人教版九年级上册数学 旋转几何综合综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学旋转几何综合综合测试卷(word含答案)

一、初三数学旋转易错题压轴题(难)

1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.

(1)如图①,E在AB上,直接写出ED,GD的数量关系.

(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.

(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.

【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】

【分析】

(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;

(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;

(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.

【详解】

解:(1)结论:DE=2DG.

理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.

∵四边形ABCD是正方形,

∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,

∵∠AEF=∠B=90°,

∴EF∥CM,

∴∠CMG=∠FEG,

∵∠CGM=∠EGF,GC=GF,

∴△CMG≌△FEG(AAS),

∴EF=CM,GM=GE,

∵AE=EF,

∴AE=CM,

∴△DCM≌△DAE(SAS),

∴DE=DM,∠ADE=∠CDM,

∴∠EDM=∠ADC=90°,

∴DG⊥EM,DG=GE=GM,

∴△EGD是等腰直角三角形,

∴DE=2DG.

(2)如图2中,结论成立.

理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.

∵EG=GM,FG=GC,∠EGF=∠CGM,

∴△CGM≌△FGE(SAS),

∴CM=EF,∠CMG=∠GEF,

∴CM∥ER,

∴∠DCM=∠ERC,

∵∠AER+∠ADR=180°,

∴∠EAD+∠ERD=180°,

∵∠ERD+∠ERC=180°,

∴∠DCM=∠EAD,

∵AE=EF,

∴AE=CM,

∴△DAE≌△DCM(SAS),

∴DE=DM,∠ADE=∠CDM,

∴∠EDM=∠ADC=90°,

∵EG=GM,

∴DG=EG=GM,

∴△EDG是等腰直角三角形,

∴DE =2DG .

(3)①如图3﹣1中,当E ,F ,C 共线时,

在Rt △ADC 中,AC =22AD CD +=2255+=52,

在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,

∴CF =CE ﹣EF =6,

∴CG =

12

CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,

∴DE =2DG =42.

②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.

综上所述,DE 的长为2或2.

【点睛】

本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .

(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;

(2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时

停止移动.设矩形ABCD与A B D

'''

△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''

△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.

【答案】(1)2

45

2

cm;(2)

2

2

3316

24(0)

225

88020016

(4)

3335

x x x

y

x x x

--+≤<

⎪⎪

=⎨

⎪-+≤≤

⎪⎩

;(3)存在,使得AA B''

△成为等腰三角形的x的值有:0秒、

3

2

669

-

【解析】

【分析】

(1)先用勾股定理求出BD的长,再根据旋转的性质得出10

B D BD cm

''==,

2

CD B D BC cm

'=''-=,利用B D A

∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;

(2)分类讨论,当

16

5

x

≤<时和当

16

4

5

x

≤≤时,分别列出函数表达式;

(3)分类讨论,当AB A B

'=''时;当AA A B

'=''时;当AB AA

'='时,根据勾股定理列方程即可.

【详解】

解:(1)6

AB cm

=,8

AD cm

=,

10

BD cm

∴=,

根据旋转的性质可知10

B D BD cm

''==,2

CD B D BC cm

'=''-=,

tan

A B CE

B D A

A D CD

''

'''

∠==

'''

6

82

CE

∴=,

3

2

CE cm

∴=,

()2

86345

22

222

A B CE A B D CED

S S S cm

'

'''''

∴==-⨯÷=

-;

(2)①当

16

5

x

≤<时,22

CD x

'=+,

3

2

CE x

=,

相关文档
最新文档