归算法的原理和应用。

递归算法通过将问题分解为更小的子问题,从而解决复杂的计算任务。

然而,递归算法也存在一些缺点,如效率较低和可能出现栈溢出的风险。

因此,在实际应用中需要谨慎使用递归算法,并针对具体问题选择合适的算法思想。

希望通过本次实验,读者对递归算法有了更深入的理解,并能够灵活运用递归算法解决实际问题。

递归和分治法

递归和分治法

递归和分治法摘要:一、递归与分治法的概念1.递归:函数调用自身的思想2.分治法:把一个大问题分解成若干个小问题二、递归与分治法的联系与区别1.递归通常作为分治法的实现方式2.分治法不一定要用递归实现三、递归与分治法的应用实例1.快速排序算法2.归并排序算法3.汉诺塔问题正文:递归和分治法是两种在计算机科学中经常使用的解决问题的方法。

递归是一种函数调用自身的思想,即函数在执行过程中,会调用自身来完成某些操作。

而分治法则是把一个大问题分解成若干个小问题,然后逐个解决这些小问题,最后再把它们的解合并,得到大问题的解。

这两种方法在某些情况下可以相互转化,递归通常作为分治法的实现方式,但分治法不一定要用递归实现。

递归与分治法之间的联系在于,递归通常是分治法的实现方式。

在分治法中,我们会把一个大问题分解成若干个小问题,然后通过递归的方式,逐个解决这些小问题。

最后,再把它们的解合并,得到大问题的解。

在这个过程中,递归函数的调用栈会随着问题规模的减小而减小,最终回到原点,从而完成问题的求解。

然而,分治法并不一定要用递归实现。

在一些情况下,我们可以通过迭代的方式,逐个解决小问题,然后把它们的解合并。

这种方式虽然不是通过递归函数调用自身来实现的,但它仍然符合分治法的思想,即把大问题分解成小问题,逐个解决。

递归和分治法在实际问题中有很多应用。

例如,快速排序算法和归并排序算法都是基于分治法的思想设计的。

在快速排序算法中,我们选择一个基准元素,然后把数组中小于基准的元素放在左边,大于基准的元素放在右边,再对左右两个子数组递归地执行相同的操作,直到数组有序。

而在归并排序算法中,我们同样把数组分成左右两个子数组,然后递归地对它们进行排序,最后再把排序好的子数组合并成一个有序的数组。

另一个例子是汉诺塔问题。

在这个问题中,有三个柱子和一个大小不同的圆盘。

要求把圆盘从第一个柱子移动到第三个柱子,每次只能移动一个圆盘,并且大盘不能放在小盘上。

递归与分治算法

递归与分治算法

递归与分治算法
递归和分治算法是计算机科学中两种常见的算法设计技术。

递归是一种直接或间接调用自身函数或者方法的算法。

在递归算法中,函数在其定义中使用了函数自身的调用。

递归算法通常用于解决需要重复执行相同任务的问题,例如遍历树结构、递归搜索等。

递归算法的优点是代码简洁、易于理解,但需要注意递归深度的限制以及可能引发栈溢出的问题。

分治算法是一种将问题分解为多个子问题,并分别解决子问题的算法。

分治算法通过将大问题分解为小问题,并将小问题的解合并成大问题的解来解决问题。

分治算法通常用于排序、查找、矩阵乘法等问题。

分治算法的优点是可以将复杂问题分解为简单问题,降低问题的复杂度,但需要注意分解的子问题必须是相互独立的。

在实际应用中,递归和分治算法通常结合使用。

例如,快速排序算法就是一种典型的分治算法,它通过选择一个基准元素,将数组分为两个子数组,并对每个子数组递归地进行排序,最终合并两个有序子数组得到排序后的数组。

总之,递归和分治算法是计算机科学中重要的算法设计技术,它们可以有效地解决许多复杂的问题。

在实际应用中,需要根据问题的特点选择合适的算法,并注意算法的时间复杂度和空间复杂度。

算法与设计实验报告

算法与设计实验报告

实验一分治与递归(4学时)一、实验目的与要求1、熟悉C/C++语言的集成开发环境;2、通过本实验加深对递归过程的理解二、实验内容掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。

三、实验题任意输入一个整数,输出结果能够用递归方法实现整数的划分。

四、程序代码五、实验结果首先按照提示输入数字:按回车键,得到此数划分的个数:此时您可以接着计算另一个数的划分个数:若要退出,请输入一个小于等于零的数:六、结果分析及程序功能经过和其它同学的实验数据对比,初步认定此程序基本正确,然而不足之处是只能得到划分的个数,而不能列出每个划分的详细情况。

一、实验目的与要求1、掌握棋盘覆盖问题的算法;2、初步掌握分治算法二、实验题盘覆盖问题:在一个2k×2k个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。

在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。

三、程序代码四、实验结果按照提示输入特殊方格的行号和列号(起始行列号为0):按回车键,得到一个矩阵,数字相同区域为一个L型骨牌覆盖:五、结果分析及程序功能得到的16*16棋盘覆盖结果正确,此程序的不足之处:只能设定特殊方格的行列号,而不能设定棋盘的大小。

实验二动态规划算法(4学时)一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。

给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。

分治法实验报告详细

分治法实验报告详细

分治法实验报告详细引言分治法是一种高效的问题解决方法,这种方法把一个复杂的问题划分成若干个规模较小的子问题,然后逐个解决这些子问题,并将子问题的解组合起来,形成原问题的解。

在本实验中,我们将通过实际案例来演示和验证分治法的有效性和高效性。

实验目的本实验的主要目的是探讨分治法在解决实际问题中的应用,验证其在问题规模较大时的效果,并通过与其他算法的对比分析,评估分治法的优势和不足。

实验材料与方法我们选择了一个具体的实际问题作为案例:在一个包含n个元素的列表中,查找特定元素x的位置。

为了模拟问题的规模,我们首先生成了一个包含1000个随机整数的列表,然后从中随机选择一个元素作为我们要查找的目标x。

我们采用了如下的分治法解决方案:1. 将列表分成两个子列表,分别包含前半部分和后半部分的元素。

2. 如果目标元素x等于列表的中间元素,则返回中间元素的位置。

3. 如果目标元素x小于列表的中间元素,则递归调用步骤1,查找前半部分子列表中的目标元素x。

4. 如果目标元素x大于列表的中间元素,则递归调用步骤1,查找后半部分子列表中的目标元素x。

5. 如果子列表为空,则说明目标元素x不存在于列表中。

实验结果与分析我们依次使用二分查找法和分治法来解决上述问题,并记录它们的运行时间。

重复实验10次,并计算它们的平均运行时间。

实验结果如下:- 二分查找法平均运行时间:0.002秒- 分治法平均运行时间:0.001秒通过实验数据可以看出,分治法的运行时间明显优于二分查找法。

这是因为分治法通过将问题划分为更小的子问题,使得每个子问题的规模减小,从而减少了解决每个子问题的时间。

而二分查找法则只是将问题逐步缩小,没有有效地利用子问题之间的联系。

结论通过本实验,我们验证了分治法在解决实际问题中的有效性和高效性。

与其他算法相比,分治法在处理问题规模较大时表现出更好的性能。

因此,我们可以得出结论,对于复杂问题的解决,分治法是一种值得采用的优秀方法。

递归问题实验报告

递归问题实验报告

一、实验目的1. 理解递归算法的基本概念和原理。

2. 掌握递归算法的设计方法和实现技巧。

3. 通过具体实例,加深对递归算法在实际问题中的应用。

二、实验内容本次实验主要针对递归算法在排序、查找和数学问题中的应用进行探讨。

1. 排序问题(1)实验目的:使用递归算法实现快速排序。

(2)实验原理:快速排序是一种分而治之的排序算法。

其基本思想是:选取一个基准元素,将数组分为两个子数组,一个子数组的所有元素都比基准元素小,另一个子数组的所有元素都比基准元素大,然后递归地对两个子数组进行快速排序。

(3)实验步骤:① 定义一个递归函数,用于实现快速排序;② 在递归函数中,选择基准元素,并根据基准元素将数组分为两个子数组;③ 递归地对两个子数组进行快速排序;④ 输出排序后的数组。

(4)实验结果:通过实际编程,验证快速排序算法的正确性。

2. 查找问题(1)实验目的:使用递归算法实现折半查找。

(2)实验原理:折半查找是一种基于二分查找思想的递归查找算法。

其基本思想是:将待查找的序列分为两个子序列,然后确定目标值所在子序列,递归地对子序列进行查找。

(3)实验步骤:① 定义一个递归函数,用于实现折半查找;② 在递归函数中,根据目标值与中间元素的比较结果,确定目标值所在子序列;③ 递归地对子序列进行查找;④ 输出查找结果。

(4)实验结果:通过实际编程,验证折半查找算法的正确性。

3. 数学问题(1)实验目的:使用递归算法求解斐波那契数列。

(2)实验原理:斐波那契数列是一个著名的数列,其递推公式为:F(n) = F(n-1) + F(n-2),其中F(1) = 1,F(2) = 1。

(3)实验步骤:① 定义一个递归函数,用于计算斐波那契数列的第n项;② 在递归函数中,根据n的值,计算斐波那契数列的第n项;③ 输出斐波那契数列的第n项。

(4)实验结果:通过实际编程,验证斐波那契数列递归算法的正确性。

三、实验总结1. 通过本次实验,我们对递归算法的基本概念和原理有了更深入的理解。

分治法金块实验报告

分治法金块实验报告

分治法金块实验报告引言分治法是一种高效的问题解决方法,通过将问题划分为多个子问题并递归地解决,然后将子问题的解合并得到原始问题的解。

本次实验使用了分治法解决了金块分割问题。

金块分割问题是将一块金块分割成多个相等大小的小块的问题。

实验目的本次实验旨在通过实践掌握分治法的应用,了解其原理和算法实现,进一步加深对分治法的理解。

实验步骤1. 首先,将一块金块均匀分割成4块。

2. 然后,从4块金块中找到最重的一块。

3. 接着,将最重的金块与其他3块再次均匀分割成4块。

4. 重复上述过程,直到金块的数量足够小无法再分割。

5. 最后,计算并输出得到的最重金块的重量。

实验结果通过实验,我们得到了一块金块分割的过程及最终的结果。

实验中,我们使用了递归的方法来实现分治法。

以下是分治法金块分割的过程演示:1. 原始金块:10 kg2. 第一次分割:10 kg -> 2.5 kg + 2.5 kg + 2.5 kg + 2.5 kg3. 第二次分割:2.5 kg -> 0.625 kg + 0.625 kg + 0.625 kg + 0.625 kg4. 第三次分割:0.625 kg -> 0.15625 kg + 0.15625 kg + 0.15625 kg +0.15625 kg5. 第四次分割:0.15625 kg -> 0.03906 kg + 0.03906 kg + 0.03906 kg + 0.03906 kg6. 第五次分割:0.03906 kg -> 0.00977 kg + 0.00977 kg + 0.00977 kg + 0.00977 kg7. 第六次分割:0.00977 kg -> 0.00244 kg + 0.00244 kg + 0.00244 kg + 0.00244 kg8. 第七次分割:0.00244 kg -> 0.00061 kg + 0.00061 kg + 0.00061 kg + 0.00061 kg9. 第八次分割:0.00061 kg -> 0.00015 kg + 0.00015 kg + 0.00015 kg + 0.00015 kg经过八次分割,最终得到的金块重量是0.00015 kg。

算法设计与分析实验报告

算法设计与分析实验报告

本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。

1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。

需要注意的是,分治法使用递归的思想。

划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。

最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。

1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。

序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。

试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。

对于给定的正整数n,格雷码为满足如下条件的一个编码序列。

(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。

(2)序列中无相同的编码。

(3)序列中位置相邻的两个编码恰有一位不同。

2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。

两位是00 01 11 10。

三位是000 001 011010 110 111 101 100。

n位是前n-1位的2倍个。

N-1个位前面加0,N-2为倒转再前面再加1。

3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
int partition(int a[],int low,int high) {
int first = low; int last = high; int m=rand()%high; int key = a[m]; a[m]=a[first]; a[first]=key; while(first < last) {
if(mid==a[mid]) { i=mid;
return true; } if(mid<a[mid]) {
right=mid-1; else {
left=mid+1; } } if(a[left]==left) { i=left; return true; } return false; }五、运行结果 1、
cout <<a[i-1]<< " "; if (i%10==0)
cout<<endl; } cout<<endl; int k; cout<<"查找第 k 小的数,请输入 k:"; cin>>k; select(a, 0, n-1,k); cout<<"第"<<k<<"小的数字为"<<a[k-1]<<endl; delete[] a; system("pause");
bool BinarySearch(int a[],int n,int &i);
int main() { int a[]={-1,0,1,3,8,10,32,56,67,78,89};
int n,i; n=sizeof(a)/4; cout<<"数组 a 为:"; for(int m=0;m<n;m++) cout<<a[m]<<" "; if(BinarySearch(a,n,i))
实验报告 分治与递归
中国矿业大学 计算机科学与技术学院 孟靖宇
基本题一:基本递归算法
一、实验目的与要求 1、熟悉 C/C++语言的集成开发环境; 2、通过本实验加深对递归过程的理解
二、实验内容:
掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。 三、实验题
任意输入一个整数,输出结果能够用递归方法实现整数的划分。 四、算法思想
直接选择排序:得到最小的数,需要 (n 1) 次比较;得到第二小的数,需要 (n 2) 次
3n2 3 比较;得到第 k 小的数,需要 (n k) 次比较因此,总比较次数为 8 ,其时间
复杂性为 O(n2 ) 。
四、代码实现 #include "stdafx.h" #include <iostream> #include <cstdlib> #include <stdlib.h> using namespace std;
int main() {
while(1) { int n; cout<<"生成包含 n 个元素的数组,请输入 n:"; cin>>n; cout<<endl; int *a=new int[n]; for(int i=0;i<n;i++) {
a[i]=rand()%1000; } for(int i=1;i<=n;i++) {
int left=0; int right=n-1; while(left<right) {
int mid=(left+right)/2; if(x==a[mid]) {
i=j=mid; return true; } if(x>a[mid]) { left=mid+1; } else {
right=mid-1; } } if(a[left]==x) { i=j=left; return true; } if(x<a[left]) { i=left-1; j=left; } else { i=left; j=left+1; } return false; } 2、 #include "stdafx.h" #include <iostream> #include <stdlib.h> using namespace std;
int n; cout<<"请输入要划分的整数:"<<endl; cin>>n; int p=q(n,n); cout<<"正整数"<<n<<"有"<<p<<"种不同的划分"<<endl; system("pause");
return 0; } int q(int n,int m){
if((n<1)||(m<1)) return 0; if((n==1)||(m==1)) return 1; if(n<m) return q(n,n); if(n==m) return q(n,m-1)+1; return q(n,m-1)+q(n-m,m); } 六、运行结果
int main() {
int a[]={1,2,4,6,8,10,32,56,67,78,89}; int n,i,j,x; n=sizeof(a)/4; cout<<"数组 a 为:"; for(int m=0;m<n;m++) {
cout<<a[m]<<" "; } while(1) { cout<<endl<<"输入需要查找的数:"; cin>>x; if(BinarySearch(a,n,x,i,j)) {
对于数据 n,递归计算最大加数等于 x 的划分个数+最大加数不大于 x-1 的划分个数。最 大加数 x 从 n 开始,逐步变小为 n-1,…,1。
考虑增加一个自变量:对于数据 n,最大加数 n1 不大于 m 的划分个数记作 q(n, m) 。则
有:
1
n 1, m 1
q (n,
m)
q(n, n) 1 q(n, n 1)
2、
六、实验小结 通过本次试验: 1、熟悉了二分搜索算法; 2、初步掌握了分治算法;
提高题一: 用分治法实现元素选择
一、实验要求与目的 1、了解分治法的基本思想,掌握递归程序编写方法;
2、使用分治法编程,求解线形序列中第 k 小元素。 二、实验内容
1、给定线形序列集中 n 个元素和一个整数 k,1≤k≤n,输出这 n 个元素中第 k 小元素 的值及其位置。 2、简述该算法的原理、步骤。对该算法与直接排序查找进行比较。 3、编写并调试程序。 4、测试要求:元素个数不少于 100;分三种情况:k=1、k=n 和 k=中位数。 三、算法思想 随机产生支点 J,对输入数组进行划分为 a 和 b 两段,然后计算 a 部分的元素个数 j: 如果 k<=j,则第 k 小元素落在 a 段,为 a 段的第 k 小元素; 如果 k>j,则 a 段的所有元素都比第 k 小元素还要小,第 k 小元素落在 b 段,为 b 段中 的第 k-j 小元素(-j 的含义是去掉 a 段的元素总个数)
六、实验小结 通过本次试验: 1、 熟悉了 C/C++语言的集成开发环境;
2、通过本实验加深了对递归过程的理解
基本题二:二分搜索
一、实验目的与要求 1、熟悉二分搜索算法; 2、初步掌握分治算法;
二、实验题 1、设 a[0:n-1]是一个已排好序的数组。请改写二分搜索算法,使得当搜索元素 x 不在数 组中时,返回小于 x 的最大元素的位置 I 和大于 x 的最小元素位置 j。当搜索元素在数 组中时,I 和 j 相同,均为 x 在数组中的位置。 2、设有 n 个不同的整数排好序后存放于 t[0:n-1]中,若存在一个下标 i,0≤i<n,使得
1、 #include "stdafx.h" #include <iostream> #include <stdlib.h> #include<windows.h>
using namespace std; bool BinarySearch(int a[],int n,int x,int &i,int &j);
cout<<"能找到,该数下标为"<<i<<endl; } else {
cout<<"找不到,小于该数的最大数的下标为"<<i<<",大于该数的最小数的下 标为"<<j<<endl;
} system("pause"); } return 0; }
bool BinarySearch(int a[],int n,int x,int &i,int &j) {
cout<<endl<<"能找到值等于下标的数组元素,该元素为:"<<i<<endl; else
cout<<"找不到"; system("pause"); return 0; }
bool BinarySearch(int a[],int n,int &i) {
int left=0; int right=n-1; while(left<right) { int mid=(left+right)/2;
相关文档
最新文档