高考数学数学平面向量多选题专项训练试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学数学平面向量多选题专项训练试题及答案
一、平面向量多选题1.题目文件丢失!
2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( )
A .||||||a b a b ⋅≤
B .若a b c b ⋅=⋅且0b ≠,则a c =
C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向
D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
答案:AC 【分析】
根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】
对于A ,由平面向量数量积定义可知
解析:AC 【分析】
根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】
对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,
对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,
对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即
22||||a b a b -⋅=,cos 1θ=-,
则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得5
3
λ>-
, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时5
3
λ>-
且0λ≠,故D 错误;
故选:AC. 【点睛】
本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题. 3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列
ABC 有关的结论,正确的是( ) A .cos cos 0A B +>
B .若a b >,则cos2cos2A B <
C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径
D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=
答案:ABD 【分析】
对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【
解析:ABD 【分析】
对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得
sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 1
2
s S ab C =和正弦定
理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】
对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得
()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;
对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即
cos2cos2A B <,故B 正确;
对于C ,2
11sin 2sin 2sin sin 2sin sin sin 22
S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错
误;
对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B C
A B C B C
+=-+=--⋅,则
tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】
本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.
4.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点
时,点P 的坐标为( ) A .4,23⎛⎫
⎪⎝⎭
B .4,33⎛⎫
⎪⎝⎭
C .()2,3
D .8
,33⎛⎫ ⎪⎝⎭
答案:AD 【分析】
设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,
当点P 靠近点时,, 则, 解得, 所以,
当点P 靠近点时,, 则, 解得, 所以, 故选:
解析:AD 【分析】
设(),P x y ,则()()1
2,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】
设(),P x y ,则()()1
2,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,121
2
PP
PP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩
,
解得432
x y ⎧=⎪⎨⎪=⎩,
所以4,23P ⎛⎫ ⎪⎝⎭
, 当点P 靠近点2P 时,12
2PP PP =,
则()()24124x x y y ⎧=-⎪
⎨
-=-⎪⎩
,
解得833x y ⎧=⎪⎨⎪=⎩,
所以8,33P ⎛⎫ ⎪⎝⎭
, 故选:AD 【点睛】
本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题. 5.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c
若,2,6
A a c π
===则角C 的大小
是( ) A .
6
π B .
3
π C .
56
π D .
23
π 答案:BD 【分析】
由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】
本题考查了根据正弦定理求解三角形内角,解题关键是掌握
解析:BD 【分析】 由正弦定理可得sin sin a c A C =,
所以sin sin 2
c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得
sin sin a c
A C
=, ∴
sin sin c C A a ==而a c <,
∴ A C <, ∴
566
C π
π<<, 故3C π
=
或
23
π. 故选:BD. 【点睛】
本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.
6.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=
D .()
4BC a b ⊥+
答案:ABD 【分析】
A. 根据是边长为2的等边三角形和判断;
B.根据,,利用平面向量的减法运算得到判断;
C. 根据,利用数量积运算判断;
D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长
解析:ABD 【分析】
A. 根据ABC 是边长为2的等边三角形和2AB a =判断;
B.根据2AB a =,
2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1
,2
a AB
b BC =
=,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】
A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;
B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;
C. 因为1,2a AB b BC =
=,所以11
22cos120122
a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()
2
444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()
4BC a b ⊥+,故正确. 故选:ABD 【点睛】
本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.
7.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )
A .1122
AE AB AC →
→→
=+
B .2AB EF →→
=
C .1133
CP CA CB →→→
=+
D .2233
CP CA CB →
→→
=+
答案:AC 【分析】
由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:
根据三角形中线性质和平行四边形法则知, , A 是正确的;
因为EF 是中位线,所以B 是正确的; 根据三角形重心
解析:AC 【分析】
由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:
根据三角形中线性质和平行四边形法则知,
111()()222AE AB BE AB BC AB AC AB AC AB →
→
→
→
→→→→→
→=+=+=+-=+, A 是正确的;
因为EF 是中位线,所以B 是正确的;
根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →
→→→→→⎛⎫⎛⎫
==⨯+=+ ⎪ ⎪⎝⎭⎝⎭
,
所以C 是正确的,D 错误. 故选:AC 【点睛】
本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.
8.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )
A .2
AB AB AC B .2
BC CB AC C .2AC
AB BD
D .2
BD
BA BD
BC BD
答案:AD 【分析】
根据向量的数量积关系判断各个选项的正误. 【详解】
对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形
解析:AD 【分析】
根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2
cos AB AB AC AB AC A AB AC
AB AC
,故A 正确;
对于B ,
2
cos cos CB CB AC CB AC C CB AC C CB AC
CB AC
,
故B 错误; 对于C ,
2
cos cos BD AB BD AB BD ABD AB BD ABD AB BD
BD
AB
,故C 错误; 对于D ,2
cos BD BA BD
BA BD ABD BA BD BD BA
,
2
cos BD BC BD
BC BD CBD BC BD
BD BC
,故D 正确.
故选:AD. 【点睛】
本题考查三角形中的向量的数量积问题,属于基础题.
9.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )
A .
B .
C .8
D .答案:AC 【分析】
利用余弦定理:即可求解. 【详解】
在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】
本题考查了余弦定理解三角形,需熟记定理,考查了基
解析:AC 【分析】
利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】
在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,
即216310a a -+=,解得8a = 故选:AC 【点睛】
本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.
10.下列关于平面向量的说法中正确的是( )
A .已知A 、
B 、
C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =
C .若点G 为ΔABC 的重心,则0GA GB GC ++=
D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ<
答案:AC 【分析】
根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】
解:因为不能构成该平面的基底,所以,又有公共
解析:AC 【分析】
根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】
解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;
由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以
||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;
设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而
2GC GM =-,所以0GA GB GC ++=,即C 正确;
()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a
与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;
故选:AC . 【点睛】
本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题. 11.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )
A .2
OA OD ⋅=-
B .2OB OH OE +=-
C .AH HO BC BO ⋅=⋅
D .AH 在AB 向量上的投影为-
答案:AB 【分析】
直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】
图2中的正八边形,其中, 对于;故正确. 对于,故正确.
对于,,但对应向量的夹角不相等,所以不成立.故错误. 对于
解析:AB 【分析】
直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】
图2中的正八边形ABCDEFGH ,其中||1OA =,
对于3:11cos
4A OA OD π=⨯⨯=;故正确. 对于:22B OB OH OA OE +==-,故正确.
对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32
||cos ||42
AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】
本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.
12.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =
B .a b =
C .a 与b 的方向相反
D .a 与b 都是单位向量
答案:AC 【分析】
根据共线向量的定义判断即可.
【详解】
对于A 选项,若,则与平行,A 选项合乎题意;
对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,
解析:AC
【分析】
根据共线向量的定义判断即可.
【详解】
对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;
对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意; 对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意; 对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意.
故选:AC.
【点睛】
本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.
13.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( )
A .(0,1)-
B .(6,15)
C .(2,3)-
D .(2,3) 答案:ABC
【分析】
设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解.
【详解】
第四个顶点为,
当时,,
解得,此时第四个顶点的坐标为;
当时,,
解得
解析:ABC
【分析】
设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.
【详解】
第四个顶点为(,)D x y ,
当AD BC =时,(3,7)(3,8)x y --=--,
解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-;
当AD CB =时,(3,7)(3,8)x y --=,
解得6,15x y ==,此时第四个顶点的坐标为(6,15);
当AB CD =时,(1,1)(1,2)x y -=-+,
解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.
∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.
故选:ABC .
【点睛】
本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.
14.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )
A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个
B .满足10OA OB -=B 共有3个
C .存在格点B ,C ,使得OA OB OC =+
D .满足1OA OB ⋅=的格点B 共有4个
答案:BCD
【分析】
根据向量的定义及运算逐个分析选项,确定结果.
【详解】
解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,
以为原点建立平面直角坐标系,,
设,若,
所以
解析:BCD
【分析】
根据向量的定义及运算逐个分析选项,确定结果.
【详解】
解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,
设(,)B m n ,若10OA OB -=, 所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈,
得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.
当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.
若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈,
得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.
故选:BCD .
【点睛】
本题考查向量的定义,坐标运算,属于中档题.
15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量
B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个
C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得
()11122122e e e e λμλλμ+=+
D .若存在实数,λμ使得120e e λμ+=,则0λμ==
答案:AD
【分析】
根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确.
【详解】
由平面向量基本定理可知,A 、D 是正确的.
对于B,由平面向量基本
解析:AD
【分析】
根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确.
【详解】
由平面向量基本定理可知,A 、D 是正确的.
对于B ,由平面向量基本定理可知,如果一个平面的基底确定,
那么任意一个向量在此基底下的实数对是唯一的,所以不正确;
对于C ,当两向量的系数均为零,即12120λλμμ====时,
这样的λ有无数个,所以不正确.
故选:AD .
【点睛】
本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.
二、平面向量及其应用选择题16.题目文件丢失!
17.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )
A .2133A
B AD - B .1233
AB AD - C .2133
AB AD -+ D .1233AB AD -+ 解析:C
【分析】 根据平面向量的三角形法则和共线定理即可得答案. 【详解】 解:111222BF BA AF BA AE AB AD AB CE ⎛⎫=+=+=-+++ ⎪⎝⎭ 111223AB AD AB CB ⎛⎫=-+++ ⎪⎝⎭ 111246
AB AD AB CB =-+++
()111246AB AD AB CD DA AB =-+++++ 11112462AB AD AB AB AD AB ⎛⎫=-+++--+ ⎪⎝⎭ 111124126AB AD AB AB AD =-+
++- 2133
AB AD =-+ 故选:C .
【点睛】 本题考查用基底表示向量,向量的线性运算,是中档题.
18.如图所示,设P 为ABC ∆所在平面内的一点,并且1142
AP AB AC =
+,则BPC ∆与ABC ∆的面积之比等于( )
A .25
B .35
C .34
D .14
解析:D
【分析】
由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.
【详解】 延长AP 交BC 于点D ,因为A 、P 、D 三点共线,
所以(1)CP mCA nCD m n =++=,设CD kCB =
代入可得CP mCA nkCB =+
即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+
又因为1142AP AB AC =
+,即11,142nk m nk =--=,且1m n += 解得13,44
m n == 所以1344CP CA CD =
+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比
所以BPC ∆与ABC ∆的面积之比为14 故选D 【点睛】 本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目. 19.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47
AOB ABC S S ∆∆=,则实数m 为( )
A .2
B .-2
C .4
D .-4 解析:D
【分析】
将已知向量关系变为:1
2333m OA OB OC +=,可得到3
m OC OD =且,,A B D 共线;由AOB ABC O S S D CD
∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】
由2OA OB mOC +=得:12333m OA OB OC +
= 设3m OC OD =,则1233
OA OB OD += ,,A B D ∴三点共线 如下图所示:
OC 与OD 反向共线 3
OD
m m CD ∴=- 7
34AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D
【点睛】
本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.
20.在ABC 中,()2
BC BA AC AC +⋅=,则ABC 的形状一定是( )
A .等边三角形
B .等腰三角形
C .等腰直角三角形
D .直角三角形
解析:D
【分析】 先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.
【详解】
因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.
【点睛】
判断三角形形状的方法
①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.
②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论. 21.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )
A .34
B .58
C .38
D .23
解析:A 【分析】
设出()()()
11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113
m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,
所以()()()11AP mAB m AF mAB m AD DF =+-=+-+,
因为2CF DF =,所以1133DF DC AB =
=, 所以()2113
m AP AB m AD +=+-. 因为E 是BC 的中点,
所以1122
AE AB BC AB AD =+=+. 因为AP AE λ=,
所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭
, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩
,
解得34λ=
. 故选:A
【点睛】
本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题.
22.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( )
A .7
B .3
C .11
D .19
解析:A
【分析】
根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解.
【详解】
因为1a =,3b =,a 与b 的夹角为60︒,
所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.
故选:A.
【点睛】
本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.
23.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )
A .500米
B .1500米
C .1200米
D .1000米
解析:D
【分析】 作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .
【详解】
解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,
30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,
依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,
在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,
在Rt BSD ∆中,
sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,
故选:D .
【点睛】
本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.
24.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ).
A .4
B .3
C .-4
D .5
解析:C
【分析】 先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影.
【详解】 对等式AB AC AB AC +=-两边平方得, 222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥, ()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,
设向量BC 与CA 的夹角为θ,
所以,BC 在CA 方向上的投影为16cos 44
BC CA BC CA BC BC BC CA CA θ⋅⋅-⋅=⋅
===-⋅, 故选C .
【点睛】
本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题.
25.在ABC 中,若A B >,则下列结论错误的是( )
A .sin sin A
B >
B .cos cos A B <
C .sin2sin2A B >
D .cos2cos2A B <
解析:C
【分析】
由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD .
【详解】
设ABC 三边,,a b c 所对的角分别为,,A B C ,
由A B >,则,a b >∴sin sin 0A B >>,A 正确;
由余弦函数性质知cos cos A B <,B 正确; sin 22sin cos A A A =,sin 22sin cos B B B =,
当A 为钝角时就有sin 2sin 2A B <,C 错误,;
2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C .
【点睛】
本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题.
26.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且27sin 7
BAD ∠=,则CD 等于( )
A 23
B 3
C .332
D 43 解析:A
【分析】
首先根据余弦定理求AB ,再判断ABC 的内角,并在ABD △和ADC 中,分别用正弦定理表示AD ,建立方程求DC 的值.
【详解】
222cos AB AC BC AC BC C =+-⋅⋅
1312232332=+-⨯⨯=,
222
cos
2
AB BC AC
B
AB BC
+-
∴===
⋅
又因为角B是三角形的内角,所以
6
B
π
=,
90
BAC
∴∠=,
sin BAD
∠=
,cos BAD
∴∠==,
sin cos
7
DAC BAD
∴∠=∠=,
在ABD
△中,由正弦定理可得
sin
sin
BD B
AD
BAD
⋅
=
∠
,
在ADC中,由正弦定理可得
sin
sin
DC C
AD
DAC
⋅
=
∠
,
(
)1
7
DC DC
⨯⨯
=
,解得:DC=.
故选:A
【点睛】
本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型.
27.设θ为两个非零向量,a b
→→
的夹角,已知对任意实数t,||
b t a
→→
-的最小值为1,则()
A.若θ确定,则||a→唯一确定B.若θ确定,则||b→唯一确定
C.若||a→确定,则θ唯一确定D.若||b→确定,则θ唯一确定
解析:B
【分析】
2222
||2
b ta b a bt a t
-=-⋅+,令222
()2
f t b a bt a t
=-⋅+,易得
2
cos
b
a b
t
a a
θ
⋅
==
时,
222
min 2
44()
()1
4
a b a b
f t
a
-⋅
==,即222
||cos1
b bθ
-=,结合选项即可得到答案.【详解】
2222
||2
b ta b a bt a t
-=-⋅+,令222
()2
f t b a bt a t
=-⋅+,因为t R
∈,
所以当
2
cos
b
a b
t
a a
θ
⋅
==时,
222
min2
44()
()
4
a b a b
f t
a
-⋅
=,又||
b t a
→→
-的最小值为1,
所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a
-⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=
,故若θ确定,则||b →唯一确定. 故选:B
【点睛】
本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.
28.下列说法中说法正确的有( )
①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;
③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;
A .①④
B .①②④
C .①②⑤
D .③⑥ 解析:A
【分析】
直接利用向量的基础知识的应用求出结果.
【详解】
对于①:零向量与任一向量平行,故①正确; 对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误;
对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误;
对于④:a b a b +≥+,根据三角不等式的应用,故④正确;
对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误.
综上:①④正确.
故选:A.
【点睛】
本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.
29.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( )
A .三边均不相等的三角形
B .直角三角形
C .等腰(非等边)三角形
D .等边三角形
解析:D
【分析】 先根据0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭
,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状.
【详解】 解:0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭
,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直,
AB AC ∴=, 1cos ||||2
AB AC A AB AC ==, 3
A π∴∠=, 3
B
C A π
∴∠=∠=∠=
, ∴三角形为等边三角形.
故选:D .
【点睛】
本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题.
30.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知
0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( )
A .23π
B .43π
C .6π
D .3
π 解析:A
【分析】
根据题意得出tan tan tan A B C a b c
==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.
【详解】
0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c
∴=--,
同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B c
C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B C a b c
∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C
==, cos cos cos A B C ∴==, 由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===
, 设ABC ∆的外接圆半径为R
,则22sin a R A =
==,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133
R A ππ⨯=⨯=. 故选:A.
【点睛】 本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题.。