江苏省南通市八年级上学期第二次月考数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南通市八年级上学期第二次月考数学试题
一、选择题
1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )
A .
B .
C .
D .
2.在平面直角坐标系中,下列各点在第二象限的是( )
A .(3,1)
B .(3,-1)
C .(-3,1)
D .(-3,-1)
3.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )
A .0条
B .1条
C .2条
D .3条
4.下列交通标识中,是轴对称图形的是( )
A .
B .
C .
D . 5.一次函数112y x =-
+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6.下列图案属于轴对称图形的是( )
A .
B .
C .
D .
7.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相
遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所
示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④ 8.下列说法正确的是( ) A .(﹣3)2的平方根是3
B .16=±4
C .1的平方根是1
D .4的算术平方根是2 9.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣
2x >ax +3 的解集是( )
A .x >2
B .x <2
C .x >﹣1
D .x <﹣1
10.下列二次根式中属于最简二次根式的是( )
A .32
B .24x y
C .y x
D .24+x y
二、填空题
11.1﹣π的相反数是_____.
12.如图,点C 坐标为(0,1)-,直线334
y x =
+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.
13.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC
边上一动点,则DP长的最小值为.
14.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1
2
AB的
长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.
15.式子
1
x-
在实数范围内有意义的条件是__________.
16.计算:52
x x⋅=__________.
17.已知直角三角形的两边长分别为3、4.则第三边长为________.
18.在实数
2
2
,
4
π
,
22
7
-,3.14,16中,无理数有______个.
19.如图是某足球队全年比赛情况统计图:
根据图中信息,该队全年胜了_______场.
20.3的平方根是_________.
三、解答题
21.如图,一次函数y=﹣x+7的图象与正比例函数y=3
4
x的图象交于点A,点P(t,0)
是x正半轴上的一个动点.
(1)点A的坐标为(,);
(2)如图1,连接PA,若△AOP是等腰三角形,求点P的坐标:
(3)如图2,过点P作x轴的垂线,分别交y=3
4
x和y=﹣x+7的图象于点B,C.是否存
在正实数,使得BC=3
2
OA,若存在求出t的值;若不存在,请说明理由.
22.如图,等边三角形ABC的边长为8,点E是边BC上一动点(不与点,B C重合),以BE为边在BC的下方作等边三角形BDE,连接,
AE CD.
(1)在运动的过程中,AE与CD有何数量关系?请说明理由.
(2)当BE=4时,求BDC
∠的度数.
23.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x(件),销售甲、乙两种产品获得的总利润为y(万元).
(1)求y与x之间的函数表达式;
(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.
24.解方程:
2
1
1 42
x x
x x -
-=
-+
25.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图像进行以下研究:
(1)甲、乙两地之间的距离为km;线段AB的解析式为;线段OC的解析式
为 ;
(2)经过多长时间,快慢车相距50千米?
(3)设快、慢车之间的距离为y (km ),并画出函数的大致图像.
四、压轴题
26.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.
(1)求直线AC 的解析式;
(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;
(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标. 27.如图,直线112
y x b =-
+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.
(1)b = ;k = ;点B 坐标为 ;
(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;
(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.
28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0280a b b -++-=.
(1)点A 的坐标为________;点C 的坐标为________.
(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.
(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分
∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).
29.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;
(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;
(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.
30.如图,直线l 1的表达式为:y=-3x+3,且直线l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C .
(1)求点D 的坐标;
(2)求直线l 2的解析表达式;
(3)求△ADC 的面积;
(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,求点P 的坐标.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.
【详解】
解:∵油箱中有油4升,每小时耗油0.5升,
∴y=4-0.5x,
∵4-0.5x≥0,
∴x≤8,
∴x的取值范围是0≤x≤8,
所以,函数图象为:
故选:D.
【点睛】
本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.
2.C
解析:C
【解析】
【分析】
由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.
【详解】
A. (3,1)位于第一象限;
B. (3,-1)位于第四象限;
C. (-3,1)位于第二象限;
D. (-3,-1)位于第三象限;
故选C.
【点睛】
此题主要考察直角坐标系的各象限坐标特点.
3.B
解析:B
【解析】
【分析】
先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.
【详解】
已知如图,所做三角形是钝角三角形,作AD⊥BC,
根据勾股定理可得:AC2-CD2=AB2-BD2
所以设CD=x,则BD=7-x
所以52-x2=(2-(7-x)2
解得x=4
所以CD=4,BD=3,
所以,在直角三角形ADC中
3
==
所以AD=BD=3
所以三角形ABD是帅气等腰三角形
假如从点C或B作直线,不能作出含有边长为3的等腰三角形
故符合条件的直线只有直线AD
故选:B
【点睛】
本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.
4.B
解析:B
【解析】
某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B
5.C
解析:C
【解析】
试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像
过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=
1
2
<0与b=1>
0,因此不经过第三象限.
答案为C
考点:一次函数的图像
6.D
解析:D
【解析】
分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.
详解:A、不能找出对称轴,故A不是轴对称图形;
B、不能找出对称轴,故B不是轴对称图形;
C、不能找出对称轴,故C不是轴对称图形;
D、能找出一条对称轴,故D是轴对称图形.
故选D .
点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.
7.A
解析:A
【解析】
【分析】
根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.
【详解】
由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;
由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;
当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;
乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则
n=6+1+0.4=7.4,④错误.
所以正确的有①②③,
故选A.
【点睛】
本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.
8.D
解析:D
【解析】
【分析】
根据平方根和算术平方根的定义解答即可.
【详解】
A 、(﹣3)2的平方根是±3,故该项错误;
B 4,故该项错误;
C 、1的平方根是±1,故该项错误;
D 、4的算术平方根是2,故该项正确.故选D.
【点睛】
本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.
9.D
解析:D
【解析】
因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出
1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.
10.D
解析:D
【解析】
【分析】
最简二次根式即被开方数不含分母且不含能开得尽方的因数或因式,由此判断即可.
【详解】
解:A
B 2
C
D
故选:D .
【点睛】
本题考查了最简二次根式,熟练掌握最简二次根式的概念是解题的关键.
二、填空题
11.π﹣1.
【解析】
【分析】
根据相反数的定义即可得到结论.
【详解】
1﹣π的相反数是.
故答案为:π﹣1.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.
【解析】
【分析】
根据相反数的定义即可得到结论.
【详解】
1﹣π的相反数是()1
1ππ=﹣﹣﹣. 故答案为:π﹣1.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.
12.【解析】
【分析】
过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.
【详解】
连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,
对于直线令y=0,则,解得x=-4,令x=0
解析:165
【解析】
【分析】
过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.
【详解】
连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,
对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,
∴A(-4,0),B(0,3),
∴OA=4,OB=3,
在Rt △OAB 中,222AB OA OB =+
∴22
435 ∵C (0,-1),
∴OC=1,
∴BC=3+1=4,
∴1122ABC S BC AO AB CD ==,即1144=522
CD ⨯⨯⨯⨯, 解得,165CD =
. 故答案为:
165
. 【点睛】
此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.
13.4
【解析】
如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,
∵BD⊥DC,∠A=90°,
∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,
∴∠C+∠CDE=90°,∠CDE+
解析:4
【解析】
如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,
∵BD⊥DC,∠A=90°,
∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,
∴∠C+∠CDE=90°,∠CDE+∠BDE=90°,
∴∠BDE=∠C,
又∵∠ADB=∠C,
∴∠ADB=∠BDE,
∴在△ABD和△EBD中
A DEB
ADB BDE
BD BD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴DE=AD=4,
即DP的最小值为4.
14.【解析】
分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;
详解:连接AD.
∵PQ垂直平
解析:
8
5
【解析】
分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;
详解:连接AD.
∵PQ垂直平分线段AB,
∴DA=DB,设DA=DB=x,
在Rt△ACD中,∠C=90°,AD2=AC2+CD2,
∴x2=32+(5﹣x)2,
解得x=17
5
,
∴CD=BC﹣DB=5﹣17
5
=
8
5
,
故答案为8
5.
点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
15.【解析】
【分析】
直接利用二次根式和分式有意义的条件分析得出答案.
【详解】
解:式子在实数范围内有意义的条件是:x-1>0,
解得:x>1.
故答案为:.
【点睛】
此题主要考查了二次根式有意
解析:1
x
【解析】
【分析】
直接利用二次根式和分式有意义的条件分析得出答案.
【详解】
在实数范围内有意义的条件是:x-1>0, 解得:x >1.
故答案为:1x >.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
16.【解析】
【分析】
根据同底数幂相乘底数不变指数相加的法则即可得解.
【详解】
,
故答案为:.
【点睛】
本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键.
解析:7x
【解析】
【分析】
根据同底数幂相乘底数不变指数相加的法则即可得解.
【详解】
52527x x x x +⋅==,
故答案为:7x .
【点睛】
本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键. 17.5或
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;
②长为3、4的边都是直角边时:第三边的
解析:5
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为4=
②长为3、45;
∴
或5.
考点:1.勾股定理;2.分类思想的应用.
18.2
【解析】
【分析】
初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.
【详解】
解:根据无理数的定义,属于无理数,所以无理数有2个.
解析:2
【解析】
【分析】
初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.
【详解】
解:根据无理数的定义
2,
4
属于无理数,所以无理数有2个.
故答案为:2.
【点睛】
本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键.
19.22
【解析】
【分析】
【详解】
解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),
∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).
故答案为:22.
【
解析:22
【解析】
【分析】
【详解】
解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),
∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).
故答案为:22.
【点睛】
本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.20.【解析】
试题解析:∵()2=3,
∴3的平方根是.
故答案为.
解析:
【解析】
试题解析:∵
(2=3,
∴3
的平方根是
故答案为三、解答题
21.(1)(4,3);(2)P(5,0)或(8,0)或(25
8
,0);(3)t=
58
7
.
【解析】
【分析】
(1)解方程组即可得到结论;
(2)根据勾股定理得到OA
5,当OP=OA=5时,△AOP是等腰三角形,当
AP=OA=5时,△AOP是等腰三角形,当OP=PA时,△AOP是等腰三角形,于是得到结论;
(3)由P(t,0),得到B(t,3
4
t),C(t,﹣t+7),根据BC=
3
2
OA,解方程即可得
到结论.【详解】
解:(1)解
7
3
4
y x
y x
=-+
⎧
⎪
⎨
=
⎪⎩
得
4
3
x
y
=
⎧
⎨
=
⎩
,
∴点A的坐标为(4,3),故答案为:(4,3);(2)∵A(4,3),
∴OA
5,
当OP=OA=5时,△AOP是等腰三角形,∴P(5,0),
当AP=OA=5时,△AOP是等腰三角形,则OP=8,
∴P(8,0);
当OP=PA时,△AOP是等腰三角形,
则点P在OA的垂直平分线上,
如图1,设OA的垂直平分线交OA于H,
∴OH=1
2
OA=
5
2
,
过A作AG⊥x轴于G,∴△OPH∽△OAG,
∴OH OP OG OA
=,
∴5
2
45
OP =,
∴OP=25 8
,
∴P(25
8
,0),
综上所述,P(5,0)或(8,0)或(25
8
,0);
(3)∵P(t,0),
∴B(t,3
4
t),C(t,﹣t+7),
∵BC=3
2 OA,
∴﹣t+7﹣3
4
t=
3
2
×5或
3
4
t+t﹣7=
3
2
×5,
解得:t=﹣2
7
或t=
58
7
,
∵t>0,
∴t=58
7
.
【点睛】
本题考查了一次函数的综合题,解方程组求点的坐标,等腰三角形的性质,相似三角形的
判定和性质,正确的识别图形是解题的关键.
22.(1)AE=CD ,理由见解析;(2)90°
【解析】
【分析】
(1)如图,证明△ABE ≌△CBD ,即可解决问题.
(2)证明AE ⊥BC ,证明∠BDC=∠AEB ,即可解决问题.
【详解】
解:(1)AE=CD ;理由如下:
∵△ABC 和△BDE 等边三角形
∴AB=BC ,BE=BD ,∠ABC=∠EBD=60°;
在△ABE 与△CBD 中,
AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩
∴△ABE ≌△CBD (SAS ),
∴AE=CD .
(2)∵BE=4,BC=8
∴E 为BC 的中点;
又∵等边三角形△ABC ,
∴AE ⊥BC ;
由(1)知△ABE ≌△CBD ,
∴∠BDC=∠AEB=90°.
【点睛】
本题考查全等三角形的判定及其性质的应用问题;解题关键是观察图形,准确找出图形中隐含的等量关系、全等关系.
23.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.
【解析】
【分析】
(1) 根据题意即可列出一次函数,化简即可;
(2) 设甲的件数为x ,那么乙的件数为:200-x ,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.
【详解】
解:(1)由题意可得:y=0.4x+0.5×(200-x )
得到:y=-0.1x+100
所以y 与x 之间的函数表达式为y=-0.1x+100
(2)设甲的件数为x ,那么乙的件数为:200-x ,
依题意可得:0.6x+0.8(200-x)≤150
解得:x≥50
由y=-0.1x+100
得到y 随x 的增大而减小
所以当利润最大时,x 值越小利润越大
所以甲产品x=50 乙产品200-x=150
答:该商场销售甲50件,乙150件时,能获得最大利润.
【点睛】
此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.
24.3x =
【解析】
【分析】
将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.
【详解】
21142
x x x x --=-+, 方程两边同时乘以(2)(2)x x +-,得2
(1)(2)4x x x x ---=-,
解这个方程,得3x =.
验证:当3x =时,(2)(2)0x x +-≠ ∴原方程的解为:3x =.
【点睛】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
25.(1)450, y 1=﹣150x +450,y 2=75x;(2)当经过
169、209
小时,快慢车相距50千米;(3)见解析
【解析】
【分析】
(1)利用A 点坐标为(0,450),可以得出甲,乙两地之间的距离,B 点坐标为(3,0),代入y 1=kx+b 求出即可,利用线段OC 解析式为y 2=ax 求出a 即可;
(2)分两种情况考虑:y 1﹣y 2=50,y 2﹣y 1=50,得出方程求解即可;
(3)利用(2)中所求得出,y=|y 1-y 2|进而求出函数解析式,得出图象即可.
【详解】
(1)由图象可得,
甲、乙两地之间的距离为450km
设线段AB 对应的函数解析式为y 1=kx +b , 45030b k b =⎧⎨+=⎩,得150450k b =-⎧⎨=⎩
, 即线段AB 对应的函数解析式为y 1=﹣150x +450,
设线段OC 对应的函数解析式为y 2=ax ,
450=6a ,得a =75,
即线段OC 对应的函数解析式为y 2=75x ,
(2) y 1﹣y 2=50,即﹣150x+450-75x=50,169=
x y 2﹣y 1=50,即75x ﹣(﹣150x+450)=50,209x =
当经过169、209
小时,快慢车相距50千米 (3)甲车的速度为:450÷3=150km /h ,乙车的速度为:450÷6=75km /h ,
故甲乙两车相遇的时间为:450÷(150+75)=2h ,
设快、慢车之间的距离为y (km ),这个函数的大致图象如右图所示.
【点睛】
此题主要考查了一次函数的应用和待定系数法求解析式,根据已知图象上的点得出函数解析式以及利用分段函数分析是解题关键.
四、压轴题
26.(1)y =34-
x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】
【分析】
(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;
(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;
(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.
【详解】
解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,
故A (0,3),C (4,0),
设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),
点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:
340b k b =⎧⎨+=⎩解得:343
k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34
-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),
设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),
点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:
-340n m n =⎧⎨+=⎩解得:343
m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34
x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .
(3)
点P 在运动过程中,||PA PB -存在最大值,
由题意可知:如图,延长AB 与直线CD 交点即为点P ,
此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),
此时,||PA PB -= AB =4,y p = y A =3,
点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:
34
x -3=3, x =8,
故P 点坐标为(8,3),
||PA PB -的最大值为x p -x B =8-4=4.
【点睛】
本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.
27.(1)4;2;(0,4);(2)125m =或285
m =;(3)存在.Q 点坐标为()
-,()
4,()0,4-或()5,4. 【解析】
【分析】
(1)根据待定系数法,将点C (4,2)代入解析式可求解;
(2)设点E (m ,142
m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;
(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.
【详解】
解:(1)(1)∵直线y 2=kx -6交于点C (4,2),
∴2=4k -6,
∴k =2, ∵直线212y x b =-
+过点C (4,2), ∴2=-2+b ,
∴b =4, ∴直线解析式为:212y x b =-
+,直线解析式为y 2=2x -6, ∵直线212
y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,
∴点B (0,4),点A (8,0),
故答案为:4;2;(0,4)
(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭
,(),26F m m -, ∴()154261022
EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,
∴EF BO =, ∴51042
m -=, 解得:125m =或285
m =时,
∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()
45,4,()0,4-或()5,4.
理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:
①以AB 为边,如图1所示.
因为点()8,0A ,()0,4B ,
所以45AB =.
因为以P ,Q ,A ,B 为顶点的四边形为菱形,
所以AP AB =或BP BA =.
当AP AB =时,点()845,0P -或()
845,0+;
当BP BA =时,点()8,0P -. 当(
)845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()
45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.
②以AB 为对角线,对角线的交点为M ,如图2所示.
可得5AP =,
点P 坐标为()3,0.
因为以P ,Q ,A ,B 为顶点的四边形为菱形,
所以点Q 坐标为()5,4.
综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,
A ,
B 四个点能构成一个菱形,此时Q 点坐标为()-,()
4,()0,4-或()5,4.
【点睛】
本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.
28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.
【解析】
【分析】
(1)根据算术平方根的非负性,绝对值的非负性即可求解;
(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;
(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得
2∠GOA+∠ACE=∠OHC.
【详解】
(180b -=,
∴a-b+2=0,b-8=0,
∴a=6,b=8,
∴A (0,6),C (8,0);
故答案为:(0,6),(8,0);
(2)由(1)知,A (0,6),C (8,0),
∴OA=6,OB=8,
由运动知,OQ=t ,PC=2t ,
∴OP=8-2t ,
∵D (4,3), ∴114222
ODQ D S OQ x t t =⨯=⨯=△, 1182312322
ODP D S OP y t t =⨯=-⨯=-△(), ∵△ODP 与△ODQ 的面积相等,
∴2t=12-3t ,
∴t=2.4,
∴存在t=2.4时,使得△ODP 与△ODQ 的面积相等;
(3)2∠GOA+∠ACE=∠OHC ,理由如下:
∵x 轴⊥y 轴,
∴∠AOC=∠DOC+∠AOD=90°,
∴∠OAC+∠ACO=90°.
又∵∠DOC=∠DCO,
∴∠OAC=∠AOD.
∵x轴平分∠GOD,
∴∠GOA=∠AOD.
∴∠GOA=∠OAC.
∴OG∥AC,
如图,过点H作HF∥OG交x轴于F,
∴HF∥AC,
∴∠FHC=∠ACE.
∵OG∥FH,
∴∠GOD=∠FHO,
∴∠GOD+∠ACE=∠FHO+∠FHC,
即∠GOD+∠ACE=∠OHC,
∴2∠GOA+∠ACE=∠OHC.
【点睛】
此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.
29.(1)见解析;(2)见解析;(3)3
【解析】
【分析】
(1)根据等腰三角形的性质和外角的性质即可得到结论;
(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;
(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=1
2
CF=3.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵DE=DC,
∴∠E=∠DCE,
∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;
(2)∵△ABC是等边三角形,∴∠B=60°,
∴△BEF是等边三角形,
∴BE=EF,∠BFE=60°,
∴∠DFE=120°,
∴∠DFE=∠CAD,
在△DEF与△CAD中,
EDF DCA
DFE CAD
DE CD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△DEF≌△CAD(AAS),∴EF=AD,
∴AD=BE;
(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
在△ABF和△CBF中,
AB BC
ABF CBF
BF BF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
△ABF≌△CBF(SAS),
∴AF=CF,
∴∠FAC=∠ACF=15°,
∴∠AFH=15°+15°=30°,
∵AH⊥CD,
∴AH=
1
2
AF=
1
2
CF=3,
∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,
∴∠ADH=15°+30°=45°,
∴∠DAH=∠ADH=45°,
∴DH=AH=3.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.
30.(1)(1,0);(2)
3
6
2
y x-
=;(3)
9
2
;(4)(6,3).
【解析】
【分析】
(1)由题意已知l1的解析式,令y=0求出x的值即可;
(2)根据题意设l2的解析式为y=kx+b,并由题意联立方程组求出k,b的值;
(3)由题意联立方程组,求出交点C的坐标,继而即可求出S△ADC;
(4)由题意根据△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C 到AD的距离进行分析计算.
【详解】
解:(1)由y=-3x+3,令y=0,得-3x+3=0,
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;x=3,y=
3
2
-,代入表达式y=kx+b,
∴
40
3
3
2
k b
k b
+
⎧
⎪
⎨
+-
⎪⎩
=
=
,
∴
3
2
6 k
b
⎧
⎪
⎨
⎪-
⎩
=
=
,
∴直线l2的解析表达式为
3
6
2
y x-=;
(3)由
33
3
6
2
y x
y x
⎪
-+
-
⎧
⎪
⎨
⎩
=
=
,解得
2
3
x
y
⎧
⎨
⎩-
=
=
,
∴C(2,-3),
∵AD=3, ∴331922
ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,
则P 到AD 距离=3,
∴P 纵坐标的绝对值=3,点P 不是点C ,
∴点P 纵坐标是3,
∵y=1.5x-6,y=3,
∴1.5x-6=3,解得x=6,
所以P (6,3).
【点睛】
本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.。