沙县民族中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沙县民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )
A .∀x ∈R ,2x 2﹣1<0
B .∀x ∈R ,2x 2﹣1≤0
C .∃x ∈R ,2x 2﹣1≤0
D .∃x ∈R ,2x 2﹣1>0
2. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 6
3. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 4. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .41
5. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0)
D .(﹣∞,﹣1)
6. 函数y=+的定义域是( )
A .{x|x ≥﹣1}
B .{x|x >﹣1且x ≠3}
C .{x|x ≠﹣1且x ≠3}
D .{x|x ≥﹣1且x ≠3}
7. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )
A .10
B .40
C .50
D .80
8. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )
A .1
B .
C .
D .
9. 双曲线E 与椭圆C :x 29+y 2
3=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积
为π,则E 的方程为( ) A.x 23-y 2
3=1 B.x 24-y 2
2=1 C.x 25-y 2
=1 D.x 22-y 2
4
=1 10.在等差数列中,已知,则
( )
A .12
B .24
C .36
D .48
11.已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( )
A.0 B.1 C.2 D.3
12.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()
A. B.C. D.
二、填空题
13.已知椭圆中心在原点,一个焦点为F(﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.
14.抛物线y2=﹣8x上到焦点距离等于6的点的坐标是.
15.已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为.
16.设函数f(x)=,
①若a=1,则f(x)的最小值为;
②若f(x)恰有2个零点,则实数a的取值范围是.
17.抛物线y=x2的焦点坐标为()
A.(0,)B.(,0)C.(0,4) D.(0,2)
18.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全
校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取
100人,则应在高三年级中抽取的人数等于.
三、解答题
19.已知抛物线C:y2=2px(p>0)过点A(1,﹣2).
(Ⅰ)求抛物线C的方程,并求其准线方程;
(Ⅱ)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的
距离等于?若存在,求直线L的方程;若不存在,说明理由.
20.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.
(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;
(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.
①点H到点F的距离与点H到直线AB的距离之差大于4;
②GH⊥PD.
21.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.
(Ⅰ)求证:BC⊥平面A1AC;
(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.
22.已知函数f (x )=cosx (sinx+cosx )﹣.
(1)若0<α<
,且sin α=
,求f (α)的值;
(2)求函数f (x )的最小正周期及单调递增区间.
23.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
24.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。
(1)求{a n }的通项公式;
(2)设b n =
,求数列{b n }的前n 项和T n 。
沙县民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:命题p :∀x ∈R ,2x 2
﹣1>0,
则其否命题为:∃x ∈R ,2x 2
﹣1≤0,
故选C ;
【点评】此题主要考查命题否定的定义,是一道基础题;
2. 【答案】 D.
【解析】该程序框图计算的是数列前n 项和,其中数列通项为()()
1
2121n a n n =
-+
()()
111
1111335
2121221n S n n n ⎡⎤∴=
+++
=
-⎢⎥⨯⨯-++⎣⎦
9
0.452
n S n n >∴>∴最小值为5时满足
0.45n S >,由程序框图可得k 值是6. 故选D .
3. 【答案】A 【解析】
试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 4. 【答案】B 【解析】
试题分析:()21212121101010
242=⨯+⨯+⨯=,故选B. 考点:进位制 5. 【答案】D
【解析】解:若a=0,则函数f (x )=﹣3x 2
+1,有两个零点,不满足条件.
若a ≠0,函数的f (x )的导数f ′(x )=6ax 2
﹣6x=6ax (x ﹣),
若 f (x )存在唯一的零点x 0,且x 0>0,
若a >0,由f ′(x )>0得x >或x <0,此时函数单调递增,
由f ′(x )<0得0<x <,此时函数单调递减,
故函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (),若x 0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.
若a <0,由f ′(x )>0得<x <0,此时函数递增,
由f ′(x )<0得x <或x >0,此时函数单调递减,
即函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (), 若存在唯一的零点x 0,且x 0>0,
则f ()>0,即2a ()3﹣3()2
+1>0,
()2
<1,即﹣1<<0,
解得a <﹣1, 故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
6. 【答案】D
【解析】解:由题意得:
,
解得:x ≥﹣1或x ≠3, 故选:D .
【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.
7. 【答案】 C
【解析】 二项式定理. 【专题】计算题.
【分析】利用二项展开式的通项公式求出展开式的x k
的系数,将k 的值代入求出各种情况的系数.
【解答】解:(x+2)5的展开式中x k 的系数为C 5k 25﹣k
当k ﹣1时,C 5k 25﹣k =C 5124
=80, 当k=2时,C 5k 25﹣k =C 5223
=80, 当k=3时,C 5k 25﹣k =C 5322
=40, 当k=4时,C 5k 25﹣k =C 54
×2=10, 当k=5时,C 5k 25﹣k =C 55
=1,
故展开式中x k
的系数不可能是50
故选项为C 【点评】本题考查利用二项展开式的通项公式求特定项的系数. 8. 【答案】D
【解析】解:∵ =(1,1,0),=(﹣1,0,2),
∴k +=k (1,1,0)+(﹣1,0,2)=(k ﹣1,k ,2),
2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),
又k +与2﹣互相垂直,
∴3(k ﹣1)+2k ﹣4=0,解得:k=.
故选:D .
【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.
9. 【答案】
【解析】选C.可设双曲线E 的方程为x 2a 2-y 2
b
2=1,
渐近线方程为y =±b
a x ,即bx ±ay =0,
由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即
|6b |b 2
+a
2
=1,
又a 2+b 2=6,∴b =1,a =5,
∴E 的方程为x 25-y 2
=1,故选C.
10.【答案】B
【解析】
,所以,故选B
答案:B
11.【答案】C
【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;
否命题是“若x2≤0,则x≤0”,是真命题;
逆否命题是“若x≤0,则x2≤0”,是假命题;
综上,以上3个命题中真命题的个数是2.
故选:C
12.【答案】A
【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,
∴圆的半径,
由,得2c>b,再平方,4c2>b2,
在椭圆中,a2=b2+c2<5c2,
∴;
由,得b+2c<2a,
再平方,b2+4c2+4bc<4a2,
∴3c2+4bc<3a2,
∴4bc<3b2,
∴4c<3b,
∴16c2<9b2,
∴16c2<9a2﹣9c2,
∴9a2>25c2,
∴,
∴.
综上所述,.
故选A.
二、填空题
13.【答案】.
【解析】解:已知∴∴为所求;
故答案为:
【点评】本题主要考查椭圆的标准方程.属基础题.
14.【答案】(﹣4,).
【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.
∴抛物线的焦点为F(﹣2,0),准线为x=2.
设抛物线上点P(m,n)到焦点F的距离等于6,
根据抛物线的定义,得点P到F的距离等于P到准线的距离,
即|PF|=﹣m+2=6,解得m=﹣4,
∴n2=8m=32,可得n=±4,
因此,点P的坐标为(﹣4,).
故答案为:(﹣4,).
【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.
15.【答案】.
【解析】解:已知数列1,a1,a2,9是等差数列,∴a1+a2 =1+9=10.
数列1,b1,b2,b3,9是等比数列,∴=1×9,再由题意可得b2=1×q2>0 (q为等比数列的公比),
∴b2=3,则=,
故答案为.
【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.
16.【答案】≤a<1或a≥2.
【解析】解:①当a=1时,f(x)=,
当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,
当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,
当1<x<时,函数单调递减,当x>时,函数单调递增,
故当x=时,f(x)min=f()=﹣1,
②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)
若在x<1时,h(x)=与x轴有一个交点,
所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,
而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,
所以≤a<1,
若函数h(x)=2x﹣a在x<1时,与x轴没有交点,
则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,
当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),
当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,
综上所述a的取值范围是≤a<1,或a≥2.
17.【答案】D
【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,
∴焦点坐标为(0,2).
故选:D.
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.18.【答案】25
【解析】
考点:分层抽样方法.
三、解答题
19.【答案】
【解析】解:(I)将(1,﹣2)代入抛物线方程y2=2px,
得4=2p,p=2
∴抛物线C的方程为:y2=4x,其准线方程为x=﹣1
(II)假设存在符合题意的直线l,其方程为y=﹣2x+t,
由得y2+2y﹣2t=0,
∵直线l与抛物线有公共点,
∴△=4+8t≥0,解得t≥﹣
又∵直线OA与L的距离d==,求得t=±1
∵t≥﹣
∴t=1
∴符合题意的直线l存在,方程为2x+y﹣1=0
【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.
20.【答案】
【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,
取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,
∴PK∥GF,
∵PK⊄平面EFG,∴PK∥平面EFG,
∴四边形EBKF为平行四边形,∴BK∥EF,
∵BK⊄平面EFG,∴BK∥平面EFG,
∵PK∩BK=K,∴平面EFG∥平面PKB,
又∵PB⊂平面PKB,∴PB∥平面EFG.
(2)解:连结PE,则PE⊥AB,
∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
PE⊂平面PAB,PE⊥平面ABCD,
分别以EB,EF,EP为x轴,y轴,z轴,
建立空间直角坐标系,
∴P(0,0,),D(﹣1,4,0),
=(﹣1,4,﹣),∵P(0,0,),
D(﹣1,4,0),=(﹣1,4,﹣),
∵==(﹣,,﹣),
∴G(﹣,,),
设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,
依题意得:,
∴x2>16y,(﹣1≤x≤1),(i)
又=(x+,y﹣,﹣),
∵GH⊥PD,∴,
∴﹣x﹣+4y﹣,即y=,(ii)
把(ii)代入(i),得:3x2﹣12x﹣44>0,
解得x>2+或x<2﹣,
∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,
∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.
【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
21.【答案】
【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点
∴BC⊥AC …
又圆柱OO1中,AA1⊥底面圆O,
∴AA1⊥BC,即BC⊥AA1…
而AA1∩AC=A
∴BC⊥平面A1AC …
(Ⅱ)取BC中点E,连结DE、O1E,
∵D为AC的中点
∴△ABC中,DE∥AB,且DE=AB …
又圆柱OO1中,A1O1∥AB,且
∴DE∥A1O1,DE=A1O1
∴A1DEO1为平行四边形…
∴A1D∥EO1…
而A1D⊄平面O1BC,EO1⊂平面O1BC
∴A1D∥平面O1BC …
【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.
22.【答案】
【解析】解:(1)∵0<α<,且sin α=,
∴cos α=
,
∴f (α)=cos α(sin α+cos α)﹣,
=
×(
+
)﹣
=.
(2)f (x )=cosx (sinx+cosx )﹣.
=sinxcosx+cos 2x ﹣
=sin2x+cos2x
=sin (2x+
),
∴T==π,
由2k π﹣
≤2x+
≤2k π+
,k ∈Z ,得k π﹣
≤x ≤k π+
,k ∈Z ,
∴f (x )的单调递增区间为[k π﹣,k π+
],k ∈Z .
23.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【
解
析
】
试
题解析:
(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨
+=⎩解得1,
5,
k b =⎧⎨=⎩
∴()5f x x =+,[]3,2x ∈-.
(2)(())(5)10f f x f x x =+=+,{}3x ∈-. 考点:待定系数法. 24.【答案】
【解析】(1)由a 1=10,a 2为整数,且S n ≤S 4得 a 4≥0,a 5≤0,即10+3d ≥0,10+4d ≤0,解得﹣≤d ≤﹣,
∴d=﹣3,
∴{a n }的通项公式为a n =13﹣3n 。
(2)∵b n ==
,
∴T n =b 1+b 2+…+b n =(﹣+﹣+…+﹣)=(﹣)
=。