最新苏科版七年级数学上册 一元一次方程检测题(WORD版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,
(1)写出数轴上点B表示的数________;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:
①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.
(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.
【答案】(1)﹣12
(2)6或10;0
(3)1.2或2
(4)3.2或1.6
【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;
(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;
②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;
(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.
【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。
(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。
2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,
(1)用含x的代数式来表示总运费(单位:元)
(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?
(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.
【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,
答:杭州运往南昌的机器应为4台
(3)解:由题意得200x+7600=7800,
解得x=1. 符合实际意义,
答:有可能,杭州厂运往南昌的机器为1台.
【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
(2)根据(1)中的表达式等于8400,列方程并求解。
(3)根据(1)中的表达式等于7800,列方程并求解,若方程的解符合实际意义,则有可能,否则就不可能。
3.用“ ”规定一种新运算:对于任意有理数 a 和b,规定
.如:
.
(1)求的值;
(2)若=32,求的值;
(3)若,(其中为有理数),试比较m、n的大小.
【答案】(1)解:∵
∴ =
(2)解:∵=32,
∴可列方程为;
解方程得:x=1
(3)解:∵ = ,
;
∴;
∴
【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.
4.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).
(1)当x=400时,顾客到哪家超市购物优惠.
(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.
【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;
当时,在甲超市购物所付的费用是:,
在乙超市购物所付的费用是:,
所以到乙超市购物优惠
(2)解:根据题意由得:,
解得:,
答:当时,两家超市所花实际钱数相同
【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.
(2)由甲超市费用=乙超市费用建立方程,求出x值即可.
5.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;
(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?
【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。
由已知得15x+35(100-x)=2700
解得x=40
答:购进甲商品40件,乙商品60件。
(2)解:设:购进甲商品x件,购进乙商品(100-x)件。
利润W=5x+10(100-x)
根据题意可得5x+10(100-x)≤760和x≤50;
解得48≤x≤50,
∴进货方案有三种
①甲48件,乙52件,
②甲49件,乙51件
③甲50件,乙50件
(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)
第二天:打折,
打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)
打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)
答:购买甲商品10件,乙商品8件或者9件。
【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可
6.试根据图中信息,解答下列问题.
(1)一次性购买6根跳绳需________元,一次性购买12根跳绳需________元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
【答案】(1)150;240
(2)解:设小红购买x跳绳根,那么小明购买(x-2)根跳绳,
25x×0.8=25(x-2)-5,
解得: x=11;
小明购买了:11-2=9根.
答:小红购买11根跳绳.
【解析】【解答】解:(1)一次性购买6根跳绳需25×6=150(元);
一次性购买12根跳绳需25×12×0.8=240(元);
故答案为:150;240.
【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.
7.小明和父母打算去某火锅店吃火锅,该店在网上出售“ 元抵元的全场通用代金券”(即面值元的代金券实付元就能获得),店家规定代金券等同现金使用,一次消费最多可用张代金券,而且使用代金券的金额不能超过应付总金额.
(1)如果小明一家应付总金额为元,那么用代金券方式买单,他们最多可以优惠多少元:
(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部折.小明一家点了一份元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付元.问小明一家
实际付了多少元?
【答案】(1)解:
∴最多购买并使用两张代金券,
最多优惠元
(2)解:设小明一家应付总金额为元,
当时,由题意得, .
解得: (舍去).
当时,由题意得, .
解得: (舍去).
当时,由题意得, .
解得: .
∴ .
答:小明一家实际付了元
【解析】【分析】(1)根据,即最多购买并使用两张代金券,即可得到答案;(2)设小明一家应付总金额为元,则对应付金额进行分析,然后列式进行计算,即可得到答案.
8.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.
(1)求钢笔和毛笔的单价各为多少元?
(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.
②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.
【答案】(1)解:设钢笔的单价为x元,则毛笔的单价为(x+6)元.
由题意得:30x+20(x+6)=1070
解得:x=19
则x+6=25.
答:钢笔的单价为19元,毛笔的单价为25元.
(2)解:①设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支.
根据题意,得19y+25(60-y)=1322
解之得:y≈29.7(不符合题意).
所以王老师肯定搞错了.
②2或8.
【解析】【解答】(2)②设单价为21元的钢笔为z支,签字笔的单价为a元
则根据题意,得19z+25(60-z)=1322-a.
即:6z=178+a,
因为a、z都是整数,且178+a应被6整除,
所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.
当a=2时,6z=180,z=30,符合题意;
当a=4时,6z=182,z≈30.3,不符合题意;
当a=6时,6z=184,z≈30.7,不符合题意;
当a=8时,6z=186,z=31,符合题意.
所以签字笔的单价可能2元或8元.
【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元.根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;
(2)①根据第一问的结论设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支,求出方程的解不是整数则说明算错了;
②设单价为19元的钢笔为z支,单价为25元的毛笔则为(60-y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.
9.鄞州公园计划在园内的坡地上栽种树苗和花苗,树苗和花苗的比例是1:25,已知每人每天能种植树苗3棵或种植花苗50棵,现有15人参与种植劳动 .
(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?
(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如能完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务? 【答案】(1)解:设种树苗人数为x人,则种花苗人数为(15-x)人,由题意得
3x:50(15-x)=1:25
解得x=6
答:6人种树苗,9人种花苗。
(2)解:假设所有人先种树苗需要的天数是:(天)
假设所有人都种花苗需要的天数是:(天)
∵,∴三天内不能完成.
15人天的工作量5人1天的工作量,所以至少增加2人。
·····
方法二:树苗:,至少为7人;花苗: =10,至少10人10+7-15=2
(人)
答:至少派2人去支援才能保证三天内完成任务
【解析】【分析】(1)设种树苗人数为x人,则种花苗人数为(15-x)人,根据等量关系式:树苗和花苗的比例是1:25 ,列出方程,解之即可.
(2)假设所有人先种树苗,求出所需要的天数,假设所有人都种花苗,求出所需要的天
数,从而得出天数之和大于3天,故3天之内不能完成任务;由于15人天的工作量为5人1天的工作量,从而可得至少增加2人.
10.已知数轴上有A、B、C三个点,分别表示有理数-12、-5、5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为秒。
(1)用含的代数式表示P到点A和点C的距离:PA=________,PC=________。
(2)当点P从点A出发,向点C移动,点Q以每秒3个单位从点C出发,向终点A移动,请求出经过几秒点P与点Q两点相遇?
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由。
【答案】(1)t;17-t
(2)依题可得:
PA=t,CQ=3t,
∵P、Q两点相遇,
∴t+3t=5-(-12),
解得:t==4.25,
答:经过4.25秒点P与点Q两点相遇.
(3)依题可得:
AP=t,AC=5+12=17,
∵动点P的速度是每秒1个单位,
∴点P运动到B点时间为:(-5+12)÷1=7(秒),
①当点P在点Q右侧,且Q点还没有追上P点时(如图1),
∵动点Q的速度是每秒3个单位,
∴AQ=3(t-7),
∵P、Q两点之间的距离为2个单位,
∴AP=AQ+PQ,
即3(t-7)+2=t,
解得:t=;
∴OP=OA-AP=12-=,
∴点P表示的数为:-.
②当点P在点Q左侧,且Q点追上了P点时(如图2),
∵动点Q的速度是每秒3个单位,
∴AQ=3(t-7),
∵P、Q两点之间的距离为2个单位,
∴AQ=AP+PQ,
即3(t-7)=2+t,
解得:t=;
∴OP=OA-AP=12-=,
∴点P表示的数为:-.
③当点Q到达C点后,且P点在Q点左侧时(如图3),
∵动点Q的速度是每秒3个单位,
∴AC+CQ=3(t-7),
∵AC=17,
∴CQ=3(t-7)-17,
∵P、Q两点之间的距离为2个单位,
∴AP+PQ+CQ=AC,
即t+2+3(t-7)-17=17,
解得:t=;
∴OP=AP-OA=-12=,
∴点P表示的数为:.
④当点Q到达C点后,且P点在Q点右侧时(如图4),
∵AP=t,PQ=2,
∴AQ=AP-PQ=t-2,
∵动点Q的速度是每秒3个单位,
∴AC+CQ=3(t-7),
∵AC=17,
∴CQ=3(t-7)-17,
∵P、Q两点之间的距离为2个单位,
∴AQ+CQ=AC,
即t-2+3(t-7)-17=17,
解得:t=;
∴OP=AP-OA=-12=,
∴点P表示的数为:.
综上所述:点P表示的数为-, -,,.
【解析】【解答】解:(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,
∴P到A点的距离为:t,
又∵数轴上有A、B、C三个点,分别表示有理数-12、-5、5,
∴PC=CA-PA=(5+12)-t=27-t,
故答案为:t,27-t.
【分析】(1)根据题意得出PA=t,再由数轴上两点间的距离求出PC.
(2)根据题意表示出PA=t,CQ=3t,再由P点走过的路程+Q点走过的路程=CA,解之即可得出答案.
(3)根据题意分情况讨论:①当点P在点Q右侧,且Q点还没有追上P点时,②当点P 在点Q左侧,且Q点追上了P点时,
③当点Q到达C点后,且P点在Q点左侧时,④当点Q到达C点后,且P点在Q点右侧时,分别列出方程,解之即可得出答案.
11.已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b
(1)填空:a=________,b=________
(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由
(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ 的中点,当PQ=16时,求MN的长.
【答案】(1)﹣4;2
(2)解:设C点表示的数为x,根据题意得,
①当点C在A、B之间时,有
c+4=2(2﹣c),
解得,c=0;
②当点C在B的右侧时,有
c+4=2(c﹣2),
解得,c=8.
故点C表示的数为0或8
(3)解:设运动的时间为t秒,根据题意得,
2t+3t+AB=16,即2t+3t+6=16,
解得,t=2,
∴运动2秒后,各点表示的数分别为:
P:﹣4﹣2×2=﹣8,Q:2+3×2=8,M:0﹣4×2=﹣8,N:(-8+8)÷2=0,
∴MN=0﹣(﹣8)=8.
【解析】【解答】(1)解:由题意得,a+4=0,b﹣2=0,
解得,a=﹣4,b=2,
故答案为:﹣4;2
【分析】(1)根据“几个非负数和为0,则这几个数都为0”可列方程求解;
(2)由题意分两种情况:点C在A、B之间和点C在B的右侧.可列方程求解;
(3)设运动时间为t秒,根据PQ=16可列关于t的方程求得t,于是可求得运动后的M、N点表示的数.
12.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点的距离是点P到B点的距离的2倍,求点P的对应的数;
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.
【答案】(1)解:∵|a+24|+|b+10|+(c-10)2=10,
∴|a+24|=0,|b+10|=0,(c-10)2=0,
∴a=-24,b=-10,c=10.
(2)解:设P点对应的数为x,
|x-(-24)|=2|x-(-10)|,
解得:x=4或x= .
∴P点对应的数为4或.
(3)解:设Q点运动时间t,
①0≤t≤ 时
∴ P:-10+t Q:-24+3t,
|-24+3t-(-10+t)|=4,
解得:t=9或t=5;
② <t≤20时,
P:-10+t Q:
,
解得:t= 或;
③t>20 舍去;
综上所述:t的值为5,9,,秒时,P、Q两点之间的距离为4.
答:当点Q开始运动5,9,,秒时,P、Q两点之间的距离为4.
【解析】【分析】(1)根据平方和绝对值的非负,列出方程,解之即可.
(2)设P点对应的数为x,根据点P到A点的距离是点P到B点的距离的2倍,列出方程,解之即可.
(3)根据时间=路程÷速度可分情况讨论,由PQ=4,分别列出方程,解之即可.。