(完整版)高中数学必修2立体几何专题二面角典型例题解法总结,推荐文档

合集下载

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

AA 1 =2, E、E 1 、F 分别是棱 AD、AA 1 、AB 的中点。
D1
A1 (1) 证明:直线 EE 1 //平面 FCC 1 ;
C1 B1
(2) 求二面角 B-FC 1 -C 的余弦值。
E1
D
E
A
F
C B
证(1)略 解 ( 2) 因 为 AB=4, BC=CD=2, 、 F 是 棱 AB 的 中 点 ,所 以 A1 BF=BC=CF,△BCF 为正三角形,取 CF 的中点 O,则 OB⊥CF,又因
分析:本题是一道典型的利用三垂线定理求二面角问题,在证明 AD⊥平面 PAB 后,容易发现平面 PAB⊥ 平面 ABCD,点 P 就是二面角 P-BD-A 的半平面上的一个点,于是可过点 P 作棱 BD 的垂线,再作平面 ABCD
的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角 P BD A 的大
2 ,则 GF
2

2
又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 , ABM 600 ∴△ ABM 是等边三角形,∴
BF 3 。在△ GAB 中, AG 6 , AB 2 , GAB 900 ,∴ BG 3 4 11
2
2
2
cos BFG GF 2 FB 2 BG 2
6
,求二面角 E—AF—C 的余弦值.
2
分析:第 1 题容易发现,可通过证 AE⊥AD 后推出 AE⊥平面 APD,使命 题获证,而第 2 题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在 二面角的棱 AF 上找到可计算二面角的平面角的顶点 S,和两边 SE 与 SC,进而计算二面角的余弦值。(答

高中数学必修2立体几何专题-线面、面面垂直专题总结

高中数学必修2立体几何专题-线面、面面垂直专题总结
又∵AD⊥BC,∴AD⊥平面SBC.
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.

必修二立体几何知识点+例题+练习+答案

必修二立体几何知识点+例题+练习+答案
的棱台叫做正棱台。 正棱台的性质:各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两底面以及平
行于底面的截面是相似的正多边形 5.旋转体:由一个平面图形绕一条定直线旋转所形成的封闭几何体叫旋转体,这条定
直线叫做旋转体的轴,
6.圆柱、圆锥、圆台:分别以矩形的一边、直角三角形的直角边、直角梯形垂直于 底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫 做圆柱、圆锥、圆台。
必修二立体几何知识点+例题+练习+答案(word 版可编辑修改)
必修二立体几何知识点+例题+练习+答案(word 版可编辑修改) 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修二立体几何知识点+例题+ 练习+答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收 到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为必修二立体几何知识点+例题+练习+答案(word 版可编辑修改)的全部内容。
主主主
主主主
主主主
[来源:学_科_网]
主主主
主主主
主主主
主主主
主主主
主主主
A
主主主
B
主主主
C
主主主
D
(3).空间几何体的直观图-—斜二测画法特点:
①斜二测坐标系的 y 轴与 x 轴正方向成 45 角;②原来与 x 轴平行的线段仍然与 x 平行,

高中数学专项复习——二面角大小的几种求法(归类总结分析)

高中数学专项复习——二面角大小的几种求法(归类总结分析)

二面角大小的几种求法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。

求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。

I.寻找有棱二面角的平面角的方法(定义法、三垂线法、垂面法、射影面积法)一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角。

例空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B-PC-A 的大小。

解:过PC 上的点D 分别作DE ⊥AC 于E ,DF ⊥BC 于F ,连EF.∴∠EDF 为二面角B-PC-A 的平面角,设CD=a ,∵∠PCA=∠PCB=600,∴CE=CF=2a ,DE=DF=a 3,又∵∠ACB=900,∴EF=,∴∠EDF=31328332222=⋅-+a a a a PB αC AE FD二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。

例在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。

解:如图,PA ⊥平面BD ,过A 作AH ⊥BC 于H ,连结PH ,则PH ⊥BC 又AH ⊥BC ,故∠PHA 是二面角P-BC-A 的平面角。

在Rt △ABH 中,AH=ABsin ∠ABC=aSin30°=2a ;在Rt △PHA 中,tan ∠PHA=PA/AH=22aa =,则∠PHA=arctan2.三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直。

高中数学必修2第二章知识点总结及例题

高中数学必修2第二章知识点总结及例题

高中数学必修2知识点总结立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)chS =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积rhS π2=圆柱侧()l r r S +=π2圆柱表 rlSπ=圆锥侧面积()l r r S +=π圆锥表l R r S π)(+=圆台侧面积()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式V Sh=柱 13V Sh =锥'1()3V S S h =台2V Sh r h π==圆柱 h r V 231π=圆锥'2211()()33V S S h r rR R hπ=+=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 12 三个公理:(1符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3公理1 异面直线: 不同在任何一个平面内,没有公共点。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥bLA ²α C ²B²A ² α =>a ∥c强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中数学必修2第二章知识点总结

高中数学必修2第二章知识点总结

高中数学必修2知识点总结立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)chS =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积rhS π2=圆柱侧 ()l r r S +=π2圆柱表 rl S π=圆锥侧面积 ()l r r S +=π圆锥表lR r S π)(+=圆台侧面积()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式V Sh=柱 13V Sh =锥 ''1()3V S S S S h =++台2V Sh r h π==圆柱 h r V 231π=圆锥 ''2211()()33V S S S S h r rR R hπ=++=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 1 平面含义:平面是无限延展的 2 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面。

LA·α C ·B· A· α使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

公理3作用:判定两个平面是否相交的依据. 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

高中数学必修2立体几何专题二面角典型例题解法总结

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

人教版高中数学必修2立体几何题型归类总结资料讲解

人教版高中数学必修2立体几何题型归类总结资料讲解

仅供学习与交流,如有侵权请联系网站删除 谢谢7
精品资料
图 14 15.一个棱锥的三视图如图图 9-3-7,则该棱锥的全面积(单位: cm2 )_____________.
正视图
左视图
俯视图 图 15
16.图 16 是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________.
D'
C'
A'
C'
A'
B'
O
O
D
C
A
B
A
c
注:球的有关问题转化为圆的问题解决.
球面积、体积公式:
S球
4
R2 ,V球
4 3
R3 (其中
R
为球的半径)
平行垂直基础知识网络★★★
平行与垂直关系可互相转化
平行关系 平面几何知
1. a ,b a // b 2. a ,a // b b
3. a , a //
仅供学习与交流,如有侵权请联系网站删除 谢谢3
精品资料
另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二 证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;
2 求直线与平面所成的角 0,90 :关键找“两足”:垂足与斜足
正视图
俯视图
图 10
11. 如图 11 所示,一个空间几何体的主视图和左视图都是边长为 1 的正方形,俯视图是一
个直径为 1 的圆,那么这个几何体的全面积为_____________.

图 11
图 12
图 13

二面角求解方法

二面角求解方法

教师: 学生: 年级: 科目: 课次: 时间: 年 月 日 内容: 二面角求解方法总结二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。

下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。

2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。

斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。

3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。

4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。

尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。

分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角PCBAE在PAE ∆中AE=PE=3,PA=6∴PEA ∠=900∴二面角P-BC-A 的平面角为900。

例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。

[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。

解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=argtan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PEPC AEF MEPCBAF图1由三垂线定理知AM ⊥PC∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ PCBAEEPCBA D图3图4[点评]本题给出了求平面角的几种方法,应很好掌握。

高中数学立体几何——二面角求法

高中数学立体几何——二面角求法

二面角求法1 .定义法即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.例1 . 正方体ABCD-A 1B 1C 1D 1中,求 二面角A-BD-C 1的正切值为 .解析:易知∠COC 1是二面角C-BD-C 1的平面角,且tan ∠COC 1=2。

例2.在锥体P-ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60︒,PA PD ==E,F 分别是BC,PC 的中点.求:二面角P-AD-B 的余弦值.解:由(1)知PGB ∠为二面角P AD B --的平面角,在Rt PGA ∆中,2217()24PG =-=;在Rt BGA ∆中,222131()24BG =-=;在PGB ∆中,222cos 2PG BG PB PGB PG BG +-∠==⋅.2 三垂线法此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α 内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB ⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法.例3.如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2, 求:二面角A 1-AB -B 1的正弦值.分析与略解:作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B. 过E 作EF ⊥AB 交AB 于F ,连接A 1F ,则得A 1F ⊥AB ,∴∠A 1FE 就是所求二面角的平面角.依次可求得D B 1图1AO A 1CBD 1C 1O 1A 图3 αβPBl图4 B 1A αβA 1Bl EF GPASBSCSDSFEAB 1=B 1B=2,A 1B=3,A 1E=22,A 1F=23,则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1F =63 .例4.如图所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD,点E 在线段PC 上,PC ⊥平面BDE.若PA=1,AD=2,求二面角B-PC-A 的正切值.解:由(1)得BD ⊥平面PAC, ∴BD ⊥AC.又四边形ABCD 为矩形,∴四边形ABCD 是正方形.设AC 交BD 于O 点,∵PC ⊥平面BDE,∴∠BEO 即为二面角B-PC-A 的平面角. ∵PA=1,AD=2,∴AC=2,BO=OC=,∴PC==3,又OE===在直角三角形BEO 中,tan ∠BEO===3,∴二面角B-PC-A 的正切值为3.例5. 如图, 四棱锥P-ABCD 中, 底面ABCD 为矩形, PA ⊥底面ABCD, PA=AB=, 点E 是棱PB 的中点. (1) 若AD=, 求二面角A-EC-D 的平面角的余弦值.(1) 过点D 作DF ⊥CE, 交CE 于F, 过点F 作FG ⊥CE, 交AC 于G, 则∠DFG 为所求的二面角的平面角.由(Ⅰ) 知BC ⊥平面PAB, 又AD ∥BC, 得AD ⊥平面PAB, 故AD ⊥AE, 从而DE==. 在Rt △CBE 中, CE==. 由CD=, 所以△CDE 为等边三角形,故F 为CE 的中点, 且DF=CD ·sin =.因为AE ⊥平面PBC, 故AE ⊥CE, 又FG ⊥CE, 知FG=AE, 从而FG=, 且G 点为AC 的中点.连结DG, 则在Rt △ADG 中, DG=AC==.所以cos ∠DFG==.3、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

(完整版)高中数学必修二立体几何常考证明题汇总,推荐文档

(完整版)高中数学必修二立体几何常考证明题汇总,推荐文档

新课标立体几何常考证明题汇总1、已知四边形是空间四边形,分别是边的中点ABCD ,,,E F G H ,,,AB BC CD DA 1 求证:EFGH 是平行四边形 2 若BD=,AC=2,EG=2。

求异面直线AC 、BD 所成的角和EG 、BD所成的角。

证明:在中,∵分别是的中点∴ABD ∆,E H ,AB AD 1//,2EH BD EH BD =同理,∴∴四边形是平行四边形。

1//,2FG BD FG BD =//,EH FG EH FG =EFGH (2) 90° 30 °考点:证平行(利用三角形中位线),异面直线所成的角2、如图,已知空间四边形中,,是的中点。

ABCD ,BC AC AD BD ==E AB 求证:(1)平面CDE;⊥AB (2)平面平面。

CDE ⊥ABC 证明:(1)BC AC CE ABAE BE =⎫⇒⊥⎬=⎭同理,AD BD DE ABAE BE =⎫⇒⊥⎬=⎭又∵∴平面CE DE E ⋂=AB ⊥CDE(2)由(1)有平面AB ⊥CDE 又∵平面,∴平面平面AB ⊆ABC CDE ⊥ABC考点:线面垂直,面面垂直的判定D CB3、如图,在正方体中,是的中点,1111ABCD A B C D -E 1AA 求证: 平面。

1//A C BDE 证明:连接交于,连接,AC BD O EO∵为的中点,为的中点E 1AA O AC ∴为三角形的中位线 ∴EO 1A AC 1//EO A C 又在平面内,在平面外EO BDE 1A C BDE ∴平面。

1//A C BDE 考点:线面平行的判定4、已知中,面,,求证:面.ABC ∆90ACB ∠=SA ⊥ABC AD SC ⊥AD ⊥SBC 证明:°90ACB ∠=∵BC AC ∴⊥ 又面SA ⊥ABC SA BC ∴⊥ 面BC ∴⊥SACBC AD ∴⊥又面 ,SC AD SC BC C ⊥⋂=AD ∴⊥SBC 考点:线面垂直的判定5、已知正方体,是底对角线的交点.1111ABCD A B C D -O ABCD 求证:(1) C 1O ∥面;(2)面. 11AB D 1AC ⊥11AB D 证明:(1)连结,设,连结11A C 11111A C B D O ⋂=1AO∵ 是正方体 是平行四边形1111ABCD A B C D -11A ACC ∴∴A 1C 1∥AC 且11A C AC =又分别是的中点,∴O 1C 1∥AO 且1,O O 11,A C AC 11O C AO=是平行四边形11AOC O ∴面,面 ∴C 1O ∥面111,C O AO AO ∴⊂∥11AB D 1C O ⊄11AB D 11AB D (2)面1CC ⊥ 1111A B C D 11!CC B D ∴⊥又, 1111A C B D ⊥∵1111B D AC C ∴⊥面111AC B D ⊥即同理可证, 又11A C AD ⊥1111D B AD D ⋂=面∴1A C ⊥11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定1SDCB AD 1ODB AC 1B 1A 1CMP6、正方体中,求证:(1);(2).''''ABCD A B C D -''AC B D DB ⊥平面''BD ACB ⊥平面考点:线面垂直的判定7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD ,又BD ⊄平面B 1D 1C ,B 1D 1平面B 1D 1C ,⊂∴BD ∥平面B 1D 1C .同理A 1D ∥平面B 1D 1C .而A 1D ∩BD =D ,∴平面A 1BD ∥平面B 1CD .(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.取BB 1中点G ,∴AE ∥B 1G .从而得B 1E ∥AG ,同理GF ∥AD .∴AG ∥DF .∴B 1E ∥DF .∴DF ∥平面EB 1D 1.∴平面EB 1D 1∥平面FBD .考点:线面平行的判定(利用平行四边形)8、四面体中,分别为的中点,且,ABCD ,,AC BD EF =,AD BC EF AC =,求证:平面90BDC ∠= BD ⊥ACD 证明:取的中点,连结,∵分别为的中点,∴CD G ,EG FG ,E F ,AD BC EG12//AC =,又∴,∴在中,12//FG BD =,AC BD =12FG AC =EFG ∆222212EG FG AC EF +==∴,∴,又,即,EG FG ⊥BD AC ⊥90BDC ∠=BD CD ⊥AC CD C ⋂=∴平面BD ⊥ACD 考点:线面垂直的判定,三角形中位线,构造直角三角形9、如图是所在平面外一点,平面,是的中点,是P ABC ∆,PA PB CB =⊥PAB M PC N 上的AB 点,3AN NB =(1)求证:;(2)当,时,求的长。

人教版高中数学必修2立体几何题型归类总结材料

人教版高中数学必修2立体几何题型归类总结材料

标准文档立体几何题型归类总结一、考点解析基本图形1.棱柱——有两个面互相平行,其他各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

斜棱柱① 棱柱底面是正多形正棱柱★棱垂直于底面直棱柱其他棱柱②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体E'D'F'C'侧面A'B'l底面侧棱高S极点侧面侧棱E D底面F C斜高AB D CO HA B2.棱锥棱锥——有一个面是多边形,其他各面是有一个公共极点的三角形,由这些面所围成的几何体叫做棱锥。

★正棱锥——若是有一个棱锥的底面是正多边形,并且极点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.球球面球的性质:球心轴①球心与截面圆心的连线垂直于截面;半径★② r R2 d 2(其中,球心到截面的距离为d、O球的半径为R、截面的半径为 r)★球与多面体的组合体:球与正周围体,球与长方体,R d球与正方体等的内接与外切.D'C'A'C'A'B'rAO1BO OD CA BA c注:球的有关问题转变成圆的问题解决.球面积、体积公式: S球 4 R2 ,V球4R3(其中R为球的半径)平行垂直基础知识网络★★★平行与垂直关系可互相转变平行关系垂直关系1. a,b a // b2. a,a // b b平面几何知识平面几何知识3. a,a//4.//,a a5.//,线线平行线线垂直判断判断推论判断性质性质性质面面垂直定义判断判断线面平行面面平行线面垂直面面垂直异面直线所成的角,线面角,二面角的求法★★★1.求异面直线所成的角0 ,90:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其订交;( 2)可将两条一面直线同时平移至某一特别地址。

立体几何二面角专题方法总结(定义法、向量法、三垂线法、补棱法)

立体几何二面角专题方法总结(定义法、向量法、三垂线法、补棱法)
2.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的 射影垂直,那么它也和这条斜线垂直
3.三垂线定理的逆定理:如果平面内一条直线和穿过这个平面的一条 斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
如图 1,在二面角 —l 一 中,过平面 内一点 A 作 AO⊥平面 ,垂足为 O,过点 O 作 OB⊥l 于 B(过 A 点作 AB⊥于 B),连结 AB(或 OB),由三垂线定理(或逆定理)知 AB⊥ l(或 OB⊥l),则∠ABO 为二面角 —l— 的平面角.
4 . 三垂线法三部曲(两垂一连) ( 1 )作面的垂线(任一个半平面的垂线) ( 2 )作棱的垂线
( 3 )连线 例 1 已知斜三棱柱 ABC—A1B1C1 中,∠BCA=90°,AC=BC,A1 在底面 ABC 的射影恰为 AC 的中点 M,又知 AA1 与底面 ABC 所成的角为 60°. (1)求证:BC⊥平面 AA1CC1; (2)求二面角 B 一 AA1—C 的正切值.
3
五、 射影法
若多边形面积为 S, 它在一个平面上的射影的面积为 S0, 则多边形所在平面与这个平面所 成的二面角 θ, 满足 S0=Scosθ, 利用这个公式求二面角的方法称“射影法”, 射影法对于 解决棱不太明显的二面角问题有独特的作用.
例 1 过正方形 ABCD 的顶点 A 作线段 PA⊥平面 ABCD, 若 AB=PA, 则平
→→

b=
a b
.利用这一结论,我们可以较方便地处理立体几何中二面角的问题.


| a ||b|
例 1 在四棱锥 V-ABCD 中,底面 ABCD 是正方形,侧面 VAD 是正三 角形,平面 VAD⊥底面 ABCD.求面 VAD 与面 VDB 所成的二面角的余 弦值.

高中数学必修二立体几何知识点总结(供参考)

高中数学必修二立体几何知识点总结(供参考)

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈α B ∈α(2符号表示为:A 、B 、C 三点不共线=> 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

公理(3公理1 异面直线: 不同在任何一个平面内,没有公共点。

2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

3 4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点L A · α C · B· A · α =>a ∥c2π(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

重点高中数学必修2立体几何专题二面角典型例题解法总结

重点高中数学必修2立体几何专题二面角典型例题解法总结

重点高中数学必修2立体几何专题二面角典型例题解法总结————————————————————————————————作者:————————————————————————————————日期:二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

高中立体几何中二面角经典求法

高中立体几何中二面角经典求法

高中立体几何中二面角求法摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。

(一)、二面角定义的回顾:从一条直线出发的两个半平面所组成的图形就叫做二面角。

二面角的大小是用二面角的平面角来衡量的。

而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。

(二)1 23 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。

例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。

∵PA ⊥α, а⊂α ∴PA ⊥а同理PB ⊥а ∴а⊥平面PAB又∵OA ⊂平面PAB ∴а⊥OA 同理а⊥OB.∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60° 2、 三垂线定理(逆定理)法由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。

例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DEC 1D 1与面CDE 所成二面角的正切值.解:在长方体ABCD —A 1B 1C 1D 1中由三垂线定理可得: ∴ CD =2 CE=1, DE=53、找(作)公垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。

高中数学二面角

高中数学二面角

高中数学二面角
摘要:
一、高中数学二面角概念介绍
1.二面角的定义
2.二面角与平面角的关系
二、二面角的性质和定理
1.二面角的和与差
2.二面角的垂直平分线
3.二面角的平面角
三、二面角的应用
1.在立体几何中的运用
2.在解析几何中的运用
四、高中数学二面角的学习方法
1.理解概念,掌握性质
2.练习典型例题,提高解题能力
3.注重知识运用,联系实际问题
正文:
高中数学中的二面角是一个重要的知识点,它涉及到立体几何和解析几何的相关内容。

首先,我们要了解二面角的概念,二面角是由两个平面角共享一个公共边所组成的角,它的大小介于这两个平面角之间。

在了解概念之后,我们来学习二面角的性质和定理。

首先是二面角的和与
差,根据二面角的定义,我们可以得知两个二面角之和等于这两个二面角的平面角之和,而两个二面角之差等于这两个二面角的平面角之差。

其次,二面角存在垂直平分线,它将二面角分成两个相等的平面角。

最后,二面角的平面角也是一个重要的性质,它可以帮助我们将二面角的问题转化为平面角的问题来求解。

在掌握二面角的性质和定理之后,我们来学习它在立体几何和解析几何中的应用。

在立体几何中,二面角可以用来求解立体图形的表面积和体积;在解析几何中,二面角可以用来分析曲线和曲面的性质。

最后,我们来谈谈高中数学二面角的学习方法。

首先,要理解概念,掌握性质,这样才能在实际问题中灵活运用。

其次,要多练习典型例题,提高解题能力,将理论知识转化为实际解题技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为直四棱柱 ABCD-A 1 B 1 C 1 D 1 中,CC1⊥平面 ABCD,所以
E1
CC1⊥BO,所以 OB⊥平面 CC1F,过 O 在平面 CC1F 内作 A
OP⊥C1F,垂足为 P,连接 BP,则∠OPB 为二面角 B-FC 1 -C 的一个
D1 F1
C1 B1
P
D
C
E
O
F
B
平面角,
在△BCF 为正三角形中, OB 3 ,在Rt△CC1F 中,
则 GFB 即为所求二面角. ∵ SM
2 ,则 GF
2

2
又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 , ABM 600 ∴△ ABM 是等边三角形,∴
BF 3 。在△ GAB 中, AG 6 , AB 2 , GAB 900 ,∴ BG 3 4 11
2
二面角的求法
一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫
做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面 角的平面角。
本定义为解题提供了添辅助线的一种规律。如例 1 中从二面角 S—AM—B 中半平面 ABM 上的一已知 点(B)向棱 AM 作垂线,得垂足(F);在另一半平面 ASM 内过该垂足(F)作棱 AM 的垂线(如 GF), 这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助 直角三角函数、正弦定理与余弦定理解题。
例 1 如图,四棱锥 S ABCD 中,底面 ABCD 为矩形, SD 底面 ABCD , AD 2
DC SD 2 ,点 M 在侧棱 SC 上, ABM =60°
(I)证明:M 在侧棱 SC 的中点
(II)求二面角 S AM B 的大小。
证(I)略
解(II):利用二面角的定义。在等边三角形 ABM 中过点 B 作 BF AM 交 AM
例 3 如图所示,四棱锥 P-ABCD 的底面 ABCD 是边长为 1 的菱形,
∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2.
△OPF∽△CC1F,∵
OP CC1
OF C1F

OP
1
2
2
,
22 22
2
在 Rt△OPF 中, BP
OP2 OB2
13 2
14 , cos OPB OP
2
BP
2
2 14
7 7 ,所以二面角 B-FC 1 -
2
7
C 的余弦值为 .
7
练习 2 如图,在四棱锥 P ABCD 中,底面 ABCD 是矩形.已知
值。(答案:二面角的余弦值为
15

5
二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线
垂直.通常当点 P 在一个半平面上则通常用三垂线定理法求二面角的大小。
本定理亦提供了另一种添辅助线的一般规律。如(例 2)过二面角 B-FC 1 -C 中半平面 BFC 上的一已
AB 3, AD 2, PA 2, PD 2 2, PAB 60 .
(Ⅰ)证明 AD 平面 PAB ; (Ⅱ)求异面直线 PC 与 AD 所成的角的大小; (Ⅲ)求二面角 P BD A 的大小.
分析:本题是一道典型的利用三垂线定理求二面角问题,在证明 AD⊥平面 PAB 后,容易发现平面 PAB⊥ 平面 ABCD,点 P 就是二面角 P-BD-A 的半平面上的一个点,于是可过点 P 作棱 BD 的垂线,再作平面 ABCD
BC, PC 的中点. (Ⅰ)证明:AE⊥PD; (Ⅱ)若 H 为 PD 上的动点,EH 与平面 PAD 所成最大角的正切值
6
为 ,求二面角 E—AF—C 的余弦值.
2
分析:第 1 题容易发现,可通过证 AE⊥AD 后推出 AE⊥平面 APD, 使命题获证,而第 2 题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到 运用在二面角的棱 AF 上找到可计算二面角的平面角的顶点 S,和两边 SE 与 SC,进而计算二面角的余弦
AA 1 =2, E、E 1 、F 分别是棱 AD、AA 1 、AB 的中点。
D1
A1 (1) 证明:直线 EE 1 //平面 FCC 1 ;
C1 B1
(2) 求二面角 B-FC 1 -C 的余弦值。
E1
D
E
A
F
C B
证(1)略 解(2)因为 AB=4, BC=CD=2, 、F 是棱 AB 的中点,所以 A1 BF=BC=CF,△BCF 为正三角形,取 CF 的中点 O,则 OB⊥CF,又因
的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角 P BD A 的
39
大小为 arctan )
4
P
三.补棱法
本法是针对在解构成二面角的两个半平面没有明确交线的求二
面角题目时,要将两平面的图形补充完整,使之有明确的交线(称
为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没
知点 B 作另一半平面 FC1C 的垂线,得垂足 O;再过该垂足 O 作棱 FC1 的垂线,得垂足 P,连结起点与终 点得斜线段 PB,便形成了三垂线定理的基本构图(斜线 PB、垂线 BO、射影 OP)。再解直角三角形求二 面角的度数。
例 2.如图,在直四棱柱 ABCD-A 1 B 1 C 1 D 1 中,底面 ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2,
F 为 AM 的中点,过 F 点在平面 ASM 内作 GF AM ,GF 交 AS 于 G,
连结 AC,∵△ADC≌△ADS,∴AS-AC,且 M 是 SC 的中点,
∴AM⊥SC, GF⊥AM,∴GF∥AS,又∵ F 为 AM 的中点,
∴GF 是△AMS 的中位线,点 G 是 AS 的中点。
G F
2
2
cos BFG GF 2 FB 2 BG 2
1 3 11
2
2
2
6
2GF FB
2 2 3 6
3
2
G F
∴二面角 S AM B 的大小为 arccos( 6 ) 3
练习 1 如图,已知四棱锥 P-ABCD,底面 ABCD 为菱形,PA⊥平面 ABCD, ABC 60 ,E,F 分别是
相关文档
最新文档