(易错题精选)初中数学数据分析基础测试题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(易错题精选)初中数学数据分析基础测试题及解析
一、选择题
1.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:
平均每月阅读本数45678
人数26543
这些同学平均每月阅读课外书籍本数的中位数和众数为( )
A.5,5 B.6,6 C.5,6 D.6,5
【答案】D
【解析】
【分析】
根据中位数和众数的定义分别进行解答即可.
【详解】
把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;
5出现了6次,出现的次数最多,则众数是5.
故选D.
【点睛】
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()
A.15岁,14岁B.15岁,15岁
C.15岁,15
6
岁D.14岁,15岁
【答案】A
【解析】
【分析】
根据众数、平均数的定义进行计算即即可.
【详解】
观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.
这12名队员的年龄的平均数是:123131142155161
14
12
⨯+⨯+⨯+⨯+⨯
=
故选:A
【点睛】
本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.
3.某射击运动员在训练中射击了10次,成绩如图所示:
下列结论不正确的是()
A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2
【答案】D
【解析】
【分析】
首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.
【详解】
根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得
众数是8,中位数是8,平均数是102+92+83+72+61
=8.2
10
⨯⨯⨯⨯⨯
方差是
22222
2(108.2)2(98.2)3(88.2)2(78.2)(68.2)
1.56
10
⨯-+⨯-+⨯-+⨯-+-
=
故选D
【点睛】
本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.
4.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判
断③;根据圆内接正多边形的相关角度去计算④.
【详解】
一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.
【点睛】
本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.
5.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:
则这15运动员的成绩的众数和中位数分别为()
A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65
【答案】A
【解析】
【分析】
6.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:
则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()
A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5
【答案】A
【解析】
【分析】
【详解】
解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,
数据25出现了五次最多为众数.
25处在第6位为中位数.所以中位数是25,众数是25.
故选:A.
7.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5
【答案】C
【解析】
若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;
若众数为5,则数据为1、5、5、7,中位数为5,符合题意,
此时平均数为1557
4
+++
= 4.5;
若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;
故选C.
8.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8
【答案】C
【解析】
【分析】
先根据平均数为5得出a b10
+=,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.
【详解】
解:Q数据3,a,4,b,8的平均数是5,
3a4b825
∴++++=,即a b10
+=,
又众数是3,
a
∴、b中一个数据为3、另一个数据为7,
则数据从小到大为3、3、4、7、8,
∴这组数据的中位数为4,
故选C.
【点睛】
此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.
9.一组数据5,4,2,5,6的中位数是()
A.5 B.4 C.2 D.6
【答案】A
【解析】
试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.
考点:中位数;统计与概率.
10.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定
【答案】B
【解析】
【分析】
根据方差的意义求解可得.
【详解】
∵乙的成绩方差<甲成绩的方差,
∴乙的成绩比甲的成绩稳定,
故选B.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
11.下列说法正确的是()
A.对角线相等的四边形一定是矩形
B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
C.如果有一组数据为5,3,6,4,2,那么它的中位数是6
D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D
【解析】
【分析】
根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.
【详解】
A.对角线相等的平行四边形是矩形,故该项错误;
B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;
C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;
D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,
故选:D.
【点睛】
此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.
12.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()
位:℃):7,4,2,1,2,2
A.平均数是B.中位数是C.众数是D.方差是
【答案】D
【解析】
【分析】
一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].
【详解】
解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9
故选D.
13.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
成绩(m) 2.3 2.4 2.5 2.4 2.4
则下列关于这组数据的说法,正确的是()
A.众数是2.3 B.平均数是2.4
C.中位数是2.5 D.方差是0.01
【答案】B
【解析】
【分析】
一组数据中出现次数最多的数据叫做众数;
平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;
一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
【详解】
这组数据中出现次数最多的是2.4,众数是2.4,选项A不符合题意;
∵(2.3+2.4+2.5+2.4+2.4)÷5 =12÷5 =2.4
∴这组数据的平均数是2.4, ∴选项B 符合题意.
14.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:
设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2
S 乙,2
S 丁,则下列判断中
正确的是( )
A .22,x x S S =<乙丁乙丁
B .22
,x x S S =>乙丁乙丁 C .22
,x x S S >>乙丁乙丁
D .22
,x x S S <<乙丁乙丁
【答案】B 【解析】 【分析】
根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】
x 乙4563555260
5
++++=
=55,
则2
1
5
S =
⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁5153585657
5
++++=
=55,
则2
1
5
S =
⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22
S S >乙丁,
故选:B . 【点睛】
本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=
1
n
[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,
波动性越大,反之也成立.
15.某中学篮球队12名队员的年龄如表:
关于这12名队员年龄的数据,下列说法正确的是()
A.中位数是14.5 B.年龄小于15岁的频率是
5 12
C.众数是5 D.平均数是14.8
【答案】A
【解析】
【分析】
根据表中数据,求出这组数据的众数、频率、中位数和平均数即可.【详解】
解:A、中位数为第6、7个数的平均数,为1415
2
+
=14.5,此选项正确;
B、年龄小于15岁的频率是151
122
+
=,此选项错误;
C、14岁出现次数最多,即众数为14,此选项错误;
D、平均数为:131145154162175
=
1212
⨯+⨯+⨯+⨯
,此选项错误;
【点睛】
本题考查了众数、中位数、平均数与频率的计算问题,是基础题.解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.
16.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是() A.平均数B.中位数C.众数D.方差
【答案】D
【解析】
【详解】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差=
222 (12)2(22)(32)
4
-+⨯-+-
=
1
2
,
添加数字2后的方差=
222 (12)3(22)(32)
5
-+⨯-+-
=
2
5
,
故方差发生了变化.
故选D.
17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()
A.96分,98分B.97分,98分C.98分,96分D.97分,96分
【答案】A
【解析】
【分析】
利用众数和中位数的定义求解.
【详解】
98出现了9次,出现次数最多,所以数据的众数为98分;
共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.
故选A.
【点睛】
本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.
18.一组数据0、-1、3、2、1的极差是()
A.4 B.3 C.2 D.1
【答案】A
【解析】
【分析】
根据极差的概念最大值减去最小值即可求解.
【详解】
解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.
故选A.
【点睛】
本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.
19.一组数据-2,3,0,2,3的中位数和众数分别是()
A.0,3 B.2,2 C.3,3 D.2,3
【答案】D
【解析】
【分析】
根据中位数和众数的定义解答即可.
【详解】
将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3.
故选D.
【点睛】
本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
20.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()
A.中位数31,众数是22 B.中位数是22,众数是31
C.中位数是26,众数是22 D.中位数是22,众数是26
【答案】C
【解析】
【分析】
根据中位数,众数的定义即可判断.
【详解】
七个整点时数据为:22,22,23,26,28,30,31
所以中位数为26,众数为22
故选:C.
【点睛】
此题考查中位数,众数的定义,解题关键在于看懂图中数据。