人教版九年级上册数学 旋转几何综合综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学旋转几何综合综合测试卷(word含答案)
一、初三数学旋转易错题压轴题(难)
1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.
(1)如图①,E在AB上,直接写出ED,GD的数量关系.
(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.
(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.
【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】
【分析】
(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;
(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;
(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.
【详解】
解:(1)结论:DE=2DG.
理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.
∵四边形ABCD是正方形,
∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,
∵∠AEF=∠B=90°,
∴EF∥CM,
∴∠CMG=∠FEG,
∵∠CGM=∠EGF,GC=GF,
∴△CMG≌△FEG(AAS),
∴EF=CM,GM=GE,
∵AE=EF,
∴AE=CM,
∴△DCM≌△DAE(SAS),
∴DE=DM,∠ADE=∠CDM,
∴∠EDM=∠ADC=90°,
∴DG⊥EM,DG=GE=GM,
∴△EGD是等腰直角三角形,
∴DE=2DG.
(2)如图2中,结论成立.
理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.
∵EG=GM,FG=GC,∠EGF=∠CGM,
∴△CGM≌△FGE(SAS),
∴CM=EF,∠CMG=∠GEF,
∴CM∥ER,
∴∠DCM=∠ERC,
∵∠AER+∠ADR=180°,
∴∠EAD+∠ERD=180°,
∵∠ERD+∠ERC=180°,
∴∠DCM=∠EAD,
∵AE=EF,
∴AE=CM,
∴△DAE≌△DCM(SAS),
∴DE=DM,∠ADE=∠CDM,
∴∠EDM=∠ADC=90°,
∵EG=GM,
∴DG=EG=GM,
∴△EDG是等腰直角三角形,
∴DE =2DG .
(3)①如图3﹣1中,当E ,F ,C 共线时,
在Rt △ADC 中,AC =22AD CD +=2255+=52,
在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,
∴CF =CE ﹣EF =6,
∴CG =
12
CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,
∴DE =2DG =42.
②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.
综上所述,DE 的长为2或2.
【点睛】
本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .
(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;
(2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时
停止移动.设矩形ABCD与A B D
'''
△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''
△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.
【答案】(1)2
45
2
cm;(2)
2
2
3316
24(0)
225
88020016
(4)
3335
x x x
y
x x x
⎧
--+≤<
⎪⎪
=⎨
⎪-+≤≤
⎪⎩
;(3)存在,使得AA B''
△成为等腰三角形的x的值有:0秒、
3
2
669
-
.
【解析】
【分析】
(1)先用勾股定理求出BD的长,再根据旋转的性质得出10
B D BD cm
''==,
2
CD B D BC cm
'=''-=,利用B D A
∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;
(2)分类讨论,当
16
5
x
≤<时和当
16
4
5
x
≤≤时,分别列出函数表达式;
(3)分类讨论,当AB A B
'=''时;当AA A B
'=''时;当AB AA
'='时,根据勾股定理列方程即可.
【详解】
解:(1)6
AB cm
=,8
AD cm
=,
10
BD cm
∴=,
根据旋转的性质可知10
B D BD cm
''==,2
CD B D BC cm
'=''-=,
tan
A B CE
B D A
A D CD
''
'''
∠==
'''
,
6
82
CE
∴=,
3
2
CE cm
∴=,
()2
86345
22
222
A B CE A B D CED
S S S cm
'
'''''
⨯
∴==-⨯÷=
-;
(2)①当
16
5
x
≤<时,22
CD x
'=+,
3
2
CE x
=,