人教版数学高一 2.3幂函数 教案二(新人教A版必修一)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3幂函数
教学目的:使学生掌握幂函数的概念,会画幂函数的图象,能判定一个幂函数是增函 数还是减函数,能判断一个幂函数的奇偶性。

教学重点:幂函数的图象、幂函数的增减性的证明。

教学难点:幂函数增减性的证明。

教学过程
一、新课引入
课本P90,p=w, S=a 2, V=a 3 ,a=S 21,v=t -1,
上述问题中的函数具有什么共同特征?
二、新课
上述问题中涉及的函数,都是形如y =x a 的函数。

一般地,函数y =x a 叫做幂函数(power function )。

其中x 是自变量,a 是常数。

当a =1,2,3,2
1,-1时,得到下列的幂函数,画出它们的图象,并观察图象, 将你发现的结论写在下表中:
y =x y =x 2 y =x 3 y =x 21
y =x -
1 定义域 R R R [0,+∞) (-∞,0)∪(0,+∞) 值域 R [0,+∞) R [0,+∞) (-∞,0)∪(0,+∞) 奇偶性 奇 偶 奇 非奇非偶 奇
单调性 增 [0,+∞)增 增 增 (-∞,0)减
(-∞,0)减 [0,+∞)减
定点 (1,1) (1,1) (1,1) (1,1) (1,1)
例1、证明幂函数f (x )=x 在[0,+∞)上是增函数。

证明:任取1x 、2x ∈[0,+∞),且1x <2x ,则
f(1x )-f(2x )=21x x -=212121)
)((x x x x x x ++-=2121x x x x +-
因为1x -2x <0,21x x +
>0,
所以,f(1x )<f(2x ) 即幂函数f (x )=x 在[0,+∞)上是增函数。

注意:证明函数的单调性时既可以用作差的方法,也可以用作比的方法,应用用比的 方法时应注意分母不为零,及去母时考虑符号问题。

作业:P92 1、2、3。

相关文档
最新文档