数学七年级上册 平面图形的认识(一)(培优篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE
(1)若∠COF=20°,则∠BOE=________°
(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系
(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.
【答案】(1)40
(2)解:∵
∴
∴
(3)解:存在.理由如下:
∵
设
∴
∵
∴
∴
∴
∴
【解析】【解答】⑴
∴
∵OF平分∠AOE,
∴
∴
∴
故答案为:40。
【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠AOB−∠AOE=120°−80°=40°.
(2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠AOE=120°−∠BOE=2(60°−∠COF) , 整理得∠BOE=2∠COF;
(3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF.
2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
【答案】(1)解:AB∥CD.理由如下:
如图1,
∵∠1与∠2互补,
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)证明:如图2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,
即EG⊥PF.
∵GH⊥EG,
∴PF∥G H;
(3)解:∠HPQ的大小不发生变化,理由如下:
如图3,∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°-∠3=90°-2∠2.
∴∠EPK=180°-∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK= ∠EPK=45°+∠2.
∴∠HPQ=∠QPK-∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;
(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;
(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角
的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.
3.如图
(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。
求∠EPF的度数。
小明想到了以下方法(不完整),请填写以下结论的依据:
如图1,过点P作PM∥AB,
∴∠1=∠AEP=40°(________)
∵AB∥CD,(已知)
∴PM∥CD,(________)
∠2+∠PFD=180°(________)
∵∠PFD=130°,∴∠2=180°-130°=50°
∴∠1+∠2=40°+50°=90°
即∠EPF=90°
(2)如图2,AB∥CD,点P在AB,CD外,问∠PEA,∠PFC,∠P之间有何数量关系?请说明理由;
(3)如图3所示,在(2)的条件下,已知∠P=α,∠PEA的平分线和ZPFC的平分线交于点G,用含有α的式子表示∠G的度数是________。
(直接写出答案,不需要写出过程)
【答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补
(2)解:
理由如下:过点作,则
∴
∵
∴
∵
∴
∴
即 .
(3)
【解析】【解答】(3)如图:
∵EG平分∠PEA,FG平分∠PFC,
∴∠1=∠PFC,∠2=∠PEA,
∴∠1-∠2=∠PFC-∠PEA=(∠PFC-∠PEA),
∵∠PFC=∠PEA+∠P,
∴∠PFC-∠PEA=∠P,
∴∠1-∠2=∠P,
∵∠3=∠P+∠2,
∴∠G=∠3-∠1=∠P+∠2-∠1=∠P=α.
【分析】(1)根据平行线的性质及平行公理,即可求解;
(2)过点P作PN∥AB,根据平行公理得PN∥CD,得出∠PFC=∠FPN,由AB∥CD得出∠PEA=∠NPE,
从而得出∠FPN=∠PEA+∠FPE,即可求出∠PFC=∠PEA+∠FPE,即可求解;
(3)根据角平分线的定义得出∠1=∠PFC,∠2=-∠PEA,由∠PFC=∠PEA+∠P,得出∠1-∠2=
∠P,由三角形的外角性质得出∠G=∠3-∠1,∠3=∠P+∠2,从而求出∠G=α.
4.如图1, .如图2,点分别是上的点,且, .
(1)求证: F;
(2)若的角平分线与的角平分线交于点,请补全图形并直接写出与之间的关系为________.
【答案】(1)证明:如图,延长EH,交CD的延长线与M,
(2)∠BFE=2∠P.
【解析】【解答】解:(2)结论:∠BFE=2∠P,理由如下:
如图,设∠B=∠HEF=y.∠BFE=x
=
,
故答案为:∠BFE=2∠P.
【分析】(1)延长EH,交CD的延长线与M,根据平行线的性质及等量代换即可证明;
(2)设∠B=∠HEF=y,∠BFE=x,根据平行的性质结合三角形的内角和定理得出∠BFE=2∠P.
5.如图,已知,在的右侧,平分,平分,,所在直线交于点.
(1)求的度数.
(2)若,求的度数(用含的代数式表示).
(3)将线段沿方向平移,使得点在点的右侧,其他条件不变,在图中画出平移后的图形,并判断的度数是否发生改变?若改变,求出它的度数(用含的式子表示);若不改变,请说明理由.
【答案】(1)解:∵平分,,
.
(2)解:如图,过点作
∵,
,, .
∵平分,平分,,,
,,
..
(3)解:如图2为平移后的图形.
的度数发生了改变.
过点作,平分,平分,,,
, .
∵,
,
,,
.
【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;
(2)过点E作EF∥AB,根据平行于同一直线的两条直线互相平行得出AB∥CD∥EF,然后根据两直线平行内错角相等,即可求∠BED的度数;
(3)∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC,
∠CDE=∠ADC,然后根据两直线平行内错角相等及同旁内角互补可得:
,进而可由求得答案.
6.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.
(1)若∠A=40°,∠B=76°,求∠DCE的度数;
(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);
(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.
【答案】(1)解:∵∠A=40°,∠B=76°,
∴∠ACB=64°.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB=32°.
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=14°,
∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;
(2)解:∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α;
(3)解:如图所示.
∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α,
由平移可得:GH∥CD,
∴∠HGE=∠DCE β α.
【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线
的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到
∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.
7.已知,如图,在四边形ABCD中,,延长BC至点E,连接AE交CD于点F,使
(1)求证:;
(2)求证:;
(3)若BF平分,请写出与的数量关系________ 不需证明
【答案】(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAF=∠DAE+∠CAF,
∴∠BAF=∠CAD;
(2)证明:∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,
∴∠B=∠D,
∵AB∥CD,
∴∠B+∠BCD=180°,
∴∠D+∠BCD=180°,
∴AD∥BE;
(3)2∠AFB+∠CAF=180°
【解析】【解答】解:(3)如图2,∵AD∥BE,
∴∠E=∠1=∠2,
∵BF平分∠ABC,
∴∠3=∠4,
∵∠AFB是△BEF的外角,
∴∠AFB=∠4+∠E=∠4+∠1,
∴∠AFB=3+∠2,
又∵AD∥BC,
∴∠ABC+∠BAD=180°,
∴∠3+∠4+∠1+∠CAF+∠2=180°,
即2∠AFB+∠CAF=180°.
故答案为:2∠AFB+∠CAF=180°.
【分析】(1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD=180°,进而得到2∠AFB+∠CAF=180°.
8.如图,已知AM//BN,∠A=600.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN.
(1)求∠ABN的度数
(2)当点P运动时,∠CBD的度数是否随之发生变化?若不变化,请求出它的度数。
若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数。
【答案】(1)证明:∵AM//BN
∴∠A+∠ABN=180°
∵∠A=60°
∴∠ABN=180°−∠A=180°−60=120°
(2)解:如图,
没有变化。
∵CB平分∠ABP, BD平分∠PBN
∴∠1= ∠ABP, ∠2= ∠PBN
∴∠CBD=∠1 +∠2 = ∠ABP+∠PBN)
= ×1200=600
(3)解:如图,
∵AM//BN
∴∠ACB=∠CBN
∵∠ACB=∠ABD
∴∠CBN=∠ABD
∴∠CBN−∠CBD=∠ABD−∠CBD
即∠1=∠4
又∵CB平分∠ABP, BD平分∠PBN
∴∠1=∠2 ∠3=∠4
∴∠1=∠2=∠3=∠4=120°÷4=30°
即∠ABC=30°
【解析】【分析】(1)根据两直线平行,同旁内角互补即可求出答案;
(2)根据角平分线的性质以及角度相加减即可得证;
(3)根据两直线平行,同旁内角互补以及已知条件得到∠CBN=∠ABD,根据角度的相加
减得到∠1=∠4,再根据角平分线的性质得到∠1=∠2=∠3=∠4,最后根据∠ABN=120°即可得到答案.
9.如图,三角形ABC,直线,CD、BD分别平分和.
(1)图中,,,求的度数,说明理由.
(2)图中,,直接写出 ________.
(3)图中,, ________.
【答案】(1)解:
,
,
如图1过D点作,
,
,,
,即
又、BD分别平分和.
,同理
(2)
(3)
【解析】【解答】
如图2过D点作,
,
,,
,即
又、BD分别平分和.
,同理,
,
,
即,
,
,
,,
故答案为.
如图3过D点作,
,
,,
,即
又、BD分别平分和.
,同理,
,
,
即,
,
,
,
,
故答案为.
【分析】(1)过点作,根据平行线的性质,得出,,则,再根据、分别平分和,得出,同理,即可解答;(2)根据(1)的思路即可解答;(3)根据(2)的思路即可解答.
10.如图,直线,点E、F分别是AB、CD上的动点(点E在点F的右侧);点M 为线段EF上的一点,点N为射线FD上的一点,连接MN;
(1)如图1,若,,则 ________;
(2)作的角平分线MQ,且,求与之间的数量关系;(3)在(2)的条件下,连接EN,且EN恰好平分,;求的度数.
【答案】(1)60°
(2)解:如图,
∵,
∴∠EMQ=∠AEF,
∵,AB∥CD,
∴MQ∥CD,
∴∠NMQ=∠MNF,
∵MQ平分∠EMN,
∴∠EMQ=∠NMQ,
∴ = ;
(3)解:设∠ENM=x,则∠MNF=2x,
∴∠ENF=3x,
∵AB∥MQ,
∴∠BEN=∠ENF=3x,
∵EN平分∠BEF,
∴∠BEF=2∠BEN=6x,
∵∠AEF=∠MNF=2x,∠AEF+∠BEF=180°,
∴2x+6x=180°,
解得x=22.5°,
∴,∠EFN=∠AEF=∠MNF=45°,
∴∠EMN=∠EFN+∠MNF=90°.
【解析】【解答】解:(1)∵AB∥CD,
∴∠BEF+∠EFD=180°,
∵ ,
∴∠EFD=30°,
∵,
∴∠NMF=90°,
∴∠MNF=180°-∠NMF-∠EFD=60°,
故答案为:60°;
【分析】(1)根据AB∥CD得到∠BEF+∠EFD=180°,由求出∠EFD=30°,
根据得到∠NMF=90°,再利用三角形的内角和定理得到∠MNF=180°-∠NMF-
∠EFD=60°;(2)根据得到∠EMQ=∠AEF,由,AB∥CD推出MQ∥CD,证得∠NMQ=∠MNF,根据角平分线的性质得到∠EMQ=∠NMQ,即可得到 =
;(3)设∠ENM=x,则∠MNF=2x,根据AB∥MQ得到∠BEN=∠ENF=3x,由EN平分∠BEF,证得∠BEF=2∠BEN=6x,再根据∠AEF=∠MNF=2x,∠AEF+∠BEF=180°,列式求出x=22.5°,即可求出∠EMN=∠EFN+∠MNF=90°.
11.
(1)①如图1,已知,,可得 ________.
②如图2,在①的条件下,如果平分,则 ________.
③如图3,在①、②的条件下,如果,则 ________.
(2)尝试解决下面问题:已知如图4,,,是的平分线,,求的度数.
【答案】(1)60°;30°;60°
(2)解:∵,
∴,
∵,
∴ .
∵是的平分线,
∴
∵,
∴ .
【解析】【解答】解:(1)①由两直线平行,内错角相等得到∠BCD=60°;
②如果平分,则 =30°;
③如果,则 90°- 60°.
【分析】(1) ①根据两直线平行,内错角相等即可求解;②根据角平分线的定义求解即可;③根据互余的两个角的和等于90°,计算即可;(2)先根据两直线平行,同旁内角互补和角平分线的定义求出∠BCN的度数,再利用互余的两个角的和等于90°即可求出.
12.如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。
(1)求∠BOE的度数。
(2)如图2,若点C不落在边OA上,当∠COE=15°时,求∠BOD的度数。
【答案】(1)解:∵∠COD=60°,OE为∠COD的平分线,
∴∠COE=30°,
∴∠BOE=∠AOB+∠COE
=45°+30°
=75°;
(2)解:∵∠COE=15°,
∴∠DOE=∠DOC-∠OCE=60°-15°=45°,
∵OE平分∠AOD,
∴∠AOD=2∠DOE=2×45°=90°,
∴∠BOD=∠AOD+∠AOB=90°+45°=135°.
【解析】【分析】(1)OE为∠COD的平分线,求出∠COE的度数,则∠BOE的度数等于∠AOB和∠COE的度数之和;
(2)现知∠COE的度数,则∠DOE度数可求,结合OE平分∠AOD,则∠AOD可求,于是∠BOD的度数可得;。