数学版数学人教版七年级上册数学 压轴题 期末复习试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学版数学人教版七年级上册数学 压轴题 期末复习试卷及答案
一、压轴题
1.综合试一试
(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.
(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把
11a
-称为a 的差倒数.如:2的差倒数是
1
112=--,1-的差倒数是()
11
112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3
a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.
(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______
(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等. 2.问题:将边长为
的正三角形的三条边分别等分,连接各边对应的等分点,则
该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;
边长为2的正三角形一共有1个.
探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有
个;边长为
2的正三角形共有个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)
结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三
角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 3.观察下列等式:111122=-⨯,1112323=-⨯,1113434
=-⨯,则以上三个等式两边分别相加得:
1111111131122334223344
++=-+-+-=⨯⨯⨯. ()1观察发现
()1n n 1=+______;()
1111122334n n 1+++⋯+=⨯⨯⨯+______.
()2拓展应用
有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成1
4
圆周(如图2),在新产生的分点标上相邻的已标的两数之和的
12,记4个数的和为2a ;第三次将四个14圆周分成1
8
圆周(如图
3),在新产生的分点标上相邻的已标的两数之和的
1
3
,记8个数的和为
3
a;第四次将八个1
8
圆周分成
1
16
圆周,在新产生的分点标上相邻的已标的两个数的和的
1
4
,记16个数的和为4a;⋯⋯如此进行了n次.
n
a=
①______(用含m、n的代数式表示);
②当
n
a6188
=时,求
123n
1111
a a a a
+++⋯⋯+的值.
4.已知:OC平分AOB
∠,以O为端点作射线OD,OE平分AOD
∠.
(1)如图1,射线OD在AOB
∠内部,BOD82
∠=︒,求COE
∠的度数.
(2)若射线OD绕点O旋转,BODα
∠=,(α为大于AOB
∠的钝角),
COEβ
∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.
5.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
6.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C6
a+(c﹣4)2=0.
(1)求B 、C 两点的坐标;
(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的1
3
?直接写出此时点P 的坐标.
7.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()2
25350a b ++-=.点P
从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;
(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;
(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)
8.射线OA 、OB 、OC 、OD 、OE 有公共端点O .
(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;
(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.
9.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;
(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;
(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.
10.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

已知:点C 在直线AB 上,AC a =,BC b =,且a b ,点M 是AB 的中点,请按照
下面步骤探究线段MC 的长度。

(1)特值尝试
若10a =,6b =,且点C 在线段AB 上,求线段MC 的长度. (2)周密思考:
若10a =,6b =,则线段MC 的长度只能是(1)中的结果吗?请说明理由. (3)问题解决
类比(1)、(2)的解答思路,试探究线段MC 的长度(用含a 、b 的代数式表示). 11.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.
(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;
②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?
12.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以
3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从
点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;
(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.
13.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点
(1)若AP=2时,PM=____;
(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;
(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.
14.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段
AM 上,D 在线段BM 上)
()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;
(直接填空)
()2当点C 、D 运动了2s ,求AC MD +的值.
()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)
()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB
的值.
15.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.
(1)若AC=4cm ,求DE 的长;
(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)2503
2
;(4)9.38;(5)0;(6)24或40 【解析】 【分析】
(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案. 【详解】
(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3, 故答案为23+(-3)3+43,73+(-5)3+(-6)3 (2)∵2a b a ab ⊗=-,
∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32
-3×(-2)]
=(-5)⊗15 =(-5)2-(-5)×15 =100. (3)∵a 1=2, ∴a 2=
1
112
=--, a 3=11(1)--=12
, 41
2
112
a =
=-
a 5=-1 ……
∴从a 1开始,每3个数一循环, ∵2500÷3=833……1, ∴a 2500=a 1=2,
∴122500a a a ++⋅⋅⋅+=833×(2-1+
1
2)+2=25032
. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分, ∴平均分为中间8个分数的平均分, ∵平均分精确到十分位的为9.4, ∴平均分在9.35至9.44之间, 9.35×8=74.8,9.44×8=75.52,
∴8个裁判所给的总分在74.8至75.52之间, ∵打分都是整数, ∴总分也是整数, ∴总分为75,
∴平均分为75÷8=9.375, ∴精确到百分位是9.38. 故答案为9.38
(5)2019÷4=504……3,
∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,…… ∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0 ∴所得结果可能的最小非负数是0, 故答案为0
(6)设x 分钟后甲和乙、丙的距离相等,
∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,
∴120x-400-100x=90x+800-120x
解得:x=24.
∵当乙追上丙时,甲和乙、丙的距离相等,
∴400÷(100-90)=40(分钟)
∴24分钟或40分钟时甲和乙、丙的距离相等.
故答案为24或40.
【点睛】
本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.
2.探究三:16,6;结论:n²,;应用:625,300.
【解析】
【分析】
探究三:模仿探究一、二即可解决问题;
结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2
的正三角形共有个;
应用:根据结论即可解决问题.
【详解】
解:探究三:
如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有
个;
边长为2的正三角形有个.
结论:
连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有
个;
边长为2的正三角形,共有个.
应用:
边长为1的正三角形有=625(个),
边长为2的正三角形有(个).
故答案为探究三:16,6;结论:n², ;应用:625,300.
【点睛】
本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.
3.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3
++②75364 【解析】 【分析】
()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的
猜想计算出结果;
()2①由16a 2m m 3
==,212a 4m m 3
==,320a m 3
=,430a 10m m 3
==,找规律可
得结论;
②由
()()n 1n 2m 22713173
++=⨯⨯⨯⨯知
()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一
步求解可得. 【详解】
()1观察发现:
()111n n 1n n 1
=-++;
()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1
=-+-+-+⋯+-+,
1
1n 1
=-+, n 11
n 1+-=+, n
n 1
=
+; 故答案为
11n n 1-+,n n 1
+. ()2拓展应用
16a 2m m 3①==,212a 4m m 3==,320a m 3=,430
a 10m m 3==,
⋯⋯
()()n
n 1n 2a m 3
++∴=,
故答案为
()()n 1n 2m.
3
++
()()n n 1n 2a m 61883
②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,
()()n 1n 2m 22713173
++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,
m 7∴=,n 50=,
()()n 7a n 1n 23
∴=++, ()()
n 131a 7n 1n 2=⋅++, 123n
1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++
()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦
31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364
=
. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:
()111n n 1n n 1
=-++. 4.(1)41°;(2)见解析.
【解析】
【分析】
(1)根据角平分线的定义可得12AOC AOB ∠∠=
,12AOE AOD ∠∠=,进而可得∠COE=()12
AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.
【详解】
(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴12AOC AOB ∠∠=,12
AOE AOD ∠∠=,
∴COE AOC AOE ∠∠∠=- =
1122
AOB AOD ∠∠- =()12
AOB AOD ∠∠- =12BOD ∠ =
01822
⨯ =41°
(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,
∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,
∴11O ,22
AOC A B AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =
1122
AOB AOD ∠∠+ =()12
AOB AOD ∠∠+ =12α
如图,当OA 在BOD ∠外部,
∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴11,22
AOC AOB AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=
+ =()12
AOB AOD ∠∠+
=()013602
BOD ∠- =()
013602α- =011802
α-
∴α与β之间的数量关系发生变化.
【点睛】
本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
5.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;
(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;
②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.
【详解】
解:(1)∵数轴上点A 表示的数为6,
∴OA =6,
则OB =AB ﹣OA =4,
点B 在原点左边,
∴数轴上点B 所表示的数为﹣4;
点P 运动t 秒的长度为5t ,
∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P 所表示的数为:6﹣5t ,
故答案为﹣4,6﹣5t ;
(2)①点P 运动t 秒时追上点Q ,
根据题意得5t =10+3t ,
解得t =5,
答:当点P 运动5秒时,点P 与点Q 相遇;
②设当点P 运动a 秒时,点P 与点Q 间的距离为8个单位长度,
当P 不超过Q ,则10+3a ﹣5a =8,解得a =1;
当P 超过Q ,则10+3a+8=5a ,解得a =9;
答:当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
6.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(8
3,﹣6)
【解析】
【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;
(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.
【详解】
(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).
(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=
⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意
得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形
OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12
-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=
S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83
,﹣6). 综上所述:当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的
坐标是(0,﹣4)或(8
3
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.
7.(1)25
-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.
【解析】
【分析】
(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.
【详解】
解:(1)25
-,35
(2)设运动时间为x秒
13x2x2535
+=+
解得x4
=
352427
-⨯=
答:运动时间为4秒,相遇点表示的数字为27
(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,
∵25305
-+=,
∴点P所在的位置表示的数为5 .
(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,
∴点P和点Q一共相遇了6+1=7次.
【点睛】
本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.
8.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,
∠CO D,∠DOE;(2)∠BOD=54°;(3)
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】
【分析】
(1)根据角的定义即可解决;
(2)利用角平分线的性质即可得出∠BOD=1
2∠AOC+1
2
∠COE,进而求出即可;
(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.
【详解】
(1)如图1中小于平角的角
∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.
(2)如图2,
∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),
∴∠BOD=1
2
∠AOD﹣
1
2
∠COE+
1
2
∠COE=
1
2
×108°=54°;
(3)如图3,
∠AOE=88°,∠BOD=30°,
图中所有锐角和为
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE
=4∠AOB+4∠DOE=6∠BOC+6∠COD
=4(∠AOE﹣∠BOD)+6∠BOD
=412°.
【点睛】
本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与
∠AOE、∠BOD和∠BOD的关系是解题的关键,
9.(1)20;(2)t=15s或17s (3)4 3 s.
【解析】
【分析】
(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.
(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.
(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.
【详解】
(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.
(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);
当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).
综上所述:t=15s或17s.
(3)P运动到原点时,t=364444
3
++
=
124
3
s,此时QB=2×
124
3
=
248
3
>44+38=80,∴Q
点已到达A点,∴Q点已到达A点的时间为:364480
40
22
+
==(s),故提前的时间
为:124
3
-40=
4
3
(s).
【点睛】
本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.
10.(1)2(2)8或2;(3)见解析.
【解析】
【分析】
(1)根据线段之间的和差关系求解即可;
(2)由于B点的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况进行分类讨论;
(3)由(1)(2)可知MC=1
2
(a+b)或
1
2
(a-b).
【详解】
解:解:(1)∵AC=10,BC=6,∴AB=AC+BC=16,
∵点M是AB的中点,
∴AM=1
2
AB
∴MC=AC-AM=10-8=2.
(2)线段MC的长度不只是(1)中的结果,
由于点B的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况:
①当B点在线段AC上时,
∵AC=10,BC=6,
∴AB=AC-BC=4,
∵点M是AB的中点,
∴AM=1
2
AB=2,
∴MC=AC-AM=10-2=8.
②当B点在线段AC的延长线上,
此时MC=AC-AM=10-8=2.
(3)由(1)(2)可知MC=AC-AM=AC-1
2
AB 因为当B点在线段AC的上,AB=AC-BC,
故MC=AC-1
2
(AC-BC)=
1
2
AC+
1
2
BC=
1
2
(a+b)
当B点在线段AC的延长线上,AB=AC+BC,
故MC=AC-1
2
(AC+BC)=1
2
AC-
1
2
BC=
1
2
(a-b)
【点睛】
主要考察两点之间的距离,但是要注意题目中的点不确定性,需要分情况讨论. 11.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5
【解析】
【分析】
(1)先求出线段AB的长,然后根据线段中点的定义解答即可;
(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;
②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使
4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;
(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.
【详解】
(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.
∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).
(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.
②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣
mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-
7m =0,解得:m =3,此时定值为55.
(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.
综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .
【点睛】
本题考查了一元一次方程的应用.解题的关键是分类讨论.
12.(1)AC=4cm, BC=8cm ;(2)当45
t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)3519
1cm.224t PQ =当为,,时, 【解析】
【分析】
(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;
(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;
(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.
【详解】
(1)AC=4cm, BC=8cm.
(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,
即3t 43t t =-+,解得4t 5=
. 所以当4t 5
=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.
所以当t 2=时,P 与Q 第一次相遇.
(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,
35t t 22
解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,
193t 4t 1122,t 4
+++=⨯=则解得,
3519t PQ 1cm.224
所以当为,,时,= 【点睛】
此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.
13.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127
t =
或6t =. 【解析】
【分析】
(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;
(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;
(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.
【详解】
(1)5 ;
(2)∵点A 表示的数是5-
∴点B 表示的数是7
∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=
12
PB=4.5,即点M 表示的数是2.5 ∵FM=2PM
∴FM=9
∴点F 表示的数是11.5或者-6.5
(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,
则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=
12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127
; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,
则PB=2QB ,
则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.
【点睛】
本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进
行讨论,作出图形更易理解. 14.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13
MN AB =或1. 【解析】
【详解】
(1)根据题意知,CM=2cm ,BD=4cm .
∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;
(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .
∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;
(3)根据C 、D 的运动速度知:BD=2MC .
∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .
∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=
13
AB=4. 故答案为4;
(4)①当点N 在线段AB 上时,如图1.
∵AN ﹣BN=MN .
又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,
∴MN AB =412=13
; ②当点N 在线段AB 的延长线上时,如图2.
∵AN ﹣BN=MN .
又∵AN ﹣BN=AB ,∴MN=AB=12,
∴MN AB =1212
=1. 综上所述:
MN AB =13或1. 【点睛】
本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.
15.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12
∠AOB ,理由见解析
【解析】
试题分析:(1)由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D、E分别是AC 和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度,
(2)设AC=acm,然后通过点D、E分别是AC和BC的中点,即可推出DE=1
2
(AC+BC)
=1
2
AB=
2
a
cm,即可推出结论,
(3)分两种情况,OC在∠AOB内部和外部结果都是∠DOE=1
2
∠AOB
试题解析:
(1))∵AB=12cm,
∴AC=4cm,
∴BC=8cm,
∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,
∴DE=6cm;
(2) 设AC=acm,
∵点D、E分别是AC和BC的中点,
∴DE=CD+CE=1
2
(AC+BC)=
1
2
AB=6cm,
∴不论AC取何值(不超过12cm),DE的长不变;
(3)①当OC在∠AOB内部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠NOC=1
2
∠BOC,∠COM=
1
2
∠COA.
∵∠CON+∠COM=∠MON,
∴∠MON=1
2
(∠BOC+∠AOC)=
1
2
α;
②当OC在∠AOB外部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=1
2
(∠AOB+∠BOC),∠CON=
1
2
∠BOC.
∵∠MON+∠CON=∠MOC,
∴∠MON=∠MOC-∠CON=1
2
(AOB+∠BO C)-
1
2
∠BOC=
1
2
∠AOB=
1
2
α.
【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

相关文档
最新文档