天河区三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天河区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=
,则
•
=( )
A .﹣1
B .1
C .﹣
D .
2. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )
A .=
B .0S =
C .0122S S S =+
D .20122S S S =
3. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )
A.32
-
B.1-
C. D.
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.
4. (+
)2n (n ∈N *
)展开式中只有第6项系数最大,则其常数项为( )
A .120
B .210
C .252
D .45
5. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A .
B .
C .
D .
6. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则
=( )
A .
B .
C .
D .±
7. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )
A .1
B .2
C .4
D .6 8. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( )
A.1个B.2个C.3个D.4个9.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是()
A
.π B.2πC.
4πD
.
π
10.如果点P在平面区域
220,
210,
20
x y
x y
x y
-+≥
⎧
⎪
-+≤
⎨
⎪+-≤
⎩
上,点Q在曲线22
(2)1
x y
++=上,那么||
PQ的最小值为()
A
1B
1
-
C. 1D
1
11
.已知向量=(1,1,0
),=(﹣1,0,2)且
k
+与
2
﹣互相垂直,则k的值是()
A.1 B
.C
.D
.
12.复数i﹣1(i是虚数单位)的虚部是()
A.1 B.﹣1 C.i D.﹣i 二、填空题
13.设O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F
斜率为的直线与抛物线C
相交于A,B两点,直线AO与l相交于D,若|AF|>|BF|
,则=.
14.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数
①f(x)=3x+1 ②f(x)=
()x+1
③f(x)=x2+1 ④f(x)
=
其中是“H函数”的有(填序号)
15.阅读如图所示的程序框图,则输出结果S的值为.
【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.
16.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.
17.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,则
+
+…+= .
18.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .
三、解答题
19. 定圆2
2
:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;
(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.
20.(本小题满分13分)
如图,已知椭圆2
2:14
x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,
(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;
(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.
21.已知函数f (x )=
(a >0)的导函数y=f ′(x )的两个零点为0和3.
(1)求函数f (x )的单调递增区间;
(2)若函数f (x )的极大值为
,求函数f (x )在区间[0,5]上的最小值.
22.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1
(1)
n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的
取值范围.
23.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.
(1)证明:BC 1∥平面ACD 1.
(2)当
时,求三棱锥E ﹣ACD 1的体积.
24.已知函数f(x)=ax3+2x﹣a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.
(i)证明:n≥2时存在唯一x n且;
(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.
天河区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】B
【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且
|
|=
,
即有
||2
+|
|2
=|
|2,
可得△OAB 为等腰直角三角形,
则
,的夹角为45°,
即有
•
=|
|•
|
|•cos45°=1
×
×
=1.
故选:B .
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
2. 【答案】A 【解析】
试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:
220()2()a S a h S a S a h
S '⎧=⎪+⎪
⎨'⎪=+⎪⎩
,解得=A . 考点:棱台的结构特征. 3. 【答案】D
【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526
k ϕπ
=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-
,则5(0)2cos()6
f π
=-=,故选D. 4. 【答案】
B
【解析】
【专题】二项式定理.
【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.
【解答】解:由已知(
+
)2n (n ∈N *
)展开式中只有第6
项系数为
最大,
所以展开式有11项,所以2n=10,即n=5,
又展开式的通项为
=,
令5
﹣
=0解得k=6,
所以展开式的常数项为=210;
故选:B
【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n ,利用通项求特征项. 5. 【答案】C
【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数, 故这3
个数构成一组勾股数的概率为.
故选:C
6. 【答案】D
【解析】解:△ABC 中,A (﹣5,0),B (5,0),点C
在双曲线上,
∴A 与B 为双曲线的两焦点,
根据双曲线的定义得:|AC ﹣BC|=2a=8,|AB|=2c=10,
则
=
=
±
=
±.
故选:D .
【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.
7. 【答案】B 【解析】
试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812
a a a a +=⎧⎨
=⎩,解得1326a a =⎧⎨=⎩或136
2a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以
132,6a a ==,故选B .
考点:等差数列的性质. 8. 【答案】B 【解析】
考
点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
9. 【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为: cm ;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为: =4
π
故选:C .
10.【答案】A 【解析】
试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.
考点:线性规划求最值. 11.【答案】D
【解析】解:∵ =(1,1,0),=(﹣1,0,2),
∴k +=k (1,1,0)+(﹣1,0,2)=(k ﹣1,k ,2),
2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),
又k +与2﹣互相垂直,
∴3(k ﹣1)+2k ﹣4=0,解得:k=.
故选:D .
【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.
12.【答案】A
【解析】解:由复数虚部的定义知,i ﹣1的虚部是1, 故选A .
【点评】该题考查复数的基本概念,属基础题.
二、填空题
13.【答案】
.
【解析】解:∵O 为坐标原点,抛物线C :y 2
=2px (p >0)的准线为l ,焦点为F , 过F 斜率为
的直线与抛物线C 相交于A ,B 两点,
直线AO 与l 相交于D ,
∴直线AB 的方程为y=(x ﹣),l 的方程为x=﹣,
联立
,解得A (﹣
,
P ),B (,﹣
)
∴直线OA 的方程为:y=
,
联立,解得D (﹣,﹣)
∴|BD|==,
∵|OF|=,∴ ==.
故答案为:.
【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.
14.【答案】 ①④
【解析】解:∵对于任意给定的不等实数x 1,x 2,不等式x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1)恒成立, ∴不等式等价为(x 1﹣x 2)[f (x 1)﹣f (x 2)]≥0恒成立, 即函数f (x )是定义在R 上的不减函数(即无递减区间); ①f (x )在R 递增,符合题意; ②f (x )在R 递减,不合题意;
③f (x )在(﹣∞,0)递减,在(0,+∞)递增,不合题意; ④f (x )在R 递增,符合题意; 故答案为:①④.
15.【答案】
2017
2016
【解析】根据程序框图可知,其功能是求数列})
12)(12(2
{
+-n n 的前1008项的和,即 +⨯+⨯=
532312S =-++-+-=⨯+)2017120151()5131()311(201720152 2017
2016
.
16.【答案】 24
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC 中,根据正弦定理得:BC==24
海里,
则这时船与灯塔的距离为24海里.
故答案为:24
.
17.【答案】 .
【解析】解:点An (n ,
)(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,
=
,
=
,…, =,
∴
++…+
=
+…+
=1﹣
=
,
故答案为:
. 【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
18.【答案】 6 .
【解析】解:根据题意可知:f (x )﹣2x
是一个固定的数,记为a ,则f (a )=6,
∴f (x )﹣2x =a ,即f (x )=a+2x
,
∴当x=a 时,
又∵a+2a
=6,∴a=2,
∴f (x )=2+2x
,
∴f (x )+f (﹣x )=2+2x +2+2﹣x =2x +2﹣x
+4
≥2+4=6,当且仅当x=0时成立,
∴f (x )+f (﹣x )的最小值等于6,
故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
三、解答题
19.【答案】
【解析】(Ⅰ)
(3,0)F 在圆22:(16M x y +=内,∴圆N 内切于圆.M
NM NF +∴轨迹E 的方程为4(11OA OC =2(14)(14k k ++≤当且仅当182,5>∴∆20.【答案】
【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,
∴ 直线AP 的斜率0101y k x -=
,BP 的斜率020
1
y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有2
00012200011114
y y y k k x x x -+-⋅===-.
(4分)
21.【答案】
【解析】解:f′(x)=
令g(x)=﹣ax2+(2a﹣b)x+b﹣c
函数y=f′(x)的零点即g(x)=﹣ax2+(2a﹣b)x+b﹣c的零点
即:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3
则解得:b=c=﹣a,
令f′(x)>0得0<x<3
所以函数的f(x)的单调递增区间为(0,3),
(2)由(1)得:
函数在区间(0,3)单调递增,在(3,+∞)单调递减,
∴,
∴a=2,
∴;,
∴函数f(x)在区间[0,4]上的最小值为﹣2.
22.【答案】
【解析】【命题意图】本题考查等差数列通项与前n项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.
23.【答案】
【解析】(1)证明:∵AB∥C1D1,AB=C1D1,
∴四边形ABC1D1是平行四边形,
∴BC1∥AD1,
又∵AD1⊂平面ACD1,BC1⊄平面ACD1,
∴BC1∥平面ACD1.
(2)解:S△ACE=AEAD==.
∴V=V===.
【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.24.【答案】
【解析】解:(Ⅰ)f'(x)=3ax2+2,
若a≥0,则f'(x)>0,函数f(x)在R上单调递增;
若a<0,令f'(x)>0,∴或,
函数f(x)的单调递增区间为和;
(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,
又f n(1)=n+2﹣n=2>0,
f n()==
==﹣
当n≥2时,g(n)=n2﹣n﹣1>0,,
n≥2时存在唯一x n且
(i i)当n≥2时,,∴(零点的区间判定)
∴,(数列裂项求和)
∴,
又f1(x)=x3+2x﹣1,,(函数法定界)
,又,
∴,
∴,(不等式放缩技巧)
命题得证.
【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.。