人教版九年级上册数学 点和圆、直线和圆的位置关系 同步练习
人教版九年级数学上册24.2 点和圆直线和圆的位置关系同步练习含答案【优】
![人教版九年级数学上册24.2 点和圆直线和圆的位置关系同步练习含答案【优】](https://img.taocdn.com/s3/m/76bba3b60b4c2e3f56276321.png)
24.2《点和圆,直线和圆的位置关系》同步练习及答案 (2)一、选择题1.已知⊙O 的半径为5 cm ,A 为线段OP 的中点,当OP=6 cm 时,点A 与⊙O 的位置关系是( )A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定2.两个圆的圆心都是O ,半径分别为r 1、r 2,且r 1<OA <r 2,那么点A 在 ( )A .⊙r 1内B .⊙r 2外C .⊙r 1外,⊙r 2内D .⊙r 1内,⊙r 2外3.如图,⊙O 中,点A ,O ,D 以及点B ,O ,C 分别在一直线上,图中弦的条数为( )A .2B .3C .4D .54.如图已知等边三角形ABC 的边长为23cm ,下列以A 为圆心的各圆中,半径是3cm 的圆是( )5.直线l 与半径r 的⊙O 相交,且点O 到直线l 的距离为5,则r 的值是( )A .r >5B .r =5C .r <5D .r ≤56.下列四边形中一定有内切圆的是()A .矩形B .等腰梯形C .平行四边形D .菱形7.如图,在⊙O 中,AB 是弦,AC 是⊙O 切线,过B 点作BD ⊥AC 于D ,BD 交⊙O 于E 点,若AE 平分∠BAD ,则∠ABD 的度数是()A .30°B .45°C .50°D .60°8.如图△ABC 中,∠C=90°,⊙O 分别切AC 、BD 于M ,N ,圆心O 在AB 上,⊙O 的半径为12cm ,BO=20cm ,则AO 的长是( )A .10cmB .8cmC .12cmD .15cm9.△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm ,CD=4cm ,DE=2cm ,则△ABC 的面积等于( )A .248cmB .296cm C .2108cm D .232cm 10. 相内含的两圆的圆心距为2 cm ,可作两圆半径的是( )A. 4 cm和1 cmB. 5 cm和3 cmC. 6 cm和5cmD. 4 cm和2 cm11.已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切线,A、B为切点,若MA=4 cm,MB=3 cm,则M到AB的距离是()A. 52cm B.125cm C. 3cm D.4825cm12. 半径都是R的⊙O1和⊙O2的圆心距O1O2=4R,则半径为2R,且与⊙O1和⊙O2都相切的圆共有()A. 5个B. 4个C. 3个D. 2个13 若两圆的半径分别为5和9,圆心距为3,那么这两圆的位置关系是()A. 外离B. 相切C. 相交D. 内含二填空题1.已知⊙O的直径为8cm,点A,B,C与圆心O的距离分别为4cm,3cm,5cm,则点A在上,点B在,点C在。
人教版九年级上册数学 24.2点和圆、直线和圆的位置关系 同步练习
![人教版九年级上册数学 24.2点和圆、直线和圆的位置关系 同步练习](https://img.taocdn.com/s3/m/d7677cbbd05abe23482fb4daa58da0116d171f1b.png)
人教版九年级上册数学24.2点和圆、直线和圆的位置关系同步练习一.单选题1.下列选项中,可以用来证明命题“若21x >,则1x >”是假命题的反例是()A.2x =-B.2x =C.1x =D.0x =2.⊙O 的半径为3,点P 到圆心O 的距离为6,点P 与⊙O 的位置关系是()A.无法确定B.点P 在⊙O 外C.点P 在⊙O 上D.点P 在⊙O 内3.已知等腰三角形的腰长为10cm ,底边长为12cm ,以等腰三角形的顶点为圆心,5cm 为半径画圆,那么该圆与底边的位置关系是()A.相切B.相离C.相交D.不能确定4.矩形ABCD中,AB=10,BC =P 在边AB 上,且BP:AP=4:1,如果⊙P 是以点P 为圆心,PD 长为半径的圆,那么下列结论正确的是()A.点B、C 均在⊙P 外B.点B、C 均在⊙P 内C.点B 在⊙P 内,点C 在⊙P 外D.点B 在⊙P 外,点C 在⊙P 内5.已知:⊙O 的半径为2cm,圆心到直线l 的距离为1cm,将直线l 沿垂直于l 的方向平移,使l 与⊙O 相切,则平移的距离是()A.1cm B.3cm 或2cm C.3cm D.1cm 或3cm6.已知O 的半径为4,点A O 的距离为4,则点A 与O 的位置关系是()A.点A 在圆内B.点A 在圆上C.点A 在圆外D.无法确定7.如图,在Rt ABC △中,90BAC ∠= ,AD 为中线,若6AB =,8AC =,设ABD △与ACD 的内切圆半径分别为1r ,2r ,那么12r r 的值为()A.1B.98C.43D.48.下列说法,正确的是()A.两边分别相等的两个直角三角形全等B.两条直线被第三条直线所截,同位角相等C.“若a b >,则22a b >”的逆命题是真命题D.用反证法证明命题“三角形中不能有两个角是直角”,首先要假设“这个三角形中有两个角是直角”9.如图,PA,PB 是⊙O 的切线,切点分别为A,B,∠APB=50°,C 是⊙O 上一点,则∠ACB 的度数为()A.50°B.55°C.60°D.65°10.已知O 的半径是4,点P 在O 内,则OP 的长可能是()A.3B.4C.4.5D.5二.填空题11.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 的取值范围.12.已知直线l 与半径长为R 的O 相离,且点O 到直线l 的距离为5,那么R 的取值范围是.13.若O 的半径为5cm,点A 到圆心O 的距离为3cm ,那么点A 与O 的位置关系是:点A 在O .(填“上”、“内”、“外”)14.如图,已知A、C 是半径为2的⊙O 上的两动点,以AC 为直角边在⊙O 内作等腰Rt△ABC,∠C=90°.连接OB.则OB 的最小值为.15.如图,与边长为8的等边三角形ABC 的两边AB、BC 都相切,连接OC,则OC=.16.如图,在ABC V 中,92A ∠=︒,则点A 在以线段BC 为直径的圆.(填“上”“内”或“外”)三.解答题17.如图,已知:四边形ABCD 是O 的外切四边形,G ,H ,E ,F 分别是切点,求证:AD BC AB CD +=+.18.如图,AB 是O 的直径,CD 是O 的切线,切点为C,BE CD ⊥,垂足为E,连接,AC BC .(1)求证:BC 平分ABE ∠;(2)若60A ∠=︒,2OA =,求CE 的长.19.东东和乐乐正在练习投铅球,铅球场地分为五个区域:4m 以内,4~5m,5~6m,6~7m,7m 以外.东东投了5.2m ,乐乐投了6.7m ,他们投的球分别落在哪个区域内?20.已知:ABC ∠,求作:ABC ∠的平分线下面是婷婷设计的尺规作图过程:(1)在平面内取点P (与点B 不重合)(2)以P 为圆心,PB 为半径作P ,与BA 、BC 边分别交于F 、E ,连接EF(3)作EF 的垂直平分线交P 于D (点D 在ABC ∠内部)(4)作射线BD .所射线BD 即为的ABC ∠平分线根据琪琪设计的尺规作图过程(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:PE PF= ∴点P 在EF 的垂直平分线上,即PD EF ⊥∴ DEDF =()(填推理的依据)EBD FBD ∴∠=∠()(填推理的依据)21.如图,AB 是O 的直径,点C,D 在圆上,且四边形AOCD 是平行四边形,过点D 作O 的切线,分别交OA 的延长线与OC 的延长线于点E,F,连接BF .求证:BF 是O 的切线;22.已知:如图,ABC V .求作ABC V 的外接圆O.。
人教版九年级上册数学直线和圆的位置关系同步训练(含答案)
![人教版九年级上册数学直线和圆的位置关系同步训练(含答案)](https://img.taocdn.com/s3/m/106b6d13773231126edb6f1aff00bed5b9f37391.png)
人教版九年级上册数学24.2.2直线和圆的位置关系同步训练一、单选题1.如果⊙O 的半径为6cm ,圆心O 到直线l 的距离为d ,且7cm d =,那么⊙O 和直线l 的位置关系是( )A .相离B .相切C .相交D .不确定 2.如图,AB 是圆O 的直径,D 是BA 延长线上一点,DC 与圆O 相切于点C ,连接BC ,⊙ABC =20°,则⊙BDC 的度数为( )A .50°B .45°C .40°D .35° 3.如图,AB 是⊙O 的直径,点P 是⊙O 外一点,PO 交⊙O 于点C ,连接BC ,P A .若⊙P =36°,且P A 与⊙O 相切,则此时⊙B 等于( )A .27°B .32°C .36°D .54° 4.如图,点A 为O 上一点,点P 为AO 延长线上一点,PB 切O 于点B ,连接AB .若40APB ∠=︒,则A ∠的度数为( )A .20︒B .25︒C .40︒D .50︒ 5.如图,⊙ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD =BD =2,EC =3,则⊙ABC 的周长为( )A .10B .10C .14D .16 6.如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交P A 、PB 于点C 、D ,若P A =8,则⊙PCD 的周长为( )A .8B .12C .16D .20 7.如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD ,若⊙COD =80°,则⊙BAC =( )A .100°B .80°C .50°D .40° 8.如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°二、填空题 9.设⊙O 的半径为4cm ,直线L 上一点A 到圆心的距离为4cm ,则直线L 与⊙O 的位置关系是______.10.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连接OD .若55C ∠=︒,则⊙AOD 的度数为___.11.将直尺、有60︒角的直角三角板和光盘如图摆放,A为60︒角与直尺的交点,B为AB=,则光盘表示的圆的半径r=__________.光盘与直尺的交点,若 3.512.如图,⊙ABC内接于圆,⊙ACB=90°,过点C的切线交AB的延长线于点P,⊙P =26°,则⊙CAB=____.13.如图,AB、AC是O的弦,过点A的切线交CB的延长线于点D,若∠=___________°.∠=︒,则CBAD3514.如图,⊙O为⊙ABC的内切圆,NC=5.5,点D,E分别为BC,AC上的点,且DE 为⊙O的切线,切点为Q,则⊙CDE的周长为___________.15.如图,P A,PB分别切⊙O于点A,B,⊙P=70°,则⊙ABO=________.16.如图,P A 、PB 分别与⊙O 相切于A 、B ,C 为⊙O 上一点,⊙ACB =126°,则⊙P 的度数为________.三、解答题17.已知:ABC ∆中,90ACB ∠=︒,E 在AB 上,以AE 为直径的⊙O 与BC 相切于D ,与AC 相交于F ,连接AD .求证:AD 平分BAC ∠.18.如图,以AB 为直径作O ,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若4CD =,2DB =,求AE 的长.19.如图,AB为⊙O的直径,点C在⊙O上,点P在BA的延长线上,连接BC,OC,PC.若AB=6,AC的长为π.(1)求⊙AOC的度数;(2)若BC=PC,求证:直线PC与⊙O相切.20.如图,点E是⊙ABC的内心,AE的延长线和⊙ABC的外接圆相交于点D.(1)求证:BD=DE;(2)连接OD交BC于点G,若OD⊙BC,DG=2,BC=10,求圆的半径.参考答案:1.A2.A3.A4.B5.C6.C7.C8.C9.相切或相交10.70°1112.32°13.3514.1115.35°16.72°18.(2)AE=619.(1)6020.(2)294答案第1页,共1页。
人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)
![人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)](https://img.taocdn.com/s3/m/e93cb74c551810a6f52486dc.png)
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
人教九年级数学上册24.2: 点和圆、直线和圆的位置关系 同步练习题
![人教九年级数学上册24.2: 点和圆、直线和圆的位置关系 同步练习题](https://img.taocdn.com/s3/m/a7adf6c08762caaedd33d469.png)
第二十四章24.2 点和圆、直线和圆的位置关系同步练习点和圆的位置关系同步练习(答题时间:30分钟)2,点P的坐标为(4,5),那么点P与1. 在⊙O中,圆心O在坐标原点上,半径为10⊙O的位置关系是()A. 点P在⊙O外B. 点P在⊙O上C. 点P在⊙O内D. 不能确定2. 要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A. a=1,b=-2B. a=0,b=-1C. a=-1,b=-2D. a=2,b=-1*3. 关于半径为5的圆,下列说法正确的是()A. 若有一点到圆心的距离为5,则该点在圆外B. 若有一点在圆外,则该点到圆心的距离不小于5C. 圆上任意两点之间的线段长度不大于10D. 圆上任意两点之间的部分可以大于10π**4. 如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A. 12秒B. 16秒C. 20秒D. 24秒5. 已知⊙A的半径为5,圆心A(3,4),坐标原点O与⊙A的位置关系是__________。
*6. 如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是__________。
7. 如图所示,在R t△ABC中,∠B=90°,BC=3cm,AC=5cm,以点B为圆心,以BC 为半径作⊙B,问:(1)点A与⊙B的位置关系;(2)点C与⊙B的位置关系;(3)AB、AC的中点D、E与⊙B的位置关系。
B C8. 如图1所示,已知等腰三角形ABC中,AB=AC=5cm,BC=6cm,则△ABC外接圆的面积是多少?OAB CD图1OAB C图2D点和圆的位置关系同步练习参考答案1. A 解析:∵点P 的坐标为(4,5),∴PO =2254+=41,∵半径为102,∴半径102<41,∴点P 在圆外,故选A 。
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案
![人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案](https://img.taocdn.com/s3/m/189d0f8985254b35eefdc8d376eeaeaad1f316ba.png)
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。
2.三点圆:不在直线上的三个点一个圆。
3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。
考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。
(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。
(3)直线和圆没有公共点时我们说这条直线和圆。
(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。
2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线于过切点的半径。
3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。
4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。
限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。
人教版 九年级上册数学 24.2 点和圆、直线和圆的位置关系 同步训练(含答案)
![人教版 九年级上册数学 24.2 点和圆、直线和圆的位置关系 同步训练(含答案)](https://img.taocdn.com/s3/m/f865ee3a804d2b160b4ec0b6.png)
人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A.与圆有公共点的直线B.垂直于圆的半径的直线C.到圆心的距离等于半径的直线D.经过圆的直径一端的直线2. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54° B.36° C.32° D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.⊙⊙⊙AB⊙⊙O⊙⊙⊙⊙AC⊙⊙O⊙A⊙BC⊙⊙O⊙⊙D⊙⊙⊙C⊙70°⊙⊙⊙AOD⊙⊙⊙⊙( )A. 70°B. 35°C⊙20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为⊙ABC的外接圆的圆心,将⊙ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在⊙ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB=30°,⊙O的半径为1 cm,圆心O在直线PB上,OP=3 cm,若⊙O沿BP方向移动,当⊙O与直线PA相切时,圆心O移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是⊙ACQ 的外心.其中正确的结论是________(只需填写序号).16.⊙⊙⊙⊙⊙⊙ABCD ⊙⊙⊙⊙8⊙M ⊙AB ⊙⊙⊙⊙P ⊙BC ⊙⊙⊙⊙⊙⊙⊙⊙PM ⊙⊙⊙P ⊙⊙⊙⊙PM ⊙⊙⊙⊙⊙⊙P .⊙⊙P ⊙⊙⊙⊙ABCD ⊙⊙⊙⊙⊙⊙BP ⊙⊙⊙________⊙17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.⊙⊙⊙⊙ABC⊙⊙⊙⊙O⊙⊙B⊙60°⊙CD⊙⊙O⊙⊙⊙⊙P⊙CD⊙⊙⊙⊙⊙⊙⊙⊙⊙AP⊙AC.(1)⊙⊙⊙P A⊙⊙O⊙⊙⊙⊙(2)⊙PD⊙5⊙⊙⊙O⊙⊙⊙⊙20. 在Rt⊙ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是⊙ABC的内心,AE的延长线交BC于点F,交⊙ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM 是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB,如图①.∵OA=AP,∴OP为⊙A的直径,∴∠OBP=90°,即OB⊥PB,∴PB为⊙O的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在⊙OAB 和⊙OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D⊙⊙⊙⊙⊙AB ⊙⊙O ⊙⊙⊙⊙AC ⊙⊙O ⊙⊙A ⊙⊙⊙BAC ⊙90°⊙⊙⊙C ⊙70°⊙⊙⊙B ⊙20°⊙⊙⊙AOD ⊙⊙B ⊙⊙BDO ⊙2⊙B ⊙2×20°⊙40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt⊙ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点, ∴点P 为Rt △ACQ 的外心,故③正确.16. 【答案】3或4 3 [解析] 如图⊙,当⊙P 与CD 边相切时,设PC =PM =x .在Rt⊙PBM 中,⊙PM2=BM2+BP2,⊙x2=42+(8-x)2,⊙x=5,⊙PC=5,⊙BP=BC-PC=8-5=3.如图⊙,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊙AD,四边形PKDC 是矩形,⊙PM=PK=CD=2BM,⊙BM=4,PM=8,在Rt⊙PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.⊙⊙B=60°,⊙⊙AOC=2⊙B=120°.又⊙OA=OC,⊙⊙OAC=⊙OCA=30°.又⊙AP=AC,⊙⊙P=⊙OCA=30°,⊙⊙OAP=⊙AOC-⊙P=90°,⊙OA⊙P A.又⊙OA是⊙O的半径,⊙P A是⊙O的切线.(2)在Rt⊙OAP中,⊙⊙P=30°,⊙PO=2OA=OD+PD.又⊙OA=OD,⊙PD=OD=OA.⊙PD=5,⊙2OA=2PD=2 5,⊙⊙O的直径为2 5.20. 【答案】解:(1)∵AC⊥BC,而AC>4,∴以点A为圆心,4为半径的⊙A与直线BC相离.故答案为相离.(2)BC=AB2-AC2=12.∵BC⊥AC,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D .∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG.∵点E 是⊙ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G.∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.。
人教版九年级上册数学同步练习《点和圆、直径和圆的位置关系》(习题+答案)
![人教版九年级上册数学同步练习《点和圆、直径和圆的位置关系》(习题+答案)](https://img.taocdn.com/s3/m/9eadb1db1711cc7930b71658.png)
(1)求证: 是 的切线;
(2)若 ,求 的半径.
8.在同一平面直角坐标系中有5个点: , , , , .
(1)画出 的外接圆 ,并指出点 与 的位置关系;
(2)若直线 经过点 , ,判断直线 与 的位置关系.
3.点 为 的外心,已知 ,则 度.
4.用反证法证明命题“三角形中必有一内角不大于 ”时,首先假设这个三角形中( )
A.有一个内角小于 B.每一个内角都小于
C.有一个内角大于 D.每一个内角都大于
5.如图, 的外心坐标是.
6.在 中, , , ,以 为圆心,以 为半径作 ,问点 , 及 的中点 与 有怎样的位置关系?
5.如图,在 中, , , ,则 的内切圆半径 .
6.三角形的周长为10cm,三角形的内切圆的半径为2cm,则这个三角形的面积为 .
7.如图,在 中,点 是 的内心,则 度.
8.已知 的面积为16,周长为24.
(1)求作 的内切圆 ;
(2)求 的半径.
9.已知如图, 的内切圆 与 , , 分别相切于点 , , ,且 cm, cm, cm,求 , , 的长.
(1)写出其余满足条件的圆 的圆心坐标;
(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.
3.(1)已知,如图①, 的周长为 ,面积为 ,其内切圆的圆心为 ,半径为 ,求证 .
(2)已知,如图②, 中, , , 三点的坐标分别为 , , .若 内心为 ,求点 坐标.
(3)与三角形的一边和其他两边的延长线相切的圆,叫旁切圆,圆心叫旁心.请求出条件(2)中的 位于第一象限的旁心的坐标.
新人教版九年级上册242点和圆直线和圆的位置关系同步练习含答
![新人教版九年级上册242点和圆直线和圆的位置关系同步练习含答](https://img.taocdn.com/s3/m/f59ca33ef011f18583d049649b6648d7c1c7087e.png)
新人教版九年级上册242点和圆直线和圆的位置关系同步练习含答1新人教版九年级上册24.2点和圆、直线和圆的位置关系同步练习一.选择题1.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A.B.C.34D.102.已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不确定3.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()2A.4.5B.4C.3D.24.如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90°B.OP平分∠APBC.PA=PBD.∠AOB=5.平面上不共线的四点,可以确定圆的个数为()A.1个或3个B.3个或4个C.1个或3个或4个D.1个或2个或3个或4个二.填空题(共5小题)6.⊙O为△ABC外接圆,已知R=3,边长之比为3:4:5,S△ABC=.7.如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=°.8.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.39.已知抛物线y=a某2+b某+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,顶点为D,点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,则点P的坐标为.10.如图,已知⊙O的半径为3,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCPE是平行四边形,则AD的长为.三.解答题(共5小题)11.AC,BC是⊙O的两条过点C的切线,D,E分别是AC,BC边上的一点,如果△CED周长为AC的2倍,问DE与⊙O的位置关系.12.已知,如图AB是⊙O的直径,点P 在。
2017-2018学年数学人教版九年级上册24.2 点和圆、直线和圆的位置关系同步练习(有答案)
![2017-2018学年数学人教版九年级上册24.2 点和圆、直线和圆的位置关系同步练习(有答案)](https://img.taocdn.com/s3/m/8d073b9c02d276a200292e54.png)
1,点 P 是抛物线上一动点,以点 P 为圆心,2 个单位长
直径,CD 切 ,
于 F,
,求阴影部分面积_____
1 . 如图,
为等腰
C 重合 ,直线 CP 交 AB 延长线于点 Q,
连 的外接圆,直径
在点 P 处切线 PD 交 BQ 于点 D,下
1䁪,P 为弧 连 上任意一点 不与 B,
列结论正确的是______ . 写出所有正确结论的序号 若 若 为定值. ,则弧 的长为 ; ; 䁡,则 䁡
D. 无法确定
8. 如图,AB 是 , 的直径,BT 是 的切线,若 ᦙ
A. 2 B.
䁪 1 䁪 1
䁪,则阴影部分的面积是
C. 1 D.
.
1
如图,已知直线 AD 是 于点 B, 点C在 A. 上, 且
的切线,点 A 为切点,OD 交 䁡 , 则 连 的度数为
B. D. 䁪7
C.
第 䁪页,共 页
1 . 下列命题中正确的有
A. 0 个
.
B. 1 个
䁡
C. 2 个
D. 1 个或 2 个
的圆心在射线
如图,直线 AB、CD 相交于点 O, OA 上, 且与点 O 的距离为 那么 秒钟后 .如果
,半径为 1cm 的
与直线 CD 相切.
以1
݉ 的速度沿由 A 向 B 的方向移动,
A. 4
. 如图,AB 是 交
B. 8
的直径,直线 PA 与 连
A作 䁡 䁡
为 F, 交 AB 的延长线于点 P, 连接 CO 并延长交
第 页,共 页
于点 G,连接 EG. 1 求证:DF 是 䁪 若 䁡 若 䁡䁨 的切线; ,求 䁡的长度;
人教版九年级数学上册同步测试:点和圆、直线和圆的位置关系(解析版)
![人教版九年级数学上册同步测试:点和圆、直线和圆的位置关系(解析版)](https://img.taocdn.com/s3/m/352381ff647d27284a735185.png)
人教版九年级数学上册同步测试:点和圆﹨直线和圆的位置关系[解析版]一﹨选择题[共14小题]1.[如图,点P在⊙O外,PA﹨PB分别与⊙O相切于A﹨B两点,∠P=50°,则∠AOB等于[]A.150°B.130°C.155°D.135°2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为[]A.2.3 B.2.4 C.2.5 D.2.63.如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C 的大小等于[]A.20°B.25°C.40°D.50°4.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=[]A.30°B.35°C.45°D.60°5.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是[]A.2.5 B.3 C.5 D.106.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为[]A.40°B.50°C.60°D.20°7.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为[]A.B.C.D.28.如图,PA和PB是⊙O的切线,点A和点B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是[]A.40°B.60°C.70°D.80°9.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是[]A.4 B.2C.8 D.410.如图,圆形铁片与直角三角尺﹨直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是[]A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm211.在一个圆中,给出下列命题,其中正确的是[]A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径12.如图,△ABC中,AB=6,AC=8,BC=10,D﹨E分别是AC﹨AB的中点,则以DE为直径的圆与BC的位置关系是[]A.相交 B.相切 C.相离 D.无法确定13.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是[] A.r<6 B.r=6 C.r>6 D.r≥614.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是[]A.相离 B.相切 C.相交 D.相切或相交二﹨填空题[共6小题]15.如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为[结果保留π].16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.17.如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为.18.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为.[结果保留π]19.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=°.20.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=[k≠0]的图象经过圆心P,则k=.三﹨解答题[共10小题]21.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.[1]求证:四边形ABCE是平行四边形;[2]若AE=6,CD=5,求OF的长.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.[1]求证:DF⊥AC;[2]若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.23.如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.[1]求证:∠ADC=∠ABD;[2]求证:AD2=AM•AB;[3]若AM=,sin∠ABD=,求线段BN的长.24.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.[1]求证:DF∥AB;[2]若OC=CE,BF=,求DE的长.25.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.[1]求证:∠BCP=∠BAN[2]求证:=.26.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC 相切于点D,分别交AC﹨AB于点E﹨F.[1]若∠B=30°,求证:以A﹨O﹨D﹨E为顶点的四边形是菱形.[2]若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.27.如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.[1]求证:DC=DE;[2]若tan∠CAB=,AB=3,求BD的长.28.如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.[1]求证:∠BAD=∠E;[2]若⊙O的半径为5,AC=8,求BE的长.29.五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB 长为半径的圆弧AC与边DE相切于点F,连接BE,BD.[1]如图1,求∠EBD的度数;[2]如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC 的值.30.在同一平面直角坐标系中有5个点:A[1,1],B[﹣3,﹣1],C[﹣3,1],D[﹣2,﹣2],E[0,﹣3].[1]画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;[2]若直线l经过点D[﹣2,﹣2],E[0,﹣3],判断直线l与⊙P的位置关系.参考答案与试题解析一﹨选择题[共14小题]1.如图,点P在⊙O外,PA﹨PB分别与⊙O相切于A﹨B两点,∠P=50°,则∠AOB等于[]A.150°B.130°C.155°D.135°【考点】切线的性质.【分析】由PA与PB为圆的两条切线,利用切线性质得到PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出∠AOB的度数.【解答】解:∵PA﹨PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P=50°,∴∠AOB=130°.故选B.【点评】此题考查了切线的性质,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为[]A.2.3 B.2.4 C.2.5 D.2.6【考点】切线的性质;勾股定理的逆定理.【分析】首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC 中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.【解答】解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD===,∴⊙C的半径为,故选B.【点评】此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.3.如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C 的大小等于[]A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.4.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=[]A.30°B.35°C.45°D.60°【考点】切线的性质;正多边形和圆.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理∠PAB.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.【点评】本题主要考查了正多边形和圆,切线的性质,作出适当的辅助线,利用弦切角定理是解答此题的关键.5.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是[]A.2.5 B.3 C.5 D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;当直线l和⊙O相离⇔d>r.6.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为[]A.40°B.50°C.60°D.20°【考点】切线的性质.【分析】由AB是⊙O直径,AE是⊙O的切线,推出AD⊥AB,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.【解答】解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.【点评】本题主要考查圆周角定理﹨切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.7.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为[]A.B.C.D.2【考点】切线的性质;矩形的性质.【专题】压轴题.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴[3+NM]2=[3﹣NM]2+42,∴NM=,∴DM=3=,故选A.【点评】本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.8.如图,PA和PB是⊙O的切线,点A和点B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是[]A.40°B.60°C.70°D.80°【考点】切线的性质.【分析】由PA﹨PB是⊙O的切线,可得∠OAP=∠OBP=90°,根据四边形内角和,求出∠AOB,再根据圆周角定理即可求∠ACB的度数.【解答】解:连接OB,∵AC是直径,∴∠ABC=90°,∵PA﹨PB是⊙O的切线,A﹨B为切点,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=140°,由圆周角定理知,∠ACB=∠AOB=70°,故选C.【点评】本题考查了切线的性质,圆周角定理,解决本题的关键是连接OB,利用直径对的圆周角是直角来解答.9.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是[]A.4 B.2C.8 D.4【考点】切线的性质.【分析】连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.【点评】本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.10.如图,圆形铁片与直角三角尺﹨直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是[]A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【考点】切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.【专题】应用题.【分析】由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长﹨面积的计算公式求出结果即可进行判断.【解答】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;==4π,故D正确.S扇形OAB故选C.【点评】本题考查了切线的性质,正方形的判定和性质,扇形的弧长﹨面积的计算,熟记计算公式是解题的关键.11.在一个圆中,给出下列命题,其中正确的是[]A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径【考点】直线与圆的位置关系;命题与定理.【分析】根据直线与圆的位置关系进行判断即可.【解答】解:A﹨圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B﹨当圆经过两条直线的交点时,圆与两条直线有三个交点;C﹨两条不平行弦所在直线可能有一个交点,故本选项正确;D﹨两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.【点评】本题考查了直线与圆的位置关系﹨命题与定理,解题的关键是熟悉直线与圆的位置关系.12.如图,△ABC中,AB=6,AC=8,BC=10,D﹨E分别是AC﹨AB的中点,则以DE为直径的圆与BC的位置关系是[]A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【专题】压轴题.【分析】首先根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.【解答】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==4.8,∵D﹨E分别是AC﹨AB的中点,∴DE∥BC,DE=BC=5,∴AN=MN=AM,∴MN=2.4,∵以DE为直径的圆半径为2.5,∴r=2.5>2.4,∴以DE为直径的圆与BC的位置关系是:相交.故选:A.【点评】本题考查了直线和圆的位置关系,利用中位线定理比较出BC到圆心的距离与半径的关系是解题的关键.13.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是[] A.r<6 B.r=6 C.r>6 D.r≥6【考点】直线与圆的位置关系.【专题】探究型.【分析】直接根据直线与圆的位置关系进行判断即可.【解答】解:∵直线l与半径为r的⊙O相交,且点O到直线l的距离d=6,∴r>6.故选C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.直线l和⊙O相交⇔d<r14.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是[]A.相离 B.相切 C.相交 D.相切或相交【考点】直线与圆的位置关系.【专题】压轴题.【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【解答】解:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选:B.【点评】此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R与圆心到直线的距离d的大小判断:当R>d时,直线与圆相交;当R=d时,直线与圆相切;当R<d时,直线与圆相离.二﹨填空题[共6小题]15.如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为6π[结果保留π].【考点】切线的性质;勾股定理.【分析】连接OA,根据切线的性质求出∠OAP=90°,根据勾股定理求出OA即可.【解答】解:连接OA,∵PA是⊙O的切线,A是切点,∴∠OAP=90°,在Rt△OAP中,∠OAP=90°,PA=4,OP=5,由勾股定理得:OA=3,则⊙O的周长为2π×3=6π,故答案为:6π.【点评】本题考查了切线的性质,勾股定理的应用,解此题的关键是能正确作出辅助线,并求出∠OAP=90°,注意:圆的切线垂直于过切点的半径.16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【考点】切线的性质.【专题】压轴题.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.17.如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为π.【考点】切线的性质;弧长的计算.【分析】如图,连接DO,首先根据切线的性质可以得到∠ODC=90°,又AC=3BC,O为AB的中点,由此可以得到∠C=30°,接着利用30°的直角所对的直角边是斜边的一半和勾股定理即可求解.【解答】解:如图,连接DO,∵CD是⊙O切线,∴OD⊥CD,∴∠ODC=90°,而AB是⊙O的一条直径,AC=3BC,∴AB=2BC=OC=2OD,∴∠C=30°,∴∠AOD=120°∴OD=CD,∵CD=,∴OD=BC=1,∴的长度==,故答案为:.【点评】本题考查了圆的切线性质及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.18.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为 + .[结果保留π]【考点】切线的性质;扇形面积的计算.【分析】图中阴影部分的面积=扇形BOD 的面积+△BOC 的面积.【解答】解:∵斜边与半圆相切,点B 是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=2,∴OC=OB=1,BC=.∴S 阴影=S 扇形BOD +S △BOC =+×1×=+. 故答案是: +.【点评】本题考查了切线的性质,扇形面积的计算.此题利用了“分割法”求得阴影部分的面积.19.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C=20°,则∠CDA= 125 °.【考点】切线的性质.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.【点评】本题利用了切线的性质,三角形的外角与内角的关系,等边对等角求解.20.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P 的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=[k≠0]的图象经过圆心P,则k=﹣5.【考点】切线的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【专题】计算题;压轴题.【分析】作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,根据切线的性质和切线长定理得到PD=PE=r,AD=AE,再利用勾股定理计算出OB=6,则可判断△OBC为等腰直角三角形,从而得到△PCD为等腰直角三角形,则PD=CD=r,AE=AD=2+r,通过证明△ACH∽△ABO,利用相似比计算出CH=,接着利用勾股定理计算出AH=,所以BH=10﹣=,然后证明△BEP∽△BHC,利用相似比得到即=,解得r=1,从而易得P点坐标,再利用反比例函数图象上点的坐标特征求出k的值.【解答】解:作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PD=PE=r,AD=AE,在Rt△OAB中,∵OA=8,AB=10,∴OB==6,∵AC=2,∴OC=6,∴△OBC为等腰直角三角形,∴△PCD为等腰直角三角形,∴PD=CD=r,∴AE=AD=2+r,∵∠CAH=∠BAO,∴△ACH∽△ABO,∴=,即=,解得CH=,∴AH===,∴BH=10﹣=,∵PE∥CH,∴△BEP∽△BHC,∴=,即=,解得r=1,∴OD=OC﹣CD=6﹣1=5,∴P[5,﹣1],∴k=5×[﹣1]=﹣5.故答案为﹣5.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线不确定切点,则过圆心作切线的垂线,则垂线段等于圆的半径.也考查了勾股定理﹨相似三角形的判定与性质和反比例函数图象上点的坐标特征.三﹨解答题[共10小题]21.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.[1]求证:四边形ABCE是平行四边形;[2]若AE=6,CD=5,求OF的长.【考点】切线的性质;平行四边形的判定.【专题】压轴题.【分析】[1]根据切线的性质证明∠EAC=∠ABC,根据等腰三角形等边对等角的性质和等量代得到∠EAC=∠ACB,从而根据内错角相等两直线平行的判定得到AE∥BC,结合已知AB ∥CD即可判定四边形ABCD是平行四边形;[2]作辅助线,连接AO,交BC于点H,双向延长OF分别交AB,CD于点N,M,根据切割线定理求得EC=4,证明四边形ABDC是等腰梯形,根据对称性﹨圆周角定理和垂径定理的综合应用证明△OFH∽△DMF∽△BFN,并由勾股定理列式求解即可.【解答】[1]证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,∵AB=AC∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,∵AB∥CD,∴四边形ABCE是平行四边形;[2]解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD与点N,M,∵AE是⊙O的切线,由切割线定理得,AE2=EC•DE,∵AE=6,CD=5,∴62=CE[CE+5],解得:CE=4,[已舍去负数],由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC﹣FH=3﹣z,DF=CF=BC+FH=3+z,易得△OFH∽△DFM∽△BFN,∴,,即,①②,①+②得:,①÷②得:,解得,∵x2=y2+z2,∴,∴x=,∴OF=.【点评】本题考查了切线的性质,圆周勾股定理,等腰三角形的性质,平行的判定,平行四边形的判定和性质,等腰梯形的判定和性质,垂径定理,相似判定和性质,勾股定理,正确得作出辅助线是解题的关键.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.[1]求证:DF⊥AC;[2]若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【考点】切线的性质;扇形面积的计算.【分析】[1]连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;[2]连接OE,利用[1]的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.【解答】[1]证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,。
九年级数学上册《第二十四章 点和圆、直线和圆的位置关系》同步练习题及答案-人教版
![九年级数学上册《第二十四章 点和圆、直线和圆的位置关系》同步练习题及答案-人教版](https://img.taocdn.com/s3/m/2767a9bfbdeb19e8b8f67c1cfad6195f312be8ba.png)
九年级数学上册《第二十四章 点和圆、直线和圆的位置关系》同步练习题及答案-人教版班级 姓名 学号一、选择题:1.下列直线中一定是圆的切线的是( )A .与圆有公共点的直线B .到圆心的距离等于半径的直线C .垂直于圆的半径的直线D .过圆的直径端点的直线2.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P ,那么点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定3.在△ABC 内部取一点P 使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的哪三条线交点( )A .高B .角平分线C .中线D .边的垂直平分4.如图,在△ABC 中,∠BAC 的平分线AD 与∠ACB 的平分线CE 交于点O ,下列说法正确的是( )A .点O 是△ABC 的内切圆的圆心B .CE ⊥ABC .△ABC 的内切圆经过D ,E 两点 D .AO =CO5.如图,AB 是O 的直径,点P 是O 外一点,PO 交O 于点C ,连接BC ,PA .若36P ∠=︒ 且PA 与O 相切,则此时B ∠等于( )A .27︒B .32︒C .36︒D .54︒6.如图点I 是△ABC 的内心,∠BIC=130°,则∠BAC=( )A .65°B .50°C .80°D .100°7.如图,在△ABC 中70A ∠=︒.⊙O 截ABC 的三条边所得的弦长相等,则BOC ∠的度数为( )A .125︒B .110︒C .160︒D .135︒8.如图,在Rt ABC 中90C ∠=︒,8AC =和14BC =,点D 在边BC 上,6CD =,以点D 为圆心作D ,其半径长为r ,要使点A 恰在D 外,点B 在D 内,则r 的取值范围是( )A .810r <<B .68r <<C .610r <<D .214r <<9.如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )A .AG=BGB .AB ∥EFC .AD ∥BC D .∠ABC=∠ADC二、填空题:10.若三角形的三边长分别为6、8、10,则此三角形的内切圆半径为 .11.如图,线段AB 与⊙O 相切于点B ,线段AO 与⊙O 相交于点C ,AB=12,AC=8,则⊙O 的半径长为 .12.如图,PA ,PB 是⊙O 的两条切线,切点分别是A 、B ,PA=10,CD 是⊙O 的切线,交PA 于点C ,交PB 于点D ,则△PCD 的周长是13.如图,过O 上一点C 作O 的切线,与O 直径AB 的延长线交于点D ,若38D ∠=︒,则E ∠的度数为 .14.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题:15.如图1,图2,在 66⨯ 的方格上建立平面直角坐标系(小方格的单位长度为1), A , B , C , D , E , F 都在格点上.(1)请在图1中作出经过 A , B , C 三点的圆,并求出圆的半径.(2)请在图2中作出经过 D , E , F 三点的圆,并求出圆的半径.16.ΔABC 为等腰三角形,O 为底边BC 的中点,腰AB 与O 相切于点D .求证:AC 是O 的切线.17.如图,在平面直角坐标系中,以点M(3,5)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,求点B的坐标.=,以AC为直径的O与AB交于点D,过点B作BE AC,与过点C 18.如图,在ABC中AB AC=.的O的切线相交于点E.求证:BD BE19.如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交于点E,连接BE,DE.(1)求证:∠BED=∠C;(2)若OA=5,AD=8,求AC的长.参考答案:1.B 2.D 3.B 4.A 5.A 6.C 7.A 8.A 9.C 10.211.512.2013.26°14.12 515.(1)解:圆O'即为所求:半径r=222+1=5;(2)解:圆A即为所求:半径r=223+1=1016.证明:过点O作OE⊥AC于点E,连结OD,OA∵AB 与O 相切于点D∴AB ⊥OD∵△ABC 为等腰三角形,O 是底边BC 的中点∴AO 是∠BAC 的平分线∴OE=OD ,即OE 是O 的半径∵AC 经过O 的半径OE 的外端点且垂直于OE∴AC 是O 的切线。
人教版初中数学九年级上册《24.2 点和圆、直线和圆的位置关系》同步练习卷(含答案解析
![人教版初中数学九年级上册《24.2 点和圆、直线和圆的位置关系》同步练习卷(含答案解析](https://img.taocdn.com/s3/m/fd4a16cdf8c75fbfc77db27f.png)
人教新版九年级上学期《24.2 点和圆、直线和圆的位置关系》同步练习卷一.选择题(共23小题)1.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确2.如图,△ABC内接于⊙O,若∠A=40°,则∠BCO=()A.40°B.50°C.60°D.80°3.在平面直角坐标系中,点O为坐标原点.A(,0),B(3,0),C(0,5).点D在直角坐标系中,且∠ADB=60°,则线段CD的长的最大值为()A.2﹣2B.2+2C.4﹣2D.4+24.如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()A.B.4C.D.5.已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,BD⊥AC于D,若CD=4,则BD的长为()A.4B.5C.D.6.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定7.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°8.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线y=﹣x+3上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.39.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF10.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④11.如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC 平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?()A.97°B.104°C.116°D.142°12.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()A.50°B.60°C.100°D.120°13.点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于()A.70°B.55°C.70°或110°D.55°或125°14.如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N,若⊙O的半径为2,∠P=60°,则△PMN的周长为()A.4B.6C.D.15.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5B.7C.8D.1016.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB于M,若CD=9,MD=3,则AB的长为()A.18B.12C.13.5D.6√317.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC 的度数为()A.110°B.125°C.130°D.140°18.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.19.已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.220.如果两圆的半径分别为4和3,它们的一条公切线长为7,那么这两圆的位置关系是()A.内切B.相交C.外切D.外离21.如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为()A.60°B.45°C.30°D.15°22.如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O 的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2B.C.D.23.已知点I是△ABC的内心,则∠BIC与∠A的关系是()A.∠BIC=2∠A B.∠BIC=180°﹣∠AC.∠BIC=90°+∠A D.∠BIC=180°+∠A二.填空题(共9小题)24.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.25.在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是.26.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切于点D,若∠BCD=120°,则∠APD的大小为.27.如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为.28.如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是;②若AB=4,AD=6,CE=3,则DE=.29.如图,割线PAB过圆心O,PD切⊙O于D,C是上一点,∠PDA=20°,则∠C的度数是度.30.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.31.如图,AC⊥BC于点C,BC=a,CA=b,AB=c,⊙O与直线AB、BC、CA都相切,则⊙O的半径等于.32.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线1的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线的距离等于1的点,即m=4,由此可知,当d=3时,m=.三.解答题(共14小题)33.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.34.如图,平面直角坐标系中有一个△ABC.(1)△ABC的外接圆的圆心坐标是;(2)该圆圆心到弦AC的距离.35.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)36.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求BC的长.37.如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若HB=2,cosD=,请求出AC的长.38.设⊙O的半径为2,圆心O到直线l的距离OP=m,且m使得关于x的方程有实数根,试判断直线l与⊙O的位置关系.39.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG 是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC.(2)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若cos∠P=,CF=10,求BE的长.40.如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.41.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.42.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.43.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O 作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF 的面积.44.如图,⊙O是梯形ABCD的内切圆,AB∥DC,E、M、F、N分别是边AB、BC、CD、DA上的切点.(1)求证:AB+CD=AD+BC;(2)求∠AOD的度数.45.如图,在△ABC中,∠A=30°,AC=BC,以BC为直径的⊙O与边AB交于点D,过D作DE⊥AC于E.(1)证明:DE为⊙O的切线.(2)若⊙O的半径为2,求AD的长.46.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.人教新版九年级上学期《24.2 点和圆、直线和圆的位置关系》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】根据线段垂直平分线的性质判断甲,根据90°的圆周角所对的弦是直径判断乙.【解答】解:甲,∵=,∴△DEC为等腰三角形,∴L为之中垂线,∴O为两中垂线之交点,即O为△CDE的外心,∴O为此圆圆心.乙,∵∠ADC=90°,∠DCB=90°,∴、为此圆直径,∴与的交点O为此圆圆心,因此甲、乙两人皆正确.故选:A.【点评】本题考查的是确定圆的条件,掌握线段垂直平分线的性质、圆周角定理是解题的关键.2.如图,△ABC内接于⊙O,若∠A=40°,则∠BCO=()A.40°B.50°C.60°D.80°【分析】根据圆周角定理求出∠BOC,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠BOC=2∠A=80°,∵OB=OC,∴∠BCO=∠CBO=50°,故选:B.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.3.在平面直角坐标系中,点O为坐标原点.A(,0),B(3,0),C(0,5).点D在直角坐标系中,且∠ADB=60°,则线段CD的长的最大值为()A.2﹣2B.2+2C.4﹣2D.4+2【分析】作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示,只有点D在线段CP的延长线上时,CD的值最大;【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0),又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,﹣1),∵C(0,5),∴PC==4,又∵PD=PA=2,只有点D在线段CP的延长线上时,CD的值最大,∴CD最大值为:4+2.故选:D.【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有点D在线段CP的延长线上时,CD的值最大;4.如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()A.B.4C.D.【分析】此题考查了直角三角形的性质和三角函数的性质.【解答】解:∵AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆∴△AEF∽△ABC∴,即cos∠BAC=∴sin∠BAC=∴在Rt△ABE中,BE=ABsin∠BAC=6=.故选:D.【点评】本题是一道根据直角三角形的性质结合角的三角函数求解的综合题,要注意圆的性质应用;要注意数形结合思想的应用.5.已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,BD⊥AC于D,若CD=4,则BD的长为()A.4B.5C.D.【分析】延长BO交⊙O于H,连接AH,根据勾股定理求出AH,证明△HAB∽△CDB,根据相似三角形的性质列式计算即可.【解答】解:延长BO交⊙O于H,连接AH,∵BH是⊙O的直径,∴∠HAB=90°,∴AH==6,∵∠HAB=∠CDB=90°,∠H=∠C,∴△HAB∽△CDB,∴=,即=,解得,BD=,故选:D.【点评】本题考查的是三角形的外接圆与外心、相似三角形的判定和性质,掌握圆周角定理、勾股定理是解题的关键.6.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【分析】设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.【解答】解:设圆O的半径是r,则πr2=9π,∴r=3,∵点0到直线l的距离为π,∵3<π,即:r<d,∴直线l与⊙O的位置关系是相离,故选:C.【点评】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.7.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线y=﹣x+3上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.3【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ 最小,根据相似三角形的性质得到AP,根据勾股定理即可得到结论.【解答】解:如图,作AP⊥直线y=﹣x+3,垂足为P,作⊙A的切线PQ,切点为Q,当AP⊥BC时,此时切线长PQ最小,∵A的坐标为(﹣1,0),设直线与x轴,y轴分别交于B,C,∴B(0,3),C(3,0),∴OB=3,AC=4,∴BC=3,在△APC与△BOC中,∵∠APC=∠BOC=90°,∠ACP=∠OCB,∴△APC∽△OBC,∴,∴AP=2,∴PQ==,故选:C.【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.9.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF【分析】根据切线的判定定理可求得需要满足和条件,即可求得答案.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.【点评】本题主要考查切线的判定,熟练掌握切线的判定定理是解题的关键.10.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④【分析】连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,求出弧AC=弧AD,根据垂径定理求出即可;求出∠P+∠PCD=90°和∠P=∠DCO即可求出PC是圆的切线;采用反证法求出∠B=30°,但已知没有给出此条件,即可判断③;求出CF=AG,推出CQ=OZ,证△OCQ≌△BOZ,推出OQ=BZ,即可判断④.【解答】解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故选:A.【点评】本题考查了切线的判定、全等三角形的性质和判定、圆周角定理、垂径定理等知识点的运用,主要考查学生运用定理进行推理的能力,题目比较好,但有一定的难度.11.如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC 平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?()A.97°B.104°C.116°D.142°【分析】先根据直径所对的圆周角为直角得出角BAD的度数,根据角平分线的定义得出角BAF的度数,再根据弦切角等于它所夹弧对的圆周角,得出角ABD 的度数,最后利用三角形内角和定理即可求出角AFB的度数.【解答】解:∵BD是圆O的直径,∴∠BAD=90°,又∵AC平分∠BAD,∴∠BAF=∠DAF=45°,∵直线ED为圆O的切线,∴∠ADE=∠ABD=19°,∴∠AFB=180°﹣∠BAF﹣∠ABD=180°﹣45°﹣19°=116°.故选:C.【点评】此题考查圆周角定理以及弦切角定理的灵活运用,是一道在圆中求角度数的综合题.12.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()A.50°B.60°C.100°D.120°【分析】本题首先根据三角形的内角和定理求得∠C的度数,再根据弦切角的度数等于它所夹的弧的度数的一半进行求解.【解答】解:∵∠A=70°,∠B=60°,∴∠C=50°.∵此圆与直线BC相切于C点,∴的度数=2∠C=100°.故选:C.【点评】此题综合考查了弦切角定理和三角形的内角和定理.13.点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于()A.70°B.55°C.70°或110°D.55°或125°【分析】分两种情况讨论:点C在劣弧AB上;点C在优弧AMB上;再根据弦切角定理和切线的性质求得∠ACB.【解答】解:如图,∵PA、PB分别切⊙O于点A、B,∴∠OAP=∠OBP=90°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=55°,当点C在劣弧AB上,∵∠AOB=110°,∴弧ACB的度数为250°,∴∠ACB=125°.故选:D.【点评】本题考查了弦切角定理和和切线的性质,是基础知识要熟练掌握.14.如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N,若⊙O的半径为2,∠P=60°,则△PMN的周长为()A.4B.6C.D.【分析】连接OP,由圆外一点P作圆的两条切线PA与PB,根据切线长定理得到PA=PB,且PO为角平分线,由∠APB=60°,得到∠APO=30°,再由切线的性质得到OA与AP垂直,在直角三角形APO中,根据30°角所对的直角边等于斜边的一半,由半径OA的长求出斜边OP的长,再利用勾股定理求出AP的长,由MA与MC为圆O的切线,根据切线长定理得到MA=MC,同理可得NB=NC,然后把三角形PMN的三边相加表示出三角形PMN的周长,等量代换后得到其周长为2PA,把PA的长代入即可求出三角形PMN的周长.【解答】解:连接OP,∵PA,PB为圆O的切线,∴PA=PB,PO平分∠APB,OA⊥AP,又∠APB=60°,∴∠APO=30°,在直角三角形APO中,OA=2,∴OP=2OA=4,根据勾股定理得:PA==2,∵MA,MC为圆O的两条切线,∴MA=MC,又NB,NC为圆O的切线,∴NC=NB,∴△PMN的周长=PM+PN+MN=PM+PN+MC+NC=PM+PN+MA+NB=PA+PB=2PA=4.故选:C.【点评】此题考查了切线长定理,切线的性质,勾股定理,含30°角直角三角形的性质,利用了转化的思想,熟练掌握切线长定理是解本题的关键.15.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5B.7C.8D.10【分析】根据切线长定理得到PB=PA、CA=CE,DE=DB,根据三角形的周长公式计算即可.【解答】解:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,故选:C.【点评】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.16.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB于M,若CD=9,MD=3,则AB的长为()A.18B.12C.13.5D.6√3【分析】根据切割线定理得MA2=MD•MC,再代入求得MA的值,同理求得MB,即可得出答案.【解答】解:∵AB是两圆的一条外公切线,∴MA2=MD•MC,MB2=MD•MC,∵CD=9,MD=3,∴MA=MB=6,∴AB=12,故选:B.【点评】本题考查了切割线定理,从圆外一点作圆的一条切线和圆的一条割线,切线长的平方等于圆外这点到圆上两点间线段的乘积.17.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC 的度数为()A.110°B.125°C.130°D.140°【分析】根据圆周角定理得到∠A=∠BOC=70°,根据三角形的内心的性质得到BI平分∠ABC,CI平分∠ACB,根据三角形内角和定理计算即可.【解答】解:∵点O为△ABC的外心,∴∠A=∠BOC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵点I为△ABC的内心,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=55°,∴∠BIC=180°﹣55°=125°,故选:B.【点评】本题考查的是三角形的内切圆与内心、外接圆与外心,掌握圆周角定理、三角形的内心的概念和性质是解题的关键.18.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.【分析】连接内心和直角三角形的各个顶点,设直角三角形的两条直角边是a,b.则直角三角形的面积是;又直角三角形内切圆的半径r=,则a+b=2r+c,所以直角三角形的面积是r(r+c);因为内切圆的面积是πr2,则它们的比是.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选:B.【点评】此题要熟悉直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半,能够把直角三角形的面积分割成三部分,用内切圆的半径进行表示,是解题的关键.19.已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.2【分析】作AD⊥BC于D,设BD=x,则CD=6﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,求出x,根据勾股定理求出AD,根据•BC•AD=(AB+BC+AC)•r计算即可.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD ⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为,故选:C.【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,利用面积法求内切圆的半径是解题的关键.20.如果两圆的半径分别为4和3,它们的一条公切线长为7,那么这两圆的位置关系是()A.内切B.相交C.外切D.外离【分析】先求两圆圆心距,然后根据圆心距与半径之间的数量关系可知两圆的位置关系.【解答】解:∵公切线长7,构造直角三角形可知圆心距为==5,∴4+3=7<5,∴两圆的位置关系是外离.故选:D.【点评】本题考查了由数量关系来判断两圆位置关系的方法和利用切线性质构造直角三角形的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P,则外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r.21.如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为()A.60°B.45°C.30°D.15°【分析】连接O1O2,AO2,可得△AO2O1是等边三角形,再根据圆周角定理即可解答.【解答】解:连接O1O2,AO2,∵⊙O1和⊙O2是等圆,∴AO1=O1O2=AO2,∴△AO2O1是等边三角形,∴∠AO2O1=60°,∴∠O1AB=∠AO2O1=30°(圆周角定理).故选:C.【点评】此题主要考查了相交两圆的性质以及等边三角形的判定与性质,得出△AO2O1是等边三角形是解题关键.22.如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2B.C.D.【分析】连结OM、OP,作OH⊥AB于H,如图,先利用坐标轴上点的坐标特征求出A点和B点坐标,则可判断△OAB为等腰直角三角形,从而得到OH= AB=2,再根据切线的性质得OM⊥PM,利用勾股定理得到PM=,则可判断OP的长最小时,PM的长最小,然后利用垂线段最短得到OP的最小值,再计算PM的最小值.【解答】解:连结OM、OP,作OH⊥AB于H,如图,当x=0时,y=﹣x+2=2,则A(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),所以△OAB为等腰直角三角形,则AB=OA=4,OH=AB=2,因为PM为切线,所以OM⊥PM,所以PM==,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.解决本题的关键是用OP、OM表示PM,利用OP的最小值计算PM的最小值.23.已知点I是△ABC的内心,则∠BIC与∠A的关系是()A.∠BIC=2∠A B.∠BIC=180°﹣∠AC.∠BIC=90°+∠A D.∠BIC=180°+∠A【分析】根据三角形内角和定理即可求得∠IBC+∠ICB的度数,然后根据内心的定义即可求得∠IBC+∠ICB,然后根据三角形内角和定理即可求解.【解答】解:∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°﹣∠A,∵点I是△ABC的内心,∴∠1=∠ABC,∠2=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(180°﹣∠A)=90°+∠A.故选:C.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.二.填空题(共9小题)24.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.【分析】先根据勾股定理计算点A与其它格点的距离,根据点和圆的位置关系确定半径的取值.【解答】解:分别连接A与其它各格点,由勾股定理得:AB===4,AC===3,AD==,AE===2,AF==5,AG==,AH==,AP==5,当r=3时,有三个点在圆内:D、E、G,当r=时,点E在圆内,点D和G在圆上,则r的取值范围为:<r≤3.故答案为:<r≤3.【点评】本题考查了点和圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.当点与圆心的距离小于半径时,该点在圆内.25.在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是或7.5.【分析】分两种情况:①如果△ABC是锐角三角形,那么能完全覆盖△ABC的最小圆必然是△ABC的外接圆.因而求外接圆的半径即可,为此,作过B点作△ABC的外接圆直径BE,连接AE.在△BAE与△ADC中,根据同弧所对的圆周角相等可知∠ACB=∠AEB,因而可证得△BAE∽△ADC.根据相似三角形的性质,求得直径BE的长,那么半径R即可知;②如果△ABC是钝角三角形,那么能完全覆盖△ABC的最小圆为最长边AB的一半.【解答】解:分两种情况:①如果△ABC是锐角三角形,那么能完全覆盖△ABC的最小圆必然是△ABC的外接圆,连接BO,并延长交△ABC的外接圆O于点E,并连接AE,则∠ACB=∠AEB,∵∠BAE=∠ADC=90°,∴△BAE∽△ADC,∴,即==,又∵BE是⊙O的直径,∴BO=BE=;②如果△ABC是钝角三角形,那么能完全覆盖△ABC的最小圆为最长边AB的一半,故R==7.5.故答案为:7.5或.【点评】能够熟练运用正弦定理求得任意三角形外接圆的半径.26.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切于点D,若∠BCD=120°,则∠APD的大小为30°.【分析】连接OD,由圆内接四边形的性质易得∠DAB,可得△ADO为等边三角形,由切线的性质可得∠PDO=90°,最后,在Rt△PDO中,依据直角三角形两锐角互余求解即可.【解答】解:连接DO,∵∠BCD=120°,∴∠DAB=180°﹣120°=60°,∴△ADO为等边三角形,∴∠DOA=60°,∵PD与⊙O相切,∴∠PDO=90°,∴∠APD=90°﹣∠DOP=90°﹣60°=30°.故答案为:30°.【点评】本题主要考查了切线的性质,作出恰当的辅助线(见切点,连圆心)是解答此题的关键.27.如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为相切.【分析】先利用同弧所对的圆周角与圆心角的关系求出∠BOC=2∠A=50°,再求,∠OBC=180°﹣50°﹣40°=90°,可得结论.【解答】解:∵∠BOC=2∠A=50°,∠OCB=40°,∴在△OBC中,∠OBC=180°﹣50°﹣40°=90度.∴直线BC与⊙O相切.【点评】此题主要考查同弧所对的圆周角与圆心角的关系,及圆的切线的判定.28.如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是相切;②若AB=4,AD=6,CE=3,则DE=3.【分析】①连OD,根据内心的性质得到∠BAD=∠DAE,再根据圆周角的推论得到弧DB=弧DC,利用垂径定理得到OD⊥BC,而DE∥BC,即可得到OD⊥DE;②连BD,DC,由BC∥DE,得到∠E=∠ACB,∠BCD=∠CDE,根据同弧所对的圆周角相等得到∠ACB=∠ADB,∠BCD=∠BAD,因此∠E=∠ADB,∠CDE=∠BAD,得到△CDE∽△BAD,则==,而AB=4,AD=6,CE=3,BD=DC,先计算出CD,再计算出DE.【解答】解:①连OD,如图,∵点P为△ABC的内心,∴∠BAD=∠DAE,∵同弧或等弧所对的圆周角相等,∴弧DB=弧DC,∴OD⊥BC,而DE∥BC,∴OD⊥DE,∴DE是⊙O的切线;②连BD,DC,如图,则BD=DC,∵BC∥DE,∴∠E=∠ACB,∠BCD=∠CDE,而∠ACB=∠ADB,∠BCD=∠BAD,∴∠E=∠ADB,∠CDE=∠BAD,∴△CDE∽△BAD,∴==,而AB=4,AD=6,CE=3,BD=DC,∴==,∴DC=2,则DE=3.故答案为:相切;3.【点评】本题考查了圆的切线的判定方法:过半径的外端点与半径垂直的直线是圆的切线.也考查了平行线的性质和圆周角定理的推论以及三角形相似的判定与性质.29.如图,割线PAB过圆心O,PD切⊙O于D,C是上一点,∠PDA=20°,则∠C的度数是110度.【分析】根据圆内接四边形的性质可知,欲求∠C的度数,需求出∠ABD的度数;连接BD,在构建的直角三角形中,根据弦切角定理可求出∠DBA的度数,由于∠DBA和∠DAB互余,即可求出∠DAB的度数,由此得解.【解答】解:连接BD,则∠BDA=90°,∵PD切⊙O于点D,∴∠ABD=∠PDA=20°,∴∠DAB=90°﹣∠ABD=90°﹣20°=70°;又∵四边形ADCB是圆内接四边形,∴∠C=180°﹣∠DAB=180°﹣70°=110°.。
人教版九年级数学上册24.2、点和圆、直线和圆的位置关系 同步检测试卷(含答案)
![人教版九年级数学上册24.2、点和圆、直线和圆的位置关系 同步检测试卷(含答案)](https://img.taocdn.com/s3/m/425527dc69dc5022abea001e.png)
人教版九年级数学上册24.2、点和圆、直线和圆的位置关系 同步检测试卷一、单选题1.已知⊙O 的半径为4,点A 和圆心O 的距离为3,则点A 与⊙O 的位置关系是A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定2.如图,PA 、PB 分别切圆O 于A 、B 两点,C 为劣弧AB 上一点,∠APB=40°,则∠ACB=( ).A .70°B .80°C .110°D .140°3.如图,PA 是⊙O 的切线,A 为切点,PO 的延长线交⊙O 于点B ,若∠B =32°,则∠P 的度数为( )A .24ºB .26ºC .28ºD .32º4.如图,形如的方程的图解是:画,使,,,再226x ax b -=Rt ABC ∆90ACB ︒∠=3BC a =AC b =以B 为圆心,长为半径画弧,分别交边及延长线于点D 、E ,则该方程的一个正根是()BC ABA .的长B .的长C .的长D .的长AE AB ED AD 5.如图,是的一条弦,点C 是上一动点,且,点E ,F 分别是,的AB O O 30ACB ︒∠=AC BC中点,直线与交于G ,H 两点.若的半径为7,则的最大值为(EF O O GE FH +)A .10B .10.5C .11D .11.56.如图,为圆外一点,,分别切圆于、,切圆于点,分别P O PA PB O A B CD O E交、于点、,若,则的周长为( ).PA PB C D 5PA =PCD ∆A .5B .8C .10D .157.如图,在正方形网格中,一条圆弧经过,,三点,那么点在这条圆弧所在圆的(55⨯A B C M).A .内部B .外部C .圆上D .不能确定8.下列语句中,①过三点能作一个圆;②平分弦的直径垂直于弦;③长度相等的弧是等弧;④经过圆心的每一条直线都是圆的对称轴;⑤相等的圆心角所对的弧度数相等.其中正确的个数是()A .1个B .2个C .3个D .4个9.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 为直线y =﹣x +3上的动34点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( )ABC .D.10.如图,AB 是的直径,点D 在AB 的延长线上,DC 切于C ,若,则O O 35A =∠︒等于( )D ∠A .20 °B .30°C .50°D .40°11.已知⊙O 的半径为13,弦AB ∥CD ,AB=24,CD=10,则四边形ACDB 的面积是( )A .119B .289C .77或119D .119或28912.已知点P 是△ABC 的内心,若∠BAP =50°,则∠BPC 的度数为( )A .100°B .110°C .140°D .130°二、填空题13.如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画,P 是上一动O O 点,且P 在第一象限内,过点P 作的切线与x 轴相交于点A ,与y 轴相交于点B .在O上存在点Q ,使得以Q 、O 、A 、P 为顶点的四边形是平行四边形,请写出Q 点的坐标_________.O14.如图,半圆的圆心与坐标原点重合,半圆的半径1,直线的解析式为l 若直线与半圆只有一个交点,则t 的取值范围是________.y x t =+l15.如图,已知A 、B 两点的坐标分别为,P 是外接圆上的一点,且,(0,2)AOB ∆AOP 30︒∠=则点P 的坐标为____________________.16.如图,⊙的半径为,圆心在抛物线上运动,P 2P 2132y x =-当⊙与轴相切时,圆心的坐标为___________.P x P17.如图,AB 是⊙O 的直径,点P 在AB 的延长线上,PC 切⊙O 于点C ,若AB =8,∠CPA =30°,则PC 的长等于________.18.如图,在平面直角坐标系中,已知点A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC =90°,则a 的最小值是_____.19.如图,PC 是⊙O 的直径,PA 切⊙O 于点P ,AO 交⊙O 于点B ;连接BC ,若,则______.32C ∠=︒A ∠=20.如图,两个圆都以为圆心,大圆的弦与小圆相切于点,若,则圆环的面积为______.O AB C 6AB =三、解答题21.如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,与AC 、BC 分别交于点M 、N ,与AB 的另一个交点为E .过点N 作NF ⊥AB ,垂足为F .(1)求证:NF 是⊙O 的切线;(2)若NF=2,DF=1,求弦ED的长.22.已知⊙O,请用无刻度的直尺完成下列作图.(1)如图①,四边形ABCD是⊙O的内接四边形,且AB=AD,画出∠BCD的角平分线;(2)如图②,AB和AD是⊙O的切线,切点分别是B、D,点C在⊙O上,画出∠BCD的角平分线.23.已知AB是⊙O的直径,弦CD⊥AB于点E.(1)如图①,若CD=8,BE=2,求⊙O的半径;AC(2)如图②,点G是上一点,AG的延长线与DC的延长线交于点F,求证:∠AGD=∠FGC.24.如图是的直径,点D 在的延长线上,C 、E 是上的两点,,AB O AB O CE CB =,延长交的延长线于点F .BCD CAE ∠=∠AE BC(1)求证:是的切线;CD O (2)求证:.CE CF =25.如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D , 点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E 、F .(1)试判断直线BC 与OD 的位置关系,并说明理由.(2)若BD =BF =3,求⊙O 的半径.26.如图,,是的切线,,为切点,是的直径,.求的度数.PA PB O A B AC O 25BAC ∠=︒P ∠参考答案1.A2.C3.B4.A5.B6.C7.C8.B9.C10.A11.D12.C13.或(14.或t =11t -≤<15.,-1)或(,2)16.()()22-17.18.419.26°20.9π21.(1)证明略;(2)3.22.(1)略;(2)略.23.(1)5 (2)略24.(1)略;(2)略25.(1)线BC 与⊙O 的位置关系是相切,理由略;(2)⊙O 的半径是3.26.50︒。
人教版九年级上册数学点和圆、直线和圆的位置关系同步测试
![人教版九年级上册数学点和圆、直线和圆的位置关系同步测试](https://img.taocdn.com/s3/m/2111948edbef5ef7ba0d4a7302768e9950e76e51.png)
点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系[见B本P42]1.若⊙O的半径为4 cm,点A到圆心O的距离为3 cm,那么点A与⊙O的位置关系是( A )A.点A在圆内 B.点A在圆上C.点A在圆外 D.不能确定【解析】d=3 cm<4 cm=r,所以点A在⊙O内.2.已知⊙O的半径为5 cm,P为⊙O外一点,则OP的长可能是( D )A.5 cm B.4 cm C.3 cm D.6 cm3.矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( C )A.点B,C均在圆P外B.点B在圆P外,点C在圆P内C .点B 在圆P 内,点C 在圆P 外D .点B ,C 均在圆P 内 【解析】 如图所示. 因为AP =14AB =14×8=2,AD =BC =35, 所以PD =AD 2+AP 2=(35)2+22=7, PB =8-2=6,所以PC =PB 2+BC 2=62+(35)2=9.因为PB <PD <PC ,所以点B 在圆P 内,点C 在圆P 外,故选C.4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图24-2-1所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( B )A.第①块 B.第②块C.第③块 D.第④块【解析】根据“不在同一直线上的三点确定一个圆”知所带的碎片必须含有圆弧的部分,只有②符合.图24-2-1图24-2-25.如图24-2-2,已知⊙O是△ABC的外接圆,∠AOB=110°,则∠C的度数为( A )A.55° B.70° C.60° D.45°6.[2012·攀枝花]下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有( B )A.1个 B.2个 C.3个 D.4个【解析】∵等边三角形是轴对称图形,但不是中心对称图形,∴①是假命题;如图,AB=AE,但∠C和∠D不相等,∴②是假命题;三角形有且只有一个外接圆,外接圆的圆心是三角形三边的垂直平分线的交点,∴③是真命题;垂直于弦的直径平分弦,且平分弦所对的两条弧,∴④是真命题.7.在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是( D )A.(2,3) B.(3,2)C.(1,3) D.(3,1)【解析】作弦AB,AC的垂直平分线,交点即为圆心.8.一个三角形的外心在三角形的内部,则这个三角形是( C )A.任意三角形 B.直角三角形C.锐角三角形 D.钝角三角形9.已知⊙O的半径为10 cm,点P到圆心的距离为d cm,(1)当d=8 cm时,点P在⊙O__内__;(2)当d=10 cm时,点P在⊙O__上__;(3)当d=12 cm时,点P在⊙O__外__.10.图24-2-3中,△ABC的外接圆的圆心坐标是__(5,2)__.图24-2-3【解析】分别作BC,AB的垂直平分线,交点坐标即为所求.11.已知线段AB=6 cm.(1)画半径为4 cm的圆,使它经过A,B两点,这样的圆能画__2__个;(2)画半径为3 cm的圆,使它经过A,B两点,这样的圆能画__1__个;(3)画半径为2 cm的圆,使它经过A,B两点,这样的圆能画__0__个.图24-2-412.如图24-2-4,△ABC中,∠ACB=90°,BC=5 cm,AC=10 cm,CD为中线,以C为圆心,以525 cm 为半径作圆,则点A,B,D与⊙C的位置关系如何?【解析】要确定点A,B,D与⊙C的位置关系,需计算出这些点与点C的距离,再与⊙C的半径作比较即可.解:∵△ABC为直角三角形,∠ACB=90°,∴BC2+AC2=AB2,∴AB=BC2+AC2=52+102=55(cm).∵CD为斜边上的中线,∴CD=12AB=525 cm.∵CA=10 cm>525 cm,∴点A在⊙C外;而CB=5 cm<525 cm,∴点B在⊙C内;又CD=525 cm,∴点D在⊙C上.13.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是__10或8______.【解析】①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长=162+122=20,因此这个三角形的外接圆半径为10.综上所述:这个三角形的外接圆半径等于8或10.14.用反证法证明:圆内不是直径的两条弦不能互相平分.【解析】根据反证法的一般步骤来证明.解:如图所示,已知AB,CD是⊙O内的两条非直径弦,且AB与CD相交于点P.求证:AB与CD不能互相平分.证明:假设AB与CD能互相平分,则点P既是AB的中点,也是CD的中点,连接OP.由垂径定理可知:OP⊥AB,OP⊥CD.这表明过直线OP上一点P,有两条直线AB,CD与之垂直,这与“过一点有且只有一条直线与已知直线垂直”相矛盾,故假设不成立,即AB与CD不能互相平分.图24-2-515.如图24-2-5,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD =CD ;(2)请判断B ,E ,C 三点是否在以D 为圆心,以BD 为半径的圆上,并说明理由.解:(1)证明:∵AD 为直径,AD ⊥BC ,∴BD ︵=CD ︵.∴BD =CD .(2)B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.理由:由(1)知BD ︵=CD ︵,∴∠BAD =∠CBD .∵∠DBE =∠CBD +∠CBE ,∠DEB =∠BAD +∠ABE ,∠CBE =∠ABE ,∴∠DBE =∠DEB .∴DB =DE .又∵BD =CD ,∴DB =DE =DC .∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.16.用反证法证明:在一个三角形中,至少有一个内角小于或等于60°.已知:△ABC ,求证:△ABC 中至少有一个内角小于或等于60°.证明:假设△ABC 中没有一个内角小于或等于60°,即∠A >60°,∠B >60°,∠C >60°,于是∠A +∠B +∠C >60°+60°+60°=180°,这与三角形的内角和等于180°相矛盾,所以△ABC 中至少有一个内角小于或等于60°.17.如图24-2-6所示,⊙O 的半径为2,弦BD =23,A 为BD ︵的中点,E 为弦AC 的中点且在BD 上,求四边形ABCD 的面积.图24-2-6第17题答图解:如图所示,连接OA ,OB ,设OA 交BD 于F .∵A 为BD ︵的中点,∴FO ⊥BD ,∴BF=DF=12BD= 3.∵OB=2,∴OF=1,∴AF=1,∴S△ABD=12BD·AF=12×23×1= 3.∵AE=CE,∴S△ADE=S△CDE,S△ABE=S△CBE,∴S△ABD=S△BCD,∴S四边形ABCD=2S△ABD=2 3.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版九年级数学上册点和圆直线和圆的位置关系同步测试题
![人教版九年级数学上册点和圆直线和圆的位置关系同步测试题](https://img.taocdn.com/s3/m/a93d8de26bd97f192379e92b.png)
24.2《点和圆,直线和圆的位置关系》同步练习及答案 (1)一、填空题(每小题3分,共24分)1.与直线L相切于已知点的圆的圆心的轨迹是______.2.在△ABC中,∠A=40°,∠B=80°,I是△ABC的内心,则∠AIB=______________,∠BIC=__________,∠CIA=___________.3.已知直角三角形的两直角边长分别为5和12,则它的外接圆半径R=______,内切圆半径r=______.4.如图1,割线P AB、PCD分别交⊙O于AB和CD,若PC=2,CD=16,P A∶AB=1∶2,则AB=______.5.如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为______.图1图2图36.圆外切等腰梯形的底角是30°,中位线长为a,则圆半径长为______.7.P A、PB是⊙O的切线,切点是A、B,∠APB=50°,过A作⊙O直径AC,连接CB,则∠P BC=______.8.如图3,PE是⊙O的切线,E为切点,P AB、PCD是割线,AB=35,CD=50,AC∶DB=1∶2,则P A=______.二、选择题(每小题4分,共32分)9.直线L上的一点到圆心的距离等于⊙O的半径,则L与⊙O的位置关系是A.相离B.相切C.相交D.相切或相交10.圆的最大的弦长为12 cm,如果直线与圆相交,且直线与圆心的距离为d,那么A.d<6 cm B.6 cm<d<12 cmC.d≥6 cm D.d>12 cm11.P是⊙O外一点,P A、PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠A Q B=β,则α与β的关系是A.α=βB.α+β=90°C.α+2β=180°D.2α+β=180°12.在⊙O中,弦AB和CD相交于点P,若P A=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为A.x2+12x+28=0B.x2-12x+28=0C.x2-11x+12=0D.x2+11x+12=013.如图4,AB是⊙O的直径,弦AC、BD相交于P,则CD∶AB等于A.sin BPC B.cos BPC C.tan BPC D.cot BPC[来图4图5图6图7 14.如图5,点P为弦AB上一点,连结OP,过PC作PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是A.2B.2 C.22D.315.如图6,BC是⊙O直径,点A为CB延长线上一点,AP切⊙O于点P,若AP=12,AB∶BC=4∶5,则⊙O的半径等于A.4 B.5 C.6D.716.如图7,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,过点P从点A移到点B时,A′B′的中点的位置A.在平分AB的某直线上移动B.在垂直AB的某直线上移动C.在弧AMB上移动D.保持固定不移动三、解答题(共44分)17.如图8,已知AB是⊙O的直径,AC切圆O于A,CB交圆O于D,AC=26,CD=3,求tan B的值.(10分)图818.如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.(10分)图919.如图10,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:(1) AC是⊙O的切线.(2)若AD∶DB=3∶2,AC=15,求⊙O的直径.(12分)图1020.如图11,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE∶EA=1∶2,P A=6,求⊙O的半径;(3)求sin PCA的值.(12分)图11参考答案一、1.过已知点,垂直于直线L 的一条直线 2.120° 110° 130° 3.6.5 2 4.43 5.36π 6.41a 7.155° 8.45 二、9.D 10.A 11.C 12.B 13.B 14.C 15.B 16.D 三、17.证明:连结AD ∵AB 是直径,∴∠ADB =90° ∴在Rt △ADC 中,AD =1592422=-=-DC AC ,∴tan CAD =515153==AD DC ∵AC 是⊙O 的切线,∴∠CAD = ∠B , ∴tan CAD =tan B =51518.证明:连结OC ,BC ∵AB 是直径,∴∠ACB =90°又∵∠CAB =30°,∴∠CBA =60°,∴BC =21AB =BO ∵BO =BD ,∴BC =BD , ∴∠BCD =∠BDC =21∠ABC ,∴∠BCD =30° ∵AO =OC ,∴∠ACO =30°,∴∠ACO =∠BCD ∵∠ACO +∠OCB =90°, ∴∠BCD +∠OCB =90°∴DC 是⊙O 的切线. 19.证明:(1)连结OD 、DC ∵BC 是⊙O 的直径,∴∠BDC =90° 在Rt △ADC 中,∵AE =E C , ∴DE =E C ,∴∠EDC =∠ECD∵DE 是⊙O 的切线,∴∠EDC =∠B =∠ECD ∵∠B +∠DC B=90°,∴AC 是⊙O 的切线 (2)设每一份为k ,∴AD =3k ,DB =2k ,AB =5k . ∵AC 是⊙O 的切线,AD B 是割线 ∴AC 2=AD ×AB 即3k ×5k =152. 解得k =15,∴AB =515. 在Rt △ACB 中,BC =6522537522=-=-AC AB .20.(1)连结O C ,∵P C 2=PE ×PO ,∴PCPOPE PC =又∵∠P =∠P ,∴△PE C ∽△P C O , ∴△PE C ∽△P C O∵CD ⊥AB ,∴∠PE C=90°,∴∠P C O =90° ∴P C 是⊙O 的切线. (2)半径为3 (3)sin PCA =66 人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( ) A .-3℃ B .8℃ C .-8℃D .11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( )A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a+b+c=0,且abc≠0,则a+c2b=-12;②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;③若a+b+c=0,且abc≠0,则abc>0;④若|a|>|b|,则a-ba+b>0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
人教版九年级数学上册 点和圆直线和圆的位置关系同步练习新
![人教版九年级数学上册 点和圆直线和圆的位置关系同步练习新](https://img.taocdn.com/s3/m/d979d77aeff9aef8941e06cf.png)
24.2 点和圆、直线和圆的位置关系一.选择题(共20小题)1.(2018•哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.(2018•眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27° B.32° C.36° D.54°3.(2018•宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.104.(2018•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.55.(2018•河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.26.(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.(2018•泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.8.(2018•重庆)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB 为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD 的长是()A.2 B.C.D.9.(2018•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB 的最小值为()A.3 B.4 C.6 D.811.(2018•内江)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内切12.(2018•常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°13.(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.14.(2017•台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离15.(2017•莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46° B.47° C.48° D.49°16.(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P 是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.517.(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm18.(2016•邵阳)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°19.(2016•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.20.(2016•襄阳)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合二.填空题(共8小题)21.(2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB 的中点,则∠DOE= °.22.(2018•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.23.(2018•镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.24.(2017•泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.25.(2017•徐州)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= °.26.(2017•上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.27.(2016•泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.28.(2016•徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= °.三.解答题(共8小题)29.(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.30.(2018•北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.31.(2018•昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.32.(2017•资阳)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.33.(2017•南充)如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E 为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.34.(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.35.(2016•黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.36.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.参考答案一.选择题(共20小题)1.A.2.A.3.D.4.A.5.B.6.D.7.D.8.B.9.D.10.C.11.C.12.A.13.D.14.C.15.C.16.D.17.D.18.D.19.A.20.D.二.填空题(共8小题)21.60.22..23.40.24.(7,4)或(6,5)或(1,4).25.60.26.8<r<10.27.6.28.125.三.解答题(共8小题)29.(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.30.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.31.(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.32.证明:(1)连接OC,∵∠ACD=60°,∠E=30°,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=∠OCA+∠ACD=90°,∴直线DE与半圆相切;(2)在Rt△OCE中,∠E=30°,∴OE=2OC=OB+BE,∵OC=OB,∴OB=BE,∴OE=2BE=6,∴CE=OE•cosE=.33.解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.34.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.35.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.36.解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学
点和圆、直线和圆的位置关系 同步练习
一、单选题
1.下列说法:①三点确定一个圆;②相等的圆周角所对的弧相等;③同圆或等圆中,等弦所对的弧相等;④等边三角形的内心与外心重合;⑤三角形的外心到三角形各顶点距离相等其中,正确的个数共有( ) A .1 B .2 C .3 D .4
2.已知⊙O 的直径是4cm ,OP =4cm ,则点P ( )
A .在⊙O 上
B .在⊙O 内
C .在⊙O 外
D .不能确定
3.已知⊙O 的半径OA 长为1,OB )
A .
B .
C .
D .
4.在△ABC 中,已知8AB AC cm ==,12BC cm =,P 是BC 的中点,以P 为圆心作一个6cm 为半径的圆P ,则A ,B ,C 三点在圆P 内的有( )个.
A .0
B .1
C .2
D .3
5.如图,已知矩形中ABCD 中,AB =3cm ,BC =4cm ,若以A 为圆心、5cm 长为半径画⊙A ,则点C 与⊙A 的位置关系为( )
A .点C 在⊙A 内
B .点
C 在⊙A 上 C .点C 在⊙A 外
D .无法判断
6.如图,点O 是△ABC 的内心,若∠A =70°,则∠BOC 的度数是( )
A .130°
B .135°
C .125°
D .120°
7.如图,PA ,PB 分别切⊙O 于点A ,B ,OP 交⊙O 于点C ,连接AB ,下列结论中,错误的是( )
A .A
B ⊥OP B .OP =2OA
C .PA =PB
D .∠1=∠2
8.在Rt ABC ∆中,090C ∠=,6AB =,ABC ∆的内切圆半径为1,则ABC ∆的周长为( )
A .15
B .13
C .16
D .14
9.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )
A .70°
B .110°
C .125°
D .55°
10.如图,,,AB AC BD 是O 的切线,切点分别是,,P C D .若5,3AC BD ==,则AB 的长是( )
A .2
B .4
C .6
D .8
二、填空题
11.如图,∠EAD 为锐角,C 是射线AE 上一点,点B 在射线AD 上运动(点A 与点B 不重合),设点C 到AD 的距离为d ,BC 长度为a ,AC 长度为b ,在点B 运动过程中,b 、d 保持不变,当a 满足_____条件时,△ABC 唯一确定.
12.已知O 的面积为25π.若点P 在O 内,那么线段OP 的长度d 的取值范围是______.
13.在ABC 中,90C ∠=︒,30A ∠=︒,2BC =,则ABC 的外接圆半径为______。
14.P 是直线l 上的任意一点,点A 在圆O 上,设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是_____.
15.如图,PA ,PB 分别切O 于点A ,B ,点C 在O 上,且50∠=°ACB ,P ∠=__________.
三、解答题
16.如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC .
(1)求证:∠ACO=∠BCD . (2)若EB=8cm ,CD=24cm ,求⊙O 的直径.
17.(1)如图①,用尺规作图作出圆的一条直径EF (不写作法,保留作图痕迹);
(2)如图②,A 、B 、C 、D 为圆上四点,AB∥CD,AB <CD ,请只用无刻度的直尺,画出圆的一条直径EF (不写画法,保留画图痕迹).
18.如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P.
(1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法)(2)点D在⊙O上吗?说明理由;
(3)试说明:AC平分∠BAD.。