2019北京101中学高一(上)期中数学含答案
2018-2019学年北京市101中学高一(上)期中数学试卷
2018-2019学年北京市101中学高一(上)期中数学试卷试题数:19.满分:1201.(单选题.5分)设集合M={x|x<1}.N={x|0<x≤1}.则M∪N=()A.{x|x<1}B.{x|0<x<1}C.{x|x≤1}D.{x|0<x≤1}2.(单选题.5分)下列函数中.在(-1.+∞)上为减函数的是()A.y=3xB.y=x2-2x+3C.y=xD.y=-x2-4x+33.(单选题.5分)计算log416+ 912等于()A. 73B.5C. 133D.74.(单选题.5分)函数f(x)= √1−2x +√x+3的定义域为()A.(-3.0]B.(-3.1]C.(-∞.-3)∪(-3.0]D.(-∞.-3)∪(-3.1]5.(单选题.5分)函数y= (13)−x2+4x−5的单调增区间是()A.[1.2]B.(-∞.-1)C.(-∞.2]D.[2.+∞)6.(单选题.5分)已知偶函数f(x)在区间[0.+∞)上是减函数.则满足f(2x-1)>f(14)的x的取值范围是()A.(- ∞,58)B.(58.+∞)C.(38,58)D.(-∞. 38)∪(58.+∞)7.(单选题.5分)若函数f(x)=a|x+1|(a>0.a≠1)的值域为[1.+∞).则f(-4)与f(0)的关系是()A.f(-4)>f(0)B.f(-4)=f(0)C.f(-4)<f(0)D.不能确定8.(单选题.5分)对于实数a和b定义运算“*”:a•b= {a2−ab,a≤bb2−ab,a>b.设f(x)=(2x-1)•(x-2).如果关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1.x2.x3.则m的取值范围是()A.(- ∞,94]B.[0. 94]C.(0. 94)D.∅9.(填空题.5分)已知全集U=R.集合A={x|x2-4x+3>0}.则∁U A=___ .10.(填空题.5分)若0<a<1.b<-1.则函数f(x)=a x+b的图象不经过第___ 象限.11.(填空题.5分)已知log25=a.log56=b.则用a.b表示lg6=___ .12.(填空题.5分)函数y= 3x+4x+2(x≤0)的值域是___ .13.(填空题.5分)已知a>0且a≠1.函数f(x)= {(a−2)x+3a−8,x≤0a x,x>0满足对任意不相等的实数x1.x2.都有(x1-x2)[f(x1)-f(x2)]>0.成立.则实数a的取值范围___ .14.(填空题.5分)设函数f(x)=a x+b x-c x.其中c>a>0.c>b>0.若a.b.c是△ABC的三条边长.则下列结论正确的是___ (写出所有正确结论的序号)① 对任意的x∈(-∞.1).都有f(x)>0;② 存在x∈R.使a x.b x.c x不能构成一个三角形的三条边长;③ 若△ABC是顶角为120°的等腰三角形.则存在x∈(1.2).使f(x)=0.15.(问答题.8分)已知函数f(x)=a x-1(x≥0).其中a>0.a≠1..2).求a的值;(1)若f(x)的图象经过点(32(2)求函数y=f(x)(x≥0)的值域.16.(问答题.10分)设集合A={x|x2-3x+2=0}.B={x|x2+(a-1)x+a2-5=0}.(1)若A∩B={2}.求实数a的值;(2)若A∪B=A.求实数a的取值范围.是定义在R上的奇函数.且f(1)=1.17.(问答题.10分)函数f(x)= ax+b4x2+1(1)求a.b的值;.+∞)的单调性.(2)判断并用定义证明f(x)在(1218.(问答题.12分)已知二次函数f(x)满足f(0)=2.f(x+1)-f(x)=4x-4.(1)求函数f(x)的解析式;(2)若关于x的不等式f(x)-t<0在[-1.2]上恒成立.求实数t的取值范围;(3)若函数g(x)=f(x)-mx在区间(-1.2)内至少有一个零点.求实数m的取值范围19.(问答题.10分)设a为实数.函数f(x)= √1−x2 +a √1+x +a √1−x.(1)设t= √1+x+√1−x .求t的取值范围;(2)把f(x)表示为t的函数h(t);(3)设f (x)的最大值为M(a).最小值为m(a).记g(a)=M(a)-m(a)求g(a)的表达式.2018-2019学年北京市101中学高一(上)期中数学试卷参考答案与试题解析试题数:19.满分:1201.(单选题.5分)设集合M={x|x<1}.N={x|0<x≤1}.则M∪N=()A.{x|x<1}B.{x|0<x<1}C.{x|x≤1}D.{x|0<x≤1}【正确答案】:C【解析】:进行并集的运算即可.【解答】:解:∵M={x|x<1}.N={x|0<x≤1};∴M∪N={x|x≤1}.故选:C.【点评】:考查描述法表示集合的定义.以及并集的运算.2.(单选题.5分)下列函数中.在(-1.+∞)上为减函数的是()A.y=3xB.y=x2-2x+3C.y=xD.y=-x2-4x+3【正确答案】:D【解析】:根据题意.依次分析选项中函数的单调性.综合即可得答案.【解答】:解:根据题意.依次分析选项:对于A.y=3x.为指数函数.在R上为增函数.不符合题意;对于B.y=x2-2x+3=(x-1)2+2.在(1.+∞)上为增函数.不符合题意;对于C.y=x.为正比例函数.在R上为增函数.不符合题意;对于D.y=-x2-4x+3=-(x+2)2+7.在(-2.+∞)上为减函数.符合题意;故选:D.【点评】:本题考查函数单调性的判断.关键是掌握常见函数的单调性.属于基础题.3.(单选题.5分)计算log416+ 912等于()A. 73B.5C. 133D.7【正确答案】:B【解析】:利用指数与对数运算性质即可得出.【解答】:解:原式=2+3=5.故选:B.【点评】:本题考查了指数与对数运算性质.考查了推理能力与计算能力.属于基础题.4.(单选题.5分)函数f(x)= √1−2x +√x+3的定义域为()A.(-3.0]B.(-3.1]C.(-∞.-3)∪(-3.0]D.(-∞.-3)∪(-3.1]【正确答案】:A【解析】:从根式函数入手.根据负数不能开偶次方根及分母不为0求解结果.然后取交集.【解答】:解:根据题意:{1−2x≥0 x+3>0.解得:-3<x≤0∴定义域为(-3.0]故选:A.【点评】:本题主要考查函数求定义域.负数不能开偶次方根.分式函数即分母不能为零.及指数不等式的解法.5.(单选题.5分)函数y= (13)−x2+4x−5的单调增区间是()A.[1.2]B.(-∞.-1)C.(-∞.2]D.[2.+∞)【正确答案】:D【解析】:求出内层函数二次函数的减区间得答案.【解答】:解:令t=-x2+4x-5.其对称轴方程为x=2. 内层函数二次函数在[2.+∞)上为减函数.而外层函数y= (13)t为减函数.∴函数y= (13)−x2+4x−5的单调增区间是[2.+∞).故选:D.【点评】:本题考查指数型复合函数的单调性.复合函数的单调性满足同增异减.是基础题.6.(单选题.5分)已知偶函数f(x)在区间[0.+∞)上是减函数.则满足f(2x-1)>f(14)的x的取值范围是()A.(- ∞,58)B.(58.+∞)C.(38,58)D.(-∞. 38)∪(58.+∞)【正确答案】:C【解析】:根据题意.由函数的奇偶性与单调性分析可得f(2x-1)>f(14)⇒f(|2x-1|)>f(14)⇒|2x-1|<14.解可得x的取值范围.即可得答案.【解答】:解:根据题意.偶函数f(x)在区间[0.+∞)上是减函数.f(2x-1)>f(14)⇒f(|2x-1|)>f(14)⇒|2x-1|<14.解可得:38<x<58.即x的取值范围为(38 . 58);故选:C.【点评】:本题考查函数的奇偶性与单调性的综合应用.涉及不等式的解法.属于基础题.7.(单选题.5分)若函数f(x)=a|x+1|(a>0.a≠1)的值域为[1.+∞).则f(-4)与f(0)的关系是()A.f(-4)>f(0)B.f(-4)=f(0)C.f(-4)<f(0)D.不能确定【正确答案】:A【解析】:可知|x+1|≥0.根据f(x)的值域为[1.+∞)即可得出a>1.而可求出f(-4)=a3.f (0)=a.显然a3>a.从而得出f(-4)>f(0).【解答】:解:∵|x+1|≥0.且f(x)的值域为[1.+∞);∴a>1;∴g(x)=a x在R上单调递增;又f(-4)=a3.f(0)=a;∴f(-4)>f(0).故选:A.【点评】:考查指数函数的单调性.根据单调性定义比较大小的方法.8.(单选题.5分)对于实数a和b定义运算“*”:a•b= {a2−ab,a≤bb2−ab,a>b.设f(x)=(2x-1)•(x-2).如果关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1.x2.x3.则m的取值范围是()A.(- ∞,94]B.[0. 94]C.(0. 94)D.∅【正确答案】:C【解析】:数形结合法:画出函数f(x)的图象.结合图象知y=f(x)与y=m恰有3个交点时.0<m<94.【解答】:解:根据定义得:f (x )= {2x 2+x −1x ≤−1−x 2+x +2x >−1.其图象如下:因为f (x )=m 恰有三个互不相等实根.所以0<m < 94 .故选:C .【点评】:本题考查了函数与方程的综合运用.属中档题.9.(填空题.5分)已知全集U=R.集合A={x|x 2-4x+3>0}.则∁U A=___ .【正确答案】:[1]{x|1≤x≤3}【解析】:可求出集合A.然后进行补集的运算即可.【解答】:解:A={x|x <1.或x >3};∴∁U A={x|1≤x≤3}.故答案为:{x|1≤x≤3}.【点评】:考查描述法表示集合的概念.以及补集的运算.10.(填空题.5分)若0<a <1.b <-1.则函数f (x )=a x +b 的图象不经过第___ 象限.【正确答案】:[1]一【解析】:函数f (x )=a x (0<a <1)是指数函数.在R 上单调递减.过定点(0.1).过一、二象限.结合b <-1.可知函数f (x )=a x +b 的图象由函数f (x )=a x 的图象向下平移|b|个单位得到.与y 轴相交于原点以下.可知图象不过第一象限.【解答】:解:函数f (x )=a x (0<a <1)的是减函数.图象过定点(0.1).在x 轴上方.过一、二象限.∵b <-1.故函数f (x )=a x +b 的图象由函数f (x )=a x 的图象向下平移|b|个单位得到. ∵b <-1.∴|b|>1.∴函数f (x )=a x +b 的图象与y 轴交于负半轴.如图.函数f (x )=a x +b 的图象过二、三、四象限.故答案为一.【点评】:本题考查指数函数的图象和性质.利用图象的平移得到新的图象.其单调性、形状不发生变化.结合图形.一目了然.11.(填空题.5分)已知log 25=a.log 56=b.则用a.b 表示lg6=___ .【正确答案】:[1] ab 1+a【解析】:log 25=a= lg5lg2 = lg51−lg5 .解得lg5.log 56=b= lg6lg5 .即可得出lg6=blg5.【解答】:解:∵log 25=a= lg5lg2 = lg51−lg5 .解得lg5= a 1+a .log 56=b= lg6lg5 .∴lg6=blg5= ab 1+a .故答案为: ab 1+a .【点评】:本题考查了指数与对数运算性质.考查了推理能力与计算能力.属于基础题.12.(填空题.5分)函数y= 3x+4x+2 (x≤0)的值域是___ .【正确答案】:[1](-∞.2]∪(3.+∞)【解析】:分离常数得出 y =3−2x+2 .从而可判断出该函数在(-∞.-2).(-2.0]上单调递增.这样根据单调性即可求出该函数的值域.【解答】:解: y =3x+4x+2=3(x+2)−2x+2=3−2x+2 ; ∵x≤0;∴该函数在(-2.0].(-∞.-2)上单调递增;∴x∈(-2.0]时.y≤2;x∈(-∞.-2)时.y>3;∴原函数的值域为(-∞.2]∪(3.+∞).故答案为:(-∞.2]∪(3.+∞).【点评】:考查函数值域的概念及求法.分离常数法的运用.反比例函数的值域.13.(填空题.5分)已知a>0且a≠1.函数f(x)= {(a−2)x+3a−8,x≤0a x,x>0满足对任意不相等的实数x1.x2.都有(x1-x2)[f(x1)-f(x2)]>0.成立.则实数a的取值范围___ .【正确答案】:[1](2.3]【解析】:由题意可知f(x)在R上为增函数.对各段考虑即有a-2>0.即a>2. ① a>1. ② 注意x=0.有(a-1)×0+3a-8≤a0.即有a≤3 ③ .求出三个的交集即可.【解答】:解:由于函数f(x)= {(a−2)x+3a−8,x≤0a x,x>0.又对任意实数x1≠x2.都有(x1-x2)[f(x1)-f(x2)]>0成立.则f(x)在R上为增函数.当x≤0时.函数为增.则有a-2>0.即a>2. ①当x>0时.函数为增.则有a>1. ②由在R上为增函数.则(a-2)×0+3a-8≤a0.即有a≤3 ③ .由① ② ③ 可得a的取值范围为:2<a≤3.故答案为:(2.3].【点评】:本题考查分段函数及运用.考查函数的单调性及运用.注意各段的单调性.以及分界点的情况.属于易错题和中档题.14.(填空题.5分)设函数f(x)=a x+b x-c x.其中c>a>0.c>b>0.若a.b.c是△ABC的三条边长.则下列结论正确的是___ (写出所有正确结论的序号)① 对任意的x∈(-∞.1).都有f(x)>0;② 存在x∈R.使a x.b x.c x不能构成一个三角形的三条边长;③ 若△ABC是顶角为120°的等腰三角形.则存在x∈(1.2).使f(x)=0.【正确答案】:[1] ① ② ③【解析】:在① 中.对任意x∈(-∞.1).都有f(x)>0;在② 中.a2=4.b2=9.c2=16不能构成三角形;在③ 中.若△ABC为钝角三角形.则a2+b2-c2<0.根据根的存在性定理可知在区间(1.2)上存在零点.即∃x∈(1.2).使f(x)=0.【解答】:解:在① 中.∵a.b.c是△ABC的三条边长.∴a+b>c.∵c>a>0.c>b>0.∴0<ac <1.0<bc<1.当x∈(-∞.1)时.f(x)=a x+b x-c x=c x[(ac )x+(bc)x-1]>c x(ac + bc-1)=c x• a+b−cc>0.故① 正确;在② 中.令a=2.b=3.c=4.则a.b.c可以构成三角形.但a2=4.b2=9.c2=16不能构成三角形.故② 正确;在③ 中.∵c>a>0.c>b>0.若△ABC顶角为120°的等腰三角形.∴a2+b2-c2<0.∵f(1)=a+b-c>0.f(2)=a2+b2-c2<0.∴根据函数零点存在性定理可知在区间(1.2)上存在零点.即∃x∈(1.2).使f(x)=0.故③ 正确.故答案为:① ② ③ .【点评】:本题考查命题真假的判断.是中档题.注意运用指数函数单调性、零点存在定理的合理运用.15.(问答题.8分)已知函数f(x)=a x-1(x≥0).其中a>0.a≠1.(1)若f(x)的图象经过点(32.2).求a的值;(2)求函数y=f(x)(x≥0)的值域.【正确答案】:【解析】:(1)把点(32.2)的坐标代入函数的解析式.求得a的值.(2)根据指数函数的值域.分类讨论.求得f(x)的值域.【解答】:解:(1)∵函数f(x)=a x-1(x≥0)的图象经过点(32.2).∴ a12 = √a =2.∴a=4.(2)对于函数y=f(x)=a x-1.当a>1是时.单调递增.∵x≥0.x-1≥-1.∴f(x)≥a-1= 1a .故函数的值域为[ 1a.+∞).对于函数y=f(x)=a x-1.当0<a<1是时.单调递减.∵x≥0.x-1≥-1.∴f(x)≤a-1= 1a .又f(x)>0.故函数的值域为(0. 1a).【点评】:本题主要考查指数函数的单调性和特殊点.指数函数的值域.属于中档题.16.(问答题.10分)设集合A={x|x2-3x+2=0}.B={x|x2+(a-1)x+a2-5=0}.(1)若A∩B={2}.求实数a的值;(2)若A∪B=A.求实数a的取值范围.【正确答案】:【解析】:(1)根据A∩B={2}.可知B中由元素2.带入求解a即可;(2)根据A∪B=A.B⊆A.建立关系即可求解实数a的取值范围.【解答】:解:(1)集合A={x|x2-3x+2=0}={x|x=1或x=2}={1.2}.若A∩B={2}.则x=2是方程x2+(a-1)x+a2-5=0的实数根.可得:a2+2a-3=0.解得a=-3或a=1;(2)∵A∪B=A.∴B⊆A.当B=∅时.方程x2+(a-1)x+a2-5=0无实数根.即(a-1)2-4(a2-5)<0解得:a<-3或a>73;当B≠∅时.方程x2+(a-1)x+a2-5=0有一个实数根.则△=(a-1)2-4(a2-5)=0解得:a=-3或a= 73;若a=-3.那么方程x2-4x+4=0.可得x=2若a= 73 .那么方程x2+ 43x+ 49=0.可得x= −23若只有两个实数根.x=1、x=2 △>0.则-3<a<73;由韦达定理:1-a=3且a2-5=2 此时无解综上可得实数a 的取值范围是{a|a≤-3或a > 73 }【点评】:此题考查了并.交集及其运算.熟练掌握并交集的定义是解本题的关键.讨论思想.17.(问答题.10分)函数f (x )=ax+b 4x 2+1 是定义在R 上的奇函数.且f (1)=1. (1)求a.b 的值;(2)判断并用定义证明f (x )在( 12 .+∞)的单调性.【正确答案】:【解析】:(1)根据题意.由函数的奇偶性分析可得f (-1)=-1.则可得 {a+b 5=1−a+b 5=−5 .解可得a 、b 的值;(2)由(1)的结论.f (x )= 5x 4x 2+1 .利用作差法分析可得答案.【解答】:解:(1)根据题意.f (x )= ax+b 4x 2+1 是定义在R 上的奇函数.且f (1)=1.则f (-1)=-f (1)=-1.则有 {a+b 5=1−a+b 5=−5 .解可得a=5.b=0;(2)由(1)的结论.f (x )= 5x 4x 2+1 .设 12 <x 1<x 2.f (x 1)-f (x 2)= 5x 14x12+1 - 5x 24x 22+1 = 5(1−4x 1x 2)(x 1−x 2)(4x 12+1)(4x 22+1) . 又由 12 <x 1<x 2.则(1-4x 1x 2)<0.(x 1-x 2)<0.则f (x 1)-f (x 2)>0.则函数f (x )在( 12.+∞)上单调递减.【点评】:本题考查函数的奇偶性与单调性的性质以及应用.关键是求出a 、b 的值.属于基础题.18.(问答题.12分)已知二次函数f (x )满足f (0)=2.f (x+1)-f (x )=4x-4.(1)求函数f (x )的解析式;(2)若关于x 的不等式f (x )-t <0在[-1.2]上恒成立.求实数t 的取值范围;(3)若函数g (x )=f (x )-mx 在区间(-1.2)内至少有一个零点.求实数m 的取值范围【正确答案】:【解析】:(1)用待定系数法设出二次函数表达式.再代入已知函数方程可解得a.b ;(2)分离参数后求最值;(3)先求无零点时.m 的范围.再求补集.【解答】:解:(1)设二次函数f (x )=ax 2+bx+2.(a≠0)∴a (x+1)2+b (x+1)+2-ax 2-bx-2=4x-4∴2ax+a+b=4x -4.∴a=2.b=-6∴f (x )=2x 2-6x+2;(2)依题意t >f (x )=2x 2-6x+2在x∈[-1.2]上恒成立.而2x 2-6x+2的对称轴为x= 32∈[-1.2].所以x=-1时.取最大值10.t >10;(3)∵g (x )=f (x )-mx=2x 2-6x+2-mx=2x 2-(6+m )x+2在区间(-1.2)内至少有一个零点.当g (x )在(-1.2)内无零点时.△=(6+m )2-16<0或 {−−6−m 2×2≤−1g (−1)≥0 或. {−−6−m 2×2≥2g (2)≥0解得:-10≤m <-2.因此g (x )在(-1.2)内至少有一个零点时.m <-10.或m≥-2.【点评】:本题考查了不等式恒成立.属难题.19.(问答题.10分)设a 为实数.函数f (x )= √1−x 2 +a √1+x +a √1−x .(1)设t= √1+x +√1−x .求t 的取值范围;(2)把f (x )表示为t 的函数h (t );(3)设f (x )的最大值为M (a ).最小值为m (a ).记g (a )=M (a )-m (a )求g (a )的表达式.【正确答案】:【解析】:(1)将t= √1+x+√1−x两边平方.结合二次函数的性质可得t的范围;(2)由(1)可得√1−x2 = t2−22.可得h(t)的解析式;(3)求得h(t)= 12(t+a)2-1- 12a2.对称轴为t=-a.讨论对称轴与区间[ √2 .2]的关系.结合单调性可得h(t)的最值.即可得到所求g(a)的解析式.【解答】:解:(1)t= √1+x+√1−x .可得t2=2+2 √1−x2 . 由0≤1-x2≤1.可得2≤t2≤4.又t≥0可得√2≤t≤2.即t的取值范围是[ √2 .2];(2)由(1)可得√1−x2 = t2−22.即有h(t)=at+ t 2−22. √2≤t≤2;(3)由h(t)= 12(t+a)2-1- 12a2.对称轴为t=-a.当-a≥2即a≤-2时.h(t)在[ √2 .2]递减.可得最大值M(a)=h(√2)= √2 a;最小值m(a)=h(2)=1+2a.则g(a)=(√2 -2)a-1;当-a≤ √2即a≥- √2时.h(t)在[ √2 .2]递增.可得最大值M(a)=h(2)=1+2a;最小值m(a)=h(√2)= √2 a.则g(a)=(2- √2)a+1;当√2<-a<2即-2<a<- √2时.h(t)的最小值为m(a)=h(-a)=-1- 12a2.若-1- √22≤a<- √2 .则h(2)≥h(√2).可得h(t)的最大值为M(a)=h(2)=1+2a.可得g(a)=2+2a+ 12a2;若-2<a<-1- √22.则h(2)<h(√2).可得h(t)的最大值为M(a)=h(√2)= √2 a.可得g(a)= √2 a+1+ 12a2;综上可得g (a )= { (√2−2)a −1,a ≤−22+2a +12a 2,−1−√22≤a <−√2√2a +1+12a 2,−2<a <−1−√22(2−√2)a +1,a ≥−√2.【点评】:本题考查函数的最值求法.注意运用换元法和二次函数在闭区间上的最值求法.考查分类讨论思想方法和化简整理运算能力.属于中档题.。
北京101中2019-2020学年高一上学期期中考试数学试卷Word版含解析
北京101中2019-2020学年高一上学期期中考试数学试卷一、选择题:本大题共8小题,共40分.1.下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是()A.{x|x=0} B.{a|a2=0} C.{a=0} D.{0}2.函数y=f(x)的定义域为[1,5],则函数y=f(2x﹣1)的定义域是()A.[1,5] B.[2,10] C.[1,9] D.[1,3]3.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=xB.f(x)=x,g(x)=C.f(x)=,g(x)=D.(x)=|x+1|,g(x)=4.如图是函数y=f(x)的图象,f(f(2))的值为()A.3 B.4 C.5 D.65.已知函数f(x)=3x+x﹣5,用二分法求方程3x+x﹣5=0在x∈(0,2)内近似解的过程中,取区间中点=1,那么下一个有根区间为()xA.(0,1)B.(1,2)C.(1,2)或(0,1)都可以D.不能确定6.函数f(x)=4x2﹣ax﹣8在区间(4,+∞)上是增函数,则实数a的取值范围是()A.a≤32 B.a≥32 C.a≥16 D.a≤167.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.28.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g (x)解集区间长度,则当0≤x≤3时有()A.d=1 B.d=2 C.d=3 D.d=4二、填空题:本大题共6小题,共30分.9.若f (2x )=3x 2+1,则函数f (4)= .10.求值:2﹣()+lg +(﹣1)lg1= .11.设函数y=f (x+2)是奇函数,且x ∈(0,2)时,f (x )=2x ,则f (3.5)= .12.函数f (x )=3x 的值域是 .13.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x ﹣1)<f (1)的x 的取值范围是 .14.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x ) 为单函数.例如,函数f (x )=2x+1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);③若f :A →B 为单函数,则对于任意b ∈B ,A 中至多有一个元素与之对应;④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中正确的是 .(写出所有正确的编号)三、解答题:本大题共4小题,共50分.15.已知集合A={x|3≤x <7},B={2<x <10},C={x|5﹣a <x <a}.(1)求A ∪B ,(∁R A )∩B ;(2)若C ⊆(A ∪B ),求a 的取值范围.16.已知函数f (x )是定义在R 上的偶函数,已知x ≥0时,f (x )=x 2﹣2x .(1)画出偶函数f (x )的图象的草图,并求函数f (x )的单调递增区间;(2)当直线y=k (k ∈R )与函数y=f (x )恰有4个交点时,求k 的取值范围.17.已知g (x )=﹣x 2﹣3,f (x )=ax 2+bx+c (a ≠0),函数h (x )=g (x )+f (x )是奇函数.(1)求a ,c 的值;(2)当x ∈[﹣1,2]时,f (x )的最小值是1,求f (x )的解析式.18.已知定义在R 上的函数是奇函数(1)求a ,b 的值;(2)判断f (x )的单调性,并用单调性定义证明;(3)若对任意的t ∈R ,不等式f (t ﹣2t 2)+f (﹣k )>0恒成立,求实数k 的取值范围.北京101中2019-2020学年高一上学期期中考试数学试卷参考答案一、选择题:本大题共8小题,共40分.1.下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是()A.{x|x=0} B.{a|a2=0} C.{a=0} D.{0}【考点】集合的表示法.【分析】对于A,B,D的元素都是实数,而C的元素是等式a=0,不是实数,所以选C.【解答】解:通过观察得到:A,B,D中的集合元素都是实数,而C中集合的元素不是实数,是等式a=0;∴C中的集合不同于另外3个集合.故选:C.2.函数y=f(x)的定义域为[1,5],则函数y=f(2x﹣1)的定义域是()A.[1,5] B.[2,10] C.[1,9] D.[1,3]【考点】函数的定义域及其求法.【分析】根据y=f(x)的定义域,得出y=f(2x﹣1)中2x﹣1的取值范围,从而求出x的取值范围即可.【解答】解:∵y=f(x)的定义域为[1,5],∴1≤x≤5,∴1≤2x﹣1≤5,即1≤x≤3,∴y=f(2x﹣1)的定义域是[1,3].故选:D.3.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=xB.f(x)=x,g(x)=C.f(x)=,g(x)=D.(x)=|x+1|,g(x)=【考点】判断两个函数是否为同一函数.【分析】观察A选项两者的定义域相同,但是对应法则不同,B选项两个函数的定义域不同,C选项两个函数的定义域不同,这样只有D选项是同一函数.【解答】解:A选项两者的定义域相同,但是f(x)=|x|,对应法则不同,B选项两个函数的定义域不同,f(x)的定义域是R,g(x)的定义域是{x|x≠0}C选项两个函数的定义域不同,f(x)的定义域是(﹣∞,﹣2)∪(2,+∞)g(x)的定义域是(2,+∞)D选项根据绝对值的意义,把函数f(x)整理成g(x),两个函数的三个要素都相同,故选D.4.如图是函数y=f(x)的图象,f(f(2))的值为()A.3 B.4 C.5 D.6【考点】函数的值.【分析】当0≤x≤3时,根据 y=f(x)=2x求得f(2)=4.当3<x≤9时,根据f(x)=9﹣x,求得 f( f (2))=f(4)的值.【解答】解:由图象可得,当0≤x≤3时,y=f(x)=2x,∴f(2)=4.当3<x≤9时,由 y﹣0=(x﹣9),可得 y=f(x)=9﹣x,故 f( f(2))=f(4)=9﹣4=5,故选C.5.已知函数f(x)=3x+x﹣5,用二分法求方程3x+x﹣5=0在x∈(0,2)内近似解的过程中,取区间中点=1,那么下一个有根区间为()xA.(0,1)B.(1,2)C.(1,2)或(0,1)都可以D.不能确定【考点】二分法的定义.【分析】方程的实根就是对应函数f(x)的零点,由 f(2)>0,f(1)<0 知,f(x)零点所在的区间为(1,2).【解答】解:∵f(x)=3x+x﹣5,∴f(1)=3+1﹣5<0,f(2)=9+2﹣5>0,∴f(x)零点所在的区间为(1,2)∴方程3x+x﹣5=0有根的区间是(1,2),故选:B.6.函数f(x)=4x2﹣ax﹣8在区间(4,+∞)上是增函数,则实数a的取值范围是()A.a≤32 B.a≥32 C.a≥16 D.a≤16【考点】二次函数的性质.【分析】先求出函数的对称轴,结合二次函数的性质得到不等式,解出即可.【解答】解:∵f(x)=4x2﹣ax﹣8在区间(4,+∞)上为增函数,∴对称轴x=≤4,解得:a≤32,故选:A.7.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【考点】函数的值.【分析】利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.8.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g (x)解集区间长度,则当0≤x≤3时有()A.d=1 B.d=2 C.d=3 D.d=4【考点】其他不等式的解法.【分析】先化简f(x)=[x]•{x}=[x]•(x﹣[x])=[x]x﹣[x]2,再化简f(x)<(x),再分类讨论:①当x ∈[0,1)时,②当x∈[1,2)时③当x∈[2,3]时,求出f(x)<g(x)在0≤x≤3时的解集的长度.【解答】解:f(x)=[x]•{x}=[x]•(x﹣[x])=[x]x﹣[x]2,g(x)=x﹣1f(x)<g(x)⇒[x]x﹣[x]2<x﹣1即([x]﹣1)x<[x]2﹣1当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;当x∈[1,2)时,[x]=1,上式可化为0>0,∴x∈∅;当x∈[2,3]时,[x]﹣1>0,上式可化为x<[x]+1,∴x∈[2,3];∴f(x)<g(x)在0≤x≤3时的解集为[2,3],故d=1,故选:A.二、填空题:本大题共6小题,共30分.9.若f(2x)=3x2+1,则函数f(4)= 13 .【考点】函数的值.【分析】由2x=4得x=2,代入解析式即可得到结论.【解答】解:∵f(2x)=3x2+1,∴由2x=4得x=2,即f(4)=f(2×2)=3×22+1=12+1=13,故答案为:13.10.求值:2﹣()+lg+(﹣1)lg1= ﹣3 .【考点】有理数指数幂的化简求值.【分析】由已知条件利用对数函数、指数函数的性质和运算法则求解.【解答】解:2﹣()+lg+(﹣1)lg1=﹣[()3]﹣2+()0=﹣﹣2+1=﹣3.故答案为:﹣3.11.设函数y=f (x+2)是奇函数,且x ∈(0,2)时,f (x )=2x ,则f (3.5)= ﹣1 .【考点】函数奇偶性的性质.【分析】由x ∈(0,2)时,f (x )=2x ,可得f (0.5)=1.由于函数y=f (x+2)是奇函数,可得f (﹣x+2)=﹣f (x+2),即可得出.【解答】解:∵x ∈(0,2)时,f (x )=2x ,∴f (0.5)=1.∵函数y=f (x+2)是奇函数,∴f (﹣x+2)=﹣f (x+2),∴f (3.5)=﹣f (﹣1.5+2)=﹣f (0.5)=﹣1.故答案为:﹣1.12.函数f (x )=3x 的值域是 [0,+∞) .【考点】函数的值域.【分析】化分数指数幂为根式,再由x 2≥0求得原函数的值域.【解答】解:f (x )=3x=, ∵x 2≥0,∴,则函数f (x )=3x的值域是[0,+∞). 故答案为:[0,+∞).13.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x ﹣1)<f (1)的x 的取值范围是 (0,1) .【考点】奇偶性与单调性的综合.【分析】由f (x )为偶函数且在[0,+∞)上单调递增,便可由f (2x ﹣1)<f (1)得出|2x ﹣1|<1,解该绝对值不等式便可得出x 的取值范围.【解答】解:f (x )为偶函数;∴由f (2x ﹣1)<f (1)得,f (|2x ﹣1|)<f (1);又f (x )在[0,+∞)上单调递增;∴|2x ﹣1|<1;解得0<x <1;∴x 的取值范围是(0,1).故答案为:(0,1).14.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x ) 为单函数.例如,函数f (x )=2x+1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);③若f :A →B 为单函数,则对于任意b ∈B ,A 中至多有一个元素与之对应;④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中正确的是 ②③ .(写出所有正确的编号)【考点】命题的真假判断与应用;函数的值.【分析】在①中,举出反例得到函数f (x )=x 2(x ∈R )不是单函数;在②中,由互为逆否命题的两个命题等价判断正误;在③中,符合唯一的函数值对应唯一的自变量;在④中,在某一区间单调并不一定在定义域内单调.【解答】解:在①中,函数f (x )=x 2(x ∈R ),由f (﹣1)=f (1),但﹣1≠1,得到函数f (x )=x 2(x ∈R )不是单函数,故①错误;在②中,“x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2)”的逆否命题是“若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2”.互为逆否命题的两个命题等价.故②的逆否命题为真,故②正确;在③中,符合唯一的函数值对应唯一的自变量,∴若f :A →B 为单函数,则对于任意b ∈B ,A 中至多有一个元素与之对应,故③正确;在④中,在某一区间单调并不一定在定义域内单调,∴f (x )不一定是单函数,故④错误.故答案为:②③.三、解答题:本大题共4小题,共50分.15.已知集合A={x|3≤x <7},B={2<x <10},C={x|5﹣a <x <a}.(1)求A ∪B ,(∁R A )∩B ;(2)若C ⊆(A ∪B ),求a 的取值范围.【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【分析】(1)在数轴上表示出集合A ,B ,从而解得;(2)由题意分类讨论,从而求实数a 的取值范围.【解答】解:(1)∵集合A={x|3≤x <7},B={2<x <10}在数轴上表示可得:故A ∪B={x|2<x <10},C R A={x|x <3,或x ≥7}(C R A )∩B={2<x <3,或7≤x <10};(2)依题意可知 ①当C=∅时,有5﹣a ≥a ,得;②当C ≠∅时,有,解得;综上所述,所求实数a 的取值范围为(﹣∞,3].16.已知函数f (x )是定义在R 上的偶函数,已知x ≥0时,f (x )=x 2﹣2x .(1)画出偶函数f (x )的图象的草图,并求函数f (x )的单调递增区间;(2)当直线y=k (k ∈R )与函数y=f (x )恰有4个交点时,求k 的取值范围.【考点】二次函数的性质;函数奇偶性的性质.【分析】(1)根据已知条件画出函数f(x)的图象,根据图象即可得到f(x)的单调递增区间;(2)通过图象即可得到k的取值范围.【解答】解:(1)画出f(x)的图象如下图:由图象知,函数f(x)单调递增区间为[﹣1,0],[1,+∞);(2)由图象可知,当﹣1<k<0时,直线与函数y=f(x)的图象的交点个数为4;∴k的取值范围为(﹣1,0).17.已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f(x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2]时,f(x)的最小值是1,求f(x)的解析式.【考点】函数奇偶性的性质;函数的最值及其几何意义.【分析】(1)法一:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立得到,从而求解,法二:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由奇函数可得a﹣1=0,c﹣3=0,从而求解;(2)根据二次函数的性质,讨论对称轴所在的位置,从而确定f(x)的最小值在何时取得,从而求f(x)的解析式.【解答】解:(1)(法一):f(x)+g(x)=(a﹣1)x2+bx+c﹣3,又f(x)+g(x)为奇函数,∴h(x)=﹣h(﹣x),∴(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立,∴,解得;(法二):h(x)=f(x)+g(x)=(a﹣1)x2+bx+c﹣3,∵h(x)为奇函数,∴a﹣1=0,c﹣3=0,∴a=1,c=3.(2)f(x)=x2+bx+3,其图象对称轴为,当,即b≥2时,=f(﹣1)=4﹣b=1,∴b=3;f(x)min当,即﹣4≤b<2时,,解得或(舍);当,即b<﹣4时,=f(2)=7+2b=1,∴b=﹣3(舍),f(x)min∴f(x)=x2+3x+3或∴.18.已知定义在R上的函数是奇函数(1)求a,b的值;(2)判断f(x)的单调性,并用单调性定义证明;(3)若对任意的t∈R,不等式f(t﹣2t2)+f(﹣k)>0恒成立,求实数k的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)由f(x)是定义在R上的奇函数,知,故b=1,,,由此能求出a=b=1.(2),f (x )在R 上是减函数.证明:设x 1,x 2∈R 且x 1<x 2,=﹣,由此能够证明f (x )在R 上是减函数.(3)不等式f (t ﹣2t 2)+f (﹣k )>0,等价于f (t ﹣2t 2)>f (k ),由f (x )是R 上的减函数,知t ﹣2t 2<k ,由此能求出实数k 的取值范围.【解答】解:(1)∵f (x )是定义在R 上的奇函数,∴,解得b=1,∴,∴∴a •2x +1=a+2x ,即a (2x ﹣1)=2x ﹣1对一切实数x 都成立,∴a=1,故a=b=1.(2)∵a=b=1,∴,f (x )在R 上是减函数.证明:设x 1,x 2∈R 且x 1<x 2则 =﹣, ∵x 1<x 2,∴,,,∴f (x 1)﹣f (x 2)>0即f (x 1)>f (x 2),∴f (x )在R 上是减函数,(3)∵不等式f (t ﹣2t 2)+f (﹣k )>0,∴f (t ﹣2t 2)>﹣f (﹣k ),∴f (t ﹣2t 2)>f (k ),∵f (x )是R 上的减函数,∴t﹣2t2<k∴对t∈R恒成立,∴.。
2022-2023北京101中学高一(上)期中数学试卷【答案版】
2022-2023学年北京市101中学高一(上)期中数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.设集合A ={1,3,5,7},B ={x |(x ﹣2)(x ﹣5)≤0},则A ∩B =( ) A .{1,3}B .{3,5}C .{5,7}D .{1,7}2.若实数a 、b 满足a >b >0,下列不等式中恒成立的是( ) A .a +b >2√abB .a +b <2√abC .a2+2b >2√abD .a2+2b <2√ab3.已知关于x 的方程x 2﹣6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是( )A .1B .2C .3D .44.函数f (x )=x +2x ,x ∈[1,3]的值域为( ) A .[2√2,3]B .[3,113] C .[2√2,113] D .[3,+∞)5.已知f (x )=|x |,g (x )=x 2,设h (x )={f(x),f(x)>g(x)g(x),f(x)≤g(x),函数h (x )的图象大致是( )A .B .C .D .6.已知p :x ≥k ,q :2−x x+1<0,如果p 是q 的充分不必要条件,则k 的取值范围是( )A .[2,∞)B .(2,+∞)C .[1,+∞)D .(﹣∞,﹣1]7.已知奇函数f (x )在(0,+∞)上单调递增,且f (1)=0,则不等式f(x)−f(−x)x<0的解集为( )A .(﹣1,0)∪(0,1)B .(﹣1,0)∪(1,+∞)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣∞,﹣1)∪(0,1)8.已知函数f (x )=mx 2﹣mx ﹣1,对一切实数x ,f (x )<0恒成立,则m 的范围为( ) A .(﹣4,0)B .(﹣4,0]C .(﹣∞,﹣4)∪(0,+∞)D .(﹣∞,﹣4)∪[0,+∞)9.已知函数f(x)={−x 2−ax −7,x ≤1a x,x >1在R 上单调递增,则实数a 的取值范围( )A .[﹣4,0)B .(﹣∞,﹣2]C .[﹣4,﹣2]D .(﹣∞,0)10.设f (x )是定义在R 上的函数,若存在两个不等实数x 1,x 2∈R ,使得f(x 1+x 22)=f(x 1)+f(x 2)2,则称函数f (x )在R 上具有性质P ,那么,下列函数:①f (x )=2x ;②f (x )={1x,x ≠00,x =0;③f (x )=x 2;④f (x )=|x 2﹣1|.具有性质P 的函数的个数为( ) A .0B .1C .2D .3二、填空题共5小题,每小题5分,共25分。
【精品高一数学试卷】2019-2020高一(上)期中数学+答案
2019-2020学年北京市高一(上)期中数学试卷一、选择题(每题5分,共40分)1.(5分)已知集合A={x|x2>1},a∈A,则a的值可以为()A.﹣2B.1C.0D.﹣12.(5分)已知命题p:∃x∈Q,x2﹣3=0,则¬p为()A.∃x∈Q,x2﹣3≠0B.∃x∉Q,x2﹣3=0C.∀x∈Q,x2﹣3≠0D.∀x∉Q,x2﹣3=03.(5分)函数y=x2(﹣2≤x≤3)的值域为()A.[4,9]B.[0,9]C.[0,4]D.[0,+∞)4.(5分)已知集合A={1,2},B=[m,+∞),若A⊆B,则实数m的取值范围为()A.[2,+∞)B.[1,+∞)C.(﹣∞,2]D.(﹣∞,1] 5.(5分)已知a<b<0,则下列不等式正确的是()A.2a>a+b B.a+b>b C.a2>ab D.b2>ab6.(5分)“x>1”是“1x<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知集合A={1,2,3,4,5,6},T={x|x=ba,a,b∈A,a>b},则集合T中元素的个数为()A.9B.10C.11D.128.(5分)若函数f(x)的定义域为D,对于任意的x1,x2∈D,x1≠x2,都有|f(x1)−f(x2)x1−x2|≥1,称函数f(x)满足性质ψ,有下列四个函数①f(x)=1x,x∈(0,1);②g(x)=√x;③h(x)=x2(x≤﹣1);④k(x)=11+x2其中满足性质ψ的所有函数的序号为()A.①②③B.①③C.③④D.①②二、填空题(每题5分,共30分)9.(5分)已知a,b,c,d为互不相等的实数,若|a﹣c|=|b﹣c|=|d﹣b|=1,则|a﹣d|=.10.(5分)已知函数y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣4x+1,则f(0)+f(1)=.11.(5分)若函数f (x )为一次函数,且f (x +1)=f (x )﹣2,f (x )的零点为1,则函数f (x )的解析式为 .12.(5分)某产品的总成本C 与年产量Q 之间的关系为C =aQ 2+3000,其中a 为常数.且当年产量为200时,总成本为15000.记该产品的平均成本为f (Q )(平均成本=总成本年产量),则当Q = ,f (Q )取得最小值,这个最小值为 .13.(5分)设a ,b 为互不相等的实数,若二次函数f (x )=x 2+ax +b 满足f (a )=f (b ),则f (2)= .14.(5分)函数y =f (x )的定义域为[﹣2.1,2],其图象如图所示,且f (﹣2.1)=﹣0.96. (1)若函数y =f (x )﹣k 恰有两个不同的零点,则k = .(2)已知函数g (x )={2x +1,x ≤0x 3+2x −16,x >0,y =g [f (x )]有 个不同的零点.三、解答题(共80分) 15.解下列关于x 的不等式: (1)x 2﹣2x ﹣8≤0; (2)x 2+4x +5>0; (3)x 2≤ax .16.已知集合A ={x |﹣1≤x ≤1},B ={x |2x ≥a }, (Ⅰ)当a =0时,求A ∩B ;(Ⅱ)若A ∪B =B ,求实数a 的取值范围;(Ⅲ)记集合C =A ∩B ,若C 中恰好有两个元素为整数,求实数a 的取值范围. 17.已知函数f (x )=ax 2﹣2ax +1(a ≠0).(Ⅰ)比较f (1−√2)与f (1+√2)的大小,并说明理由; (Ⅱ)若函数f (x )的图象恒在x 轴的上方,求实数a 的取值范围;(Ⅲ)若函数f (x )在[﹣1,2]上的最大值为4,求a 的值. 18.已知集合M =(﹣1,1),对于x ,y ∈M ,记φ(x ,y )=x+y1+xy. (Ⅰ)求φ(0,12)的值;(Ⅱ)如果0<x <1,求φ(x ,1﹣x )的最小值; (Ⅲ)求证:∀x ,y ∈M ,φ(x ,y )∈M .19.已知函数f (x )满足:函数y =f(x)x 在(0,3]上单调递增. (Ⅰ)比较3f (2)与2f (3)的大小,并说明理由;(Ⅱ)写出能说明“函数y =f (x )在(0,3]单调递增”这一结论是错误的一个函数; (Ⅲ)若函数的解析式为f (x )=ax 3+(1﹣a )x 2,求a 的取值范围.20.设A (x A ,y A ),B (x B ,y B )为平面直角坐标系上的两点,其中x A ,y A ,x B ,y B 均为整数.|x B ﹣x A |+|y B ﹣y A |=3,则称点B 为点A 的“相关点”.点P 1是坐标原点O 的“相关点”,点P 2是点P 1的“相关点”,点P 3是P 2的“相关点”,…,依此类推,点P 2019是点P 2018的“相关点”.注:点A (x 1,y 1),B (x 2,y 2)间的距离|AB|=√(x 2−x 1)2+(y 2−y 1)2. (Ⅰ)直接写出点O 与点P 1间的距离所有可能值; (Ⅱ)求点O 与点P 3间的距离最大值; (Ⅲ)求点O 与点P 2019间的距离最小值.2019-2020学年北京市高一(上)期中数学试卷参考答案与试题解析一、选择题(每题5分,共40分)1.【解答】解:x 2>1,解得:x >1,或x <﹣1. 集合A ={x |x 2>1}={x |x >1,或x <﹣1},a ∈A , 则a 的值可以为﹣2. 故选:A .2.【解答】解:命题为特称命题, 则命题的否定为∀x ∈Q ,x 2﹣3≠0, 故选:C .3.【解答】解:∵﹣2≤x ≤3,∴x =0时,y =x 2取最小值0;x =3时,y =x 2取最大值9, ∴y =x 2(﹣2≤x ≤3)的值域为[0,9]. 故选:B .4.【解答】解:∵集合A ={1,2},B =[m ,+∞),A ⊆B , ∴m ≤1,∴实数m 的取值范围是(﹣∞,1]. 故选:D .5.【解答】解:由a <b <0,取a =﹣2,b =﹣1,可排除A ,B ,D . 故选:C .6.【解答】解:当“x >1”则“1x <1”成立,当x <0时,满足“1x<1”但“x >1”不成立,故“x >1”是“1x<1”的充分不必要条件,故选:A .7.【解答】解:a =1不适合题意,舍去. a =2时,b =1,可得:ba=12.a =3时,b =1,2,可得:b a=13,23.a =4时,b =1,2,3,可得:b a=14,12,34.a =5时,b =1,2,3,4,可得:b a=15,25,35,45.a =6时,b =1,2,3,4,5,可得:b a=16,13,12,23,56.可得:T ={x |x =ba ,a ,b ∈A ,a >b }={12,13,23,14,34,15,25,35,45,16,56}.∴集合T 中元素的个数为11. 故选:C .8.【解答】解:①|1x 1−1x 2x 1−x 2|=|1x 1x 2|≥1(x 1,x 2∈(0,1)),故①正确; ②|√x1−√x 2x 1−x 2|=x +x ,当x 1>4,x 2>4时,√x 1+√x 2>4,√x +√x 14,故②不正确;③|x 12−x 22x 1−x 2|=|x 1+x 2|,当x 1≤﹣1,x 2≤﹣1时,|x 1+x 2|≥2,故③正确;④|11+x 12−11+x 22x 1−x 2|=|x 1+x 2(1+x 12)(1+x 22)|≤|x 11+x 12|+|x 21+x 22|, 因为|x 1+1x 1|≥2,所以|x 11+x 12|≤12,同理|x 21+x 22|≤12,所以|x 11+x 12|+|x 21+x 22|≤1,故④不正确, 故选:B .二、填空题(每题5分,共30分)9.【解答】解:∵|a ﹣c |=|b ﹣c |且a ,b ,c ,d 为互不相等的实数, ∴a ﹣c +b ﹣c =0即a +b ﹣2c =0.①∵|b ﹣c |=|d ﹣b |且a ,b ,c ,d 为互不相等的实数, ∴b ﹣c =d ﹣b 即2b ﹣c ﹣d =0.②①②相加可得:a +3b ﹣3c ﹣d =0.即a ﹣d =3(c ﹣b ), 又因为|a ﹣c |=|b ﹣c |=|d ﹣b |=1, 则|a ﹣d |=3|b ﹣c |=3. 故答案为:3.10.【解答】解:∵f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2﹣4x +1, 则f (0)=0,f (1)=1﹣4+1=﹣2, 则f (0)+f (1)=0﹣2=﹣2,故答案为:﹣211.【解答】解:设f (x )=kx +b ,k ≠0, ∵f (x +1)=f (x )﹣2, ∴k (x +1)+b =kx +b ﹣2, 即k =﹣2,∵f (x )=﹣2x +b 的零点为1,即f (1)=b ﹣2=0, ∴b =2,f (x )=﹣2x +2 故答案为:f (x )=﹣2x +2.12.【解答】解:某产品的总成本C 与年产量Q 之间的关系为C =aQ 2+3000,其中a 为常数,且当年产量为200时,总成本为15000. 可得15000=40000a +3000,解得a =310, 所以C =310Q 2+3000, 该产品的平均成本为f (Q )=3Q10+3000Q ≥2√3Q 10×3000Q=60.当且仅当3Q 10=3000Q,即Q =100时,f (Q )取得最小值,最小值为60.故答案为:100;60.13.【解答】解:二次函数f (x )=x 2+ax +b 的对称轴x =−a2, 又f (a )=f (b ), ∴a +b =2•(a2),∴b =﹣2a∴f (2)=4+2a +b =4, 故答案为:4.14.【解答】解:(1)∵y =f (x )﹣k 恰有两个不同的零点, ∴y =f (x )和y =k 图象有两个不同的交点. y =f (x )的图象如图:∴k=4或k=0.(2)∵g(x)={2x+1,x≤0x3+2x−16,x>0,当x≤0时,2x+1=0,得x=−1 2;此时f(x)=−12,由图可知有一个解;当x>0时,g(x)=x3+2x﹣16单调递增,∵g(2)=﹣4,g(3)=17,∴g(x)在(2,3)有一个零点x0,即f(x)=x0∈(2,3)由图可知有三个解,∴共有四个解.故答案为4或0;4.三、解答题(共80分)15.【解答】解:(1)由x2﹣2x﹣8≤0,得(x﹣4)(x+2)≤0,所以﹣2≤x≤4,所以不等式的解集为{x|﹣2≤x≤4};(2)因为x2+4x+5=(x+2)2+1≥1,所以不等式x2+4x+5>0的解集为R;(3)由x2≤ax,得x2﹣ax=x(x﹣a)≤0,所以当a=0时,x=0;当a>0时,0≤x≤a;当a<0时,a≤x≤0,所以当a=0时,不等式的解集为{0};当a>0时,不等式的解集为{x|0≤x≤a};当a<0时,不等式的解集为{x|a≤x≤0}.16.【解答】解:(Ⅰ)a=0时,B={x|x≥0},且A={x|﹣1≤x≤1},∴A ∩B =[0,1]; (Ⅱ)∵A ∪B =B , ∴A ⊆B ,且B ={x|x ≥a2}, ∴a2≤−1,∴a ≤﹣2,∴实数a 的取值范围为(﹣∞,﹣2]; (Ⅲ)∵A ∩B 中恰有两个元素为整数, ∴−1<a 2≤0,解得﹣2<a ≤0, ∴实数a 的取值范围为(﹣2,0].17.【解答】解:(Ⅰ)根据题意,函数f (x )=ax 2﹣2ax +1=a (x ﹣1)2+1﹣a , 则f (1−√2)=1+a ,f (1+√2)=1+a , 故f (1−√2)=f (1+√2);(Ⅱ)若函数f (x )的图象恒在x 轴的上方,必有{a >04a 2<4a,解可得:0<a <1,即a 的取值范围为(0,1);(Ⅲ)根据题意,函数f (x )=ax 2﹣2ax +1=a (x ﹣1)2+1﹣a ,其对称轴为x =1, 分2种情况讨论:①,a >0时,f (x )在[﹣1,1]上递减,在[1,2]上递增,其最大值为f (﹣1)=1+3a , 则有1+3a =4, 解可得:a =1,②,a <0时,f (x )在[﹣1,1]上递增,在[1,2]上递减,其最大值为f (1)=1﹣a , 则1﹣a =4,解可得a =﹣3; 综合可得:a =1或﹣3.18.【解答】解:(1)φ(0,12)=0+121+0×12=12;(II )φ(x ,1−x)=x+(1−x)1+x(1−x)=1−x 2+x+1,由于x ∈(0,1)时,−x 2+x +1∈(1,54],所以φ(x ,1−x)∈[45,1),即最小值为45;(III )证明:因为x ,y ∈(﹣1,1),所以(x ﹣1)(y ﹣1)>0,xy ﹣x ﹣y +1>0,xy +1>x +y ,又1+xy >0,所以x+y1+xy<1;同理:(x +1)(y +1)>0,xy +x +y +1>0,xy +1>﹣(x +y ),又1+xy >0,所以x+y1+xy>−1,综上,x+y1+xy∈M .即有∀x ,y ∈M ,φ(x ,y )∈M . 19.【解答】解:(I )3f (2)<2f (3), ∵y =f(x)x 在(0,3]上单调递增, ∴f(2)2<f(3)3,∴3f (2)<2f (3);(II )f (x )=﹣1或﹣x 2﹣9(III )方法一:∵y =f(x)x =ax 2+(1﹣a )x 在(0,3]上单调递增, ∴y ′=2ax +(1﹣a )≥0在(0,3]上恒成立, 2ax ≥a ﹣1,当a >0时,因为x ≥a−12a 在(0,3]上单调递增, 所以0≥a−1a,解得a ∈(0,1]; 当a <0时,x ≤a−12a在(0,3]上单调递增, 所以3≤a−12a ,解得a ∈[−15,0); 当a =0时,显然符合题意, 综上:a ∈[−15,1].方法二:当a >0时,对称轴x =a−1a ≤0时符合题意,解得a ∈(0,1]; 当a <0时,对称轴x =a−12a ≤3时符合题意,解得a ∈[−15,0); 当a =0时,显然符合题意, 综上,a ∈[−15,1].20.【解答】解:(Ⅰ)点O 与点P 1间的距离所有可能值:3或√5;(Ⅱ)因为点O (0,0),所以由第一问可知,当点P 1(3,0),点P 2(6,0),点P 3(9,0)时点O 与点P 3间的距离最大, ∴点O 与点P 3间的距离最大值为9.(Ⅲ)因为“相关点”的关系是相互的,所以当n =2k ,(k ∈N *)时,点O 与点P n 间的距离最小值为0,所以点O与点P2016间的距离最小值为0,此时点P2016又回到最初位置,坐标为(0,0),然后经过三次变换:P2016(0,0)﹣﹣P2017(2,1)﹣﹣P2018(1,3)﹣﹣P2019(0,1),所以点O与点P2019间的距离最小值为1.。
2019北京一零一高一(上)期中数学
C. {-1,6}
D. {-2,-3}
2.“a>2”是“������2 > 4”的()
A. 必要不充分条件
B. 充分不必要条件
C. 充要条件
D. 既不充分也不必要条件
3.下列函数中,在区间(0,+∞)上为增函数的是()
A. y=-3x-1
B. ������ = 2
������
C. ������ = ������2 − 4������ + 5 D. ������ = |������ − 1| + 2
.
10.已知方程������������2 + ������������ + 1 = 0的两个根分别为− 1,3,则不等式������������2 + ������������ + 1 > 0的解集为
4
间表示)
(结果用区
11.命题“∀������ > 0, ������2 + 2������ − 3 > 0”的否定是
A. (-∞,1)∪(2,+∞)
B. (1,2)
C. (-∞,-1)∪(2,+∞)
D. (-1,2)
二、填空题共 6 小题,每小题 5 分,共 30 分。
9.已知������1, ������2是方程������2 + 2������ − 5 = 0的两根,则������12 + 2������1 + ������1������2的值为
17.一元二次方程������2 − ������������ + ������2 + ������ − 1 = 0有两实根������1,������2. (1)求 m 的取值范围; (2)求������1 · ������2的最值; (3)如果|������1 − ������2| > √5,求 m 的取值范围.
北京101中高一(上)期中数学11
北京名校高一数学优质试题汇编(附详解)北京101中高一(上)期中数学一、选择题:本大题共8小题,共40分.1.(5分)下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是()A.{x|x=0} B.{a|a2=0} C.{a=0} D.{0}2.(5分)函数y=f(x)的定义域为[1,5],则函数y=f(2x﹣1)的定义域是()A.[1,5] B.[2,10] C.[1,9] D.[1,3]3.(5分)下列四组函数,表示同一函数的是()A.f(x)=,g(x)=xB.f(x)=x,g(x)=C.f(x)=,g(x)=D.(x)=|x+1|,g(x)=4.(5分)如图是函数y=f(x)的图象,f(f(2))的值为()A.3 B.4 C.5 D.65.(5分)已知函数f(x)=3x+x﹣5,用二分法求方程3x+x﹣5=0在x∈(0,2)内近似解的过程中,取区间中点x0=1,那么下一个有根区间为()A.(0,1)B.(1,2)C.(1,2)或(0,1)都可以 D.不能确定6.(5分)函数f(x)=4x2﹣ax﹣8在区间(4,+∞)上是增函数,则实数a的取值范围是()A.a≤32 B.a≥32 C.a≥16 D.a≤167.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.28.(5分)定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有()A.d=1 B.d=2 C.d=3 D.d=4二、填空题:本大题共6小题,共30分.9.(5分)若f(2x)=3x2+1,则函数f(4)= .10.(5分)求值:2﹣()+lg+(﹣1)lg1= .11.(5分)设函数y=f(x+2)是奇函数,且x∈(0,2)时,f(x)=2x,则f(3.5)= .12.(5分)函数f(x)=3x的值域是.13.(5分)已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x﹣1)<f (1)的x的取值范围是.14.(5分)函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);③若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中正确的是.(写出所有正确的编号)三、解答题:本大题共4小题,共50分.15.(12分)已知集合A={x|3≤x<7},B={2<x<10},C={x|5﹣a<x<a}.(1)求A∪B,(∁R A)∩B;(2)若C⊆(A∪B),求a的取值范围.16.(12分)已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2﹣2x.(1)画出偶函数f(x)的图象的草图,并求函数f(x)的单调递增区间;(2)当直线y=k(k∈R)与函数y=f(x)恰有4个交点时,求k的取值范围.17.(12分)已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f (x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2]时,f(x)的最小值是1,求f(x)的解析式.18.(14分)已知定义在R上的函数是奇函数(1)求a,b的值;(2)判断f(x)的单调性,并用单调性定义证明;(3)若对任意的t∈R,不等式f(t﹣2t2)+f(﹣k)>0恒成立,求实数k的取值范围.数学试题答案一、选择题:本大题共8小题,共40分.1.【解答】通过观察得到:A,B,D中的集合元素都是实数,而C中集合的元素不是实数,是等式a=0;∴C中的集合不同于另外3个集合.故选:C.2.【解答】∵y=f(x)的定义域为[1,5],∴1≤x≤5,∴1≤2x﹣1≤5,即1≤x≤3,∴y=f(2x﹣1)的定义域是[1,3].故选:D.3.【解答】A选项两者的定义域相同,但是f(x)=|x|,对应法则不同,B选项两个函数的定义域不同,f(x)的定义域是R,g(x)的定义域是{x|x≠0}C选项两个函数的定义域不同,f(x)的定义域是(﹣∞,﹣2)∪(2,+∞)g(x)的定义域是(2,+∞)D选项根据绝对值的意义,把函数f(x)整理成g(x),两个函数的三个要素都相同,故选D.4.【解答】由图象可得,当0≤x≤3时,y=f(x)=2x,∴f(2)=4.当3<x≤9时,由 y﹣0=(x﹣9),可得 y=f(x)=9﹣x,故 f( f(2))=f(4)=9﹣4=5,故选C.5.【解答】∵f(x)=3x+x﹣5,∴f(1)=3+1﹣5<0,f(2)=9+2﹣5>0,∴f(x)零点所在的区间为(1,2)∴方程3x+x﹣5=0有根的区间是(1,2),故选:B.6.【解答】∵f(x)=4x2﹣ax﹣8在区间(4,+∞)上为增函数,∴对称轴x=≤4,解得:a≤32,故选:A.7.【解答】∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.8.【解答】f(x)=[x]•{x}=[x]•(x﹣[x])=[x]x﹣[x]2,g(x)=x﹣1 f(x)<g(x)⇒[x]x﹣[x]2<x﹣1即([x]﹣1)x<[x]2﹣1当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;当x∈[1,2)时,[x]=1,上式可化为0>0,∴x∈∅;当x∈[2,3]时,[x]﹣1>0,上式可化为x<[x]+1,∴x∈[2,3];∴f(x)<g(x)在0≤x≤3时的解集为[2,3],故d=1,故选:A.二、填空题:本大题共6小题,共30分.9.【解答】∵f(2x)=3x2+1,∴由2x=4得x=2,即f(4)=f(2×2)=3×22+1=12+1=13,故答案为:13.10.【解答】2﹣()+lg+(﹣1)lg1 =﹣[()3]﹣2+()0=﹣﹣2+1=﹣3.故答案为:﹣3.11.【解答】∵x∈(0,2)时,f(x)=2x,∴f(0.5)=1.∵函数y=f(x+2)是奇函数,∴f(﹣x+2)=﹣f(x+2),∴f(3.5)=﹣f(﹣1.5+2)=﹣f(0.5)=﹣1.故答案为:﹣1.12.【解答】f(x)=3x=,∵x2≥0,∴,则函数f(x)=3x的值域是[0,+∞).故答案为:[0,+∞).13.【解答】f(x)为偶函数;∴由f(2x﹣1)<f(1)得,f(|2x﹣1|)<f(1);又f(x)在[0,+∞)上单调递增;∴|2x﹣1|<1;解得0<x<1;∴x的取值范围是(0,1).故答案为:(0,1).14.【解答】在①中,函数f(x)=x2(x∈R),由f(﹣1)=f(1),但﹣1≠1,得到函数f(x)=x2(x∈R)不是单函数,故①错误;在②中,“x1,x2∈A且x1≠x2,则f(x1)≠f(x2)”的逆否命题是“若x1,x2∈A且f(x1)=f(x2)时总有x1=x2”.互为逆否命题的两个命题等价.故②的逆否命题为真,故②正确;在③中,符合唯一的函数值对应唯一的自变量,∴若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应,故③正确;在④中,在某一区间单调并不一定在定义域内单调,∴f(x)不一定是单函数,故④错误.故答案为:②③.三、解答题:本大题共4小题,共50分.15.【解答】(1)∵集合A={x|3≤x<7},B={2<x<10}在数轴上表示可得:故A∪B={x|2<x<10},C R A={x|x<3,或x≥7}(C R A)∩B={2<x<3,或7≤x<10};(2)依题意可知①当C=∅时,有5﹣a≥a,得;②当C≠∅时,有,解得;综上所述,所求实数a的取值范围为(﹣∞,3].16.【解答】(1)画出f(x)的图象如下图:由图象知,函数f(x)单调递增区间为[﹣1,0],[1,+∞);(2)由图象可知,当﹣1<k<0时,直线与函数y=f(x)的图象的交点个数为4;∴k的取值范围为(﹣1,0).17.【解答】(1)(法一):f(x)+g(x)=(a﹣1)x2+bx+c﹣3,又f(x)+g(x)为奇函数,∴h(x)=﹣h(﹣x),∴(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立,∴,解得;(法二):h(x)=f(x)+g(x)=(a﹣1)x2+bx+c﹣3,∵h(x)为奇函数,∴a﹣1=0,c﹣3=0,∴a=1,c=3.(2)f(x)=x2+bx+3,其图象对称轴为,当,即b≥2时,f(x)min=f(﹣1)=4﹣b=1,∴b=3;当,即﹣4≤b<2时,,解得或(舍);当,即b<﹣4时,f(x)min=f(2)=7+2b=1,∴b=﹣3(舍),∴f(x)=x2+3x+3或∴.18.【解答】(1)∵f(x)是定义在R上的奇函数,∴,解得b=1,(1分)∴,∴∴a•2x+1=a+2x,即a(2x﹣1)=2x﹣1对一切实数x都成立,∴a=1,故a=b=1.(3分)(2)∵a=b=1,∴,f(x)在R上是减函数.(4分)证明:设x1,x2∈R且x1<x2则=﹣,∵x1<x2,∴,,,∴f(x1)﹣f(x2)>0即f(x1)>f(x2),∴f(x)在R上是减函数,(8分)(3)∵不等式f(t﹣2t2)+f(﹣k)>0,∴f(t﹣2t2)>﹣f(﹣k),∴f(t﹣2t2)>f(k),∵f(x)是R上的减函数,∴t﹣2t2<k(10分)∴对t∈R恒成立,∴.(12分)11 / 11。
2019年北京一零一中高一数学期中考试
6.若函数 f (x) x a (a R) 在区间 (1, 2) 上恰有一个零点,则 a 的值可以是( ) x
(A)-2
(B)0(C)-1 Nhomakorabea(D)3
7.已知函数
f
(x)
a
3 x
2a , x x
5, x 1
1,
是
R
上的减函数,则实数 a
的取值范围是(
)
(A)(0,2)
(2)若 A B 9 ,求 A B .
16.已知函数 f x ax 2 .
x
(1)求定义域,并判断函数 f x 的奇偶性;
(2)若 f 1 f 2 0 ,证明函数 f x 在 0, 上的单调性,并求函数 f x 在区间1, 4上的最值.
2
17.一元二次方程 x2 mx m2 m 1 0 有两实根 x1 , x2 . (1)求 m 的取值范围; (2)求 x1 , x2 的最值; (3)如果 x1 x2 5 ,求 m 的取值范围.
18.某住宅小区为了使居民有一个优雅舒适的生活环境,计划建一个八边形的休
闲小区,它的主体造型的平面图是由两个相同的矩形 ABCD 和 EFGH 构成的 面积为 200 平方米的十字型地域.现计划在正方形 MNPQ 上建花坛,造价为 4200 元/平方米,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价 为 210 元/平方米,再在四个空角上铺草坪,造价为 80 元/平方米. (1)设总造价为 S 元, AD 的边长为 x 米, DQ 的边长为 y 米,试建立 S 关于 x 的函数关系式;
北京一零一中 2019-2020 学年度第一学期期中考试 高一数学
2019年北京一零一中学新高一分班考试数学试题-真题-含详细解析
2019年北京一零一中学新高一分班考试数学试题真题一、选择题(本大题共8小题,共24分)1.如图,点D是OABC内一点,CD与x轴平行,BD与y轴平行,BD=√2,∠ADB=135°,S△ABD=2.若反比例函数y=x(x>0)的图象经过A、D两点,则k的值是()kA.2√2B.4C.3√2D.62.2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④3.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.2504C.502D.520114.如图,在平面直角坐标系中,函数y=x(x>0)与y=x−1的图象交于点P(a,b),则代数式a−b的值为()A.−2B.2C.−4D.411115.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟6.如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√27.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.acosx+bsinxB.acosx+bcosxC.asinx+bcosxD.asinx+bsinx8.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b−2a<0,③a−b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()二、填空题(本大题共9小题,共27分)9.已知y=√(x−4)2−x+5,当x分别取1,2,3,…,2020时,所对应y值的总和是______.10.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=______.第10题图第11题图11.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为______.12.如图,等腰△ABC的两个顶点A(−1,−4)、B(−4,−1)在反比例函数y=作边AB的垂线交反比例函数y=位长度,到达反比例函数y=k2xk1xk1x(x<0)的图象上,AC=BC.过点C(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单(x>0)图象上一点,则k2=______.13.观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与AnM相交于O.也会有类似的结论,你的结论是______.14.如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于______.15.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为______.16.如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)第16题图第17题图17.如图,在△ABC中,∠B=45°,AB=6√2,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为______.三、解答题(本大题共10小题,共49分)18.本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准目的地上海北京实际收费目的地上海北京求a,b的值.19.一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为______;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.PFPQ+=______.(2)若PN2=PM⋅MN,则=______.PM NQPE MQ起步价(元)aa+3超过1千克的部分(元/千克)bb+4质量23费用(元)922(x> 20.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,−4)、B(2,0),交反比例函数y=mx0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ//y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.21.习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了______天;(2)这七年的全年空气质量优良天数的中位数是______天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.22.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为______千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.23.如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是______;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为______;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.24.已知直线y =kx −2与抛物线y =x 2−bx +c(b,c 为常数,b >0)的一个交点为A(−1,0),点M(m,0)是x 轴正半轴上的动点.(1)当直线y =kx −2与抛物线y =x 2−bx +c(b,c 为常数,b >0)的另一个交点为该抛物线的顶点E 时,求k ,b ,c 的值及抛物线顶点E 的坐标;(2)在(1)的条件下,设该抛物线与y 轴的交点为C ,若点Q 在抛物线上,且点Q 的横坐标为b ,当S △EQM =1S 时,求2△ACE m 的值;127√24(3)点D 在抛物线上,且点D 的横坐标为b +2,当√2AM +2DM 的最小值为时,求b 的值.25.问题背景:如图1,在四边形ABCD 中,∠BAD =90°,∠BCD =90°,BA =BC ,∠ABC =120°,∠MBN =60°,∠MBN 绕B 点旋转,它的两边分别交AD 、DC 于E 、F.探究图中线段AE ,CF ,EF 之间的数量关系.小李同学探究此问题的方法是:延长FC 到G ,使CG =AE ,连接BG ,先证明△BCG≌△BAE ,再证明△BFG≌△BFE ,可得出结论,他的结论就是______;探究延伸1:如图2,在四边形ABCD 中,∠BAD =90°,∠BCD =90°,BA =BC ,∠ABC =2∠MBN ,∠MBN 绕B 点旋转.它的两边分别交AD 、DC 于E 、F ,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD 中,BA =BC ,∠BAD +∠BCD =180°,∠ABC =2∠MBN ,∠MBN 绕B 点旋转.它的两边分别交AD 、DC 于E 、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处.舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E 、F 处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.26.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ⋅PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点______(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为______;②若直线n的函数表达式为y=√3x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√2为半径作⊙F.若⊙F与直线1相离,点N(−1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4√5,求直线l的函数表达式.27.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x(______);(m≠0)(______);②y=mx③y=3x−1(______).(2)若点A(1,m)与点B(n,−4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b−a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.答案和解析1.【答案】D【解析】解:作AM ⊥y 轴于M ,延长BD ,交AM 于E ,设BC 与y 轴的交点为N ,∵四边形OABC 是平行四边形,∴OA//BC ,OA =BC ,∴∠AOM =∠CNM ,∵BD//y 轴,∴∠CBD =∠CNM ,∴∠AOM =∠CBD ,∵CD 与x 轴平行,BD 与y 轴平行,∴∠CDB =90°,BE ⊥AM ,∴∠CDB =∠AMO ,∴△AOM≌△CBD(AAS),∴OM =BD =√2,∵S △ABD =2BD ⋅AE =2,BD =√2,∴AE =2√2,∵∠ADB =135°,∴∠ADE =45°,∴△ADE 是等腰直角三角形,∴DE =AE =2√2,∴D 的纵坐标为3√2,设A(m,√2),则D(m −2√2,3√2),∵反比例函数y =x(x >0)的图象经过A 、D 两点,∴k =√2m =(m −2√2)×3√2,解得m =3√2,∴k =√2m =6.故选:D .根据三角形面积公式求得AE =2√2,易证得△AOM≌△CBD(AAS),得出OM =BD =√2,根据题意得出△ADE 是等腰直角三角形,得出DE =AE =2√2,设A(m,√2),则D(m −2√2,3√2),根据反比例函数系数k 的几何意义得出关于m 的方程,解方程求得m =3√2,进一步求得k =6.k 1本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,平行四边形的性质,等腰直角三角形的判定和性质,三角形的面积等,表示出A 、D 的坐标是解题的关键.2.【答案】A【解析】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A .根据实数的分类和π的特点进行解答即可得出答案.此题考查了实数,熟练掌握实数的分类和“π”的意义是解题的关键.3.【答案】D【解析】解:设较小的奇数为x ,较大的为x +2,根据题意得:(x +2)2−x 2=(x +2−x)(x +2+x)=4x +4,若4x +4=205,即x =若4x +4=250,即x =若4x +4=502,即x =201424644984,不为整数,不符合题意;,不为整数,不符合题意;,不为整数,不符合题意;若4x +4=520,即x =129,符合题意.故选:D .设较小的奇数为x ,较大的为x +2,根据题意列出方程,求出解判断即可.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.【答案】C【解析】解:由题意得,x =2x =2x {(舍去),,解得,{或{−1−√17√17−1y =x −1y =2y =2y =∴点P(1+√17√17−1,2),21+√172241+√171−√17即:a =11,b =√217−12,1∴a −b =1+故选:C .√−17=−4,√17−1根据函数的关系式可求出交点坐标,进而确定a 、b 的值,代入计算即可.本题考查反比例函数、一次函数图象上点的坐标特征,求出交点坐标是正确计算的前提.5.【答案】C【解析】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,9a+3b+c=0.8{16a+4b+c=0.9,25a+5b+c=0.6a=−0.2解得{b=1.5,c=−1.9所以函数关系式为:p=−0.2t2+1.5t−1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−b2a =− 1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.故选:C.将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,可得函数关系式为:p=−0.2t2+ 1.5t−1.9,再根据加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标,求出即可得结论.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.6.【答案】A【解析】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或−2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.连接AE,由题意DE=OE,设DE=OE=x,则OA=OD=2x,AE=2√5,在Rt△AEO中,利用勾股定理构建方程即可解决问题.本题考查动点问题,正方形的性质,解直角三角形等知识,解题的关键是理解题意读懂图象信息,属于中考常考题型.7.【答案】A【解析】解:作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠CDE=∠DAO=x,∵sin∠DAO=AD ,cos∠CDE=CD,∴OD=AD×sin∠DAO=bsinx,DE=D×cos∠CDE=acosx,∴OE=DE+OD=acosx+bsinx,∴点C到x轴的距离等于acosx+bsinx;故选:A.作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=bsinx,DE=acosx,进而得出答案.本题考查了矩形的性质、坐标与图形性质、三角函数定义等知识;熟练掌握矩形的性质和三角函数定义是解题的关键.OD DE8.【答案】D【解析】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②由于a<0,所以−2a>0.又b>0,所以b−2a>0,故此选项错误;③当x=−1时,y=a−b+c<0,故此选项错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a +b +c >an 2+bn +c ,故a +b >an 2+bn ,即a +b >n(an +b),故此选项正确;⑤当x =3时函数值小于0,y =9a +3b +c <0,且该抛物线对称轴是直线x =−2a =1,即a =−2,代入得9(−)+3b +c <0,得2c <3b ,故此选项正确;2故④⑤正确.故选:D .由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.本题主要考查了图象与二次函数系数之间的关系,二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.b b b 9.【答案】2032【解析】解:当x <4时,原式=4−x −x +5=−2x +9,当x =1时,原式=7;当x =2时,原式=5;当x =3时,原式=3;当x ≥4时,原式=x −4−x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是:7+5+3+1+1+⋯+1=15+1×2017=2032.故答案为:2032.直接把已知数据代入进而得出变化规律即可得出答案.此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.10.【答案】2【解析】解:连接CG ,在正方形ACDE 、BCFG 中,∠ECA =∠GCB =45°,∴∠ECG =90°,设AC =2,BC =1,1∴CE =2√2,CG =√2,∴tan∠GEC =EC =2,故答案为:2.根据正方形的性质以及锐角三角函数的定义即可求出答案.本题考查正方形,解题的关键是熟练运用正方形的性质以及锐角三角函数的定义,本题属于基础题型.1CG 111.【答案】10【解析】解:连接OA ,OB ,∵A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,∴点A 、B 、C 、D 在以点O 为圆心,OA 为半径的同一个圆上,∵∠ADB =18°,∴∠AOB =2∠ADB =36°,∴这个正多边形的边数=故答案为:10.连接OA ,OB ,根据圆周角定理得到∠AOB =2∠ADB =36°,于是得到结论.本题考查了正多边形与圆,圆周角定理,正确的理解题意是解题的关键.360°36∘=10,12.【答案】1【解析】解:把A(−1,−4)代入y =∴反比例函数y =k 1k 1x中得,k 1=4,为y =x,x 4∵A(−1,−4)、B(−4,−1),∴AB 的垂直平分线为y =x ,4x =−2x =2y =x ,解得{联立方程驵{,或{,y =−2y =2y =x∵AC =BC ,CD ⊥AB ,∴CD 是AB 的垂直平分线,∵CD 与反比例函数y =∴D(−2,−2),∵动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =∴设移动后的点P 的坐标为(m,m)(m >−2),则(x +2)2+(x +2)2=(3√2)2,k 2xk 1x(x <0)的图象于点D ,(x >0)图象上一点,∴x=1,∴P(1,1),把P(1,1)代入y=故答案为:1.用待定系数求得反比例函数y=后将求得的P点坐标代入y=k2x k 1 xk 2 x (x>0)中,得k2=1,,再与直线y=x联立方程组求得D点坐标,再题意求得运动后P点的坐标,最(x>0)求得结果.本题主要考查了反比例函数的图象与性质,等腰三角形的性质,求反比例函数图象与一次函数图象的交点坐标,待定系数法,关键是确定直线CD的解析式.13.【答案】A1N=AnM,∠NOAn=(n2)×180°n【解析】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=(32)×180°3=60°;(42)×180°4 (2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;= (3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与AnM相交于O.也有类似的结论是A1N=AnM,∠NOAn=故答案为:A1N=AnM,∠NOAn=n(n2)×180°n(52)×180°5=.(n2)×180°.根据已知所给得到规律,进而可得在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程会有类似的结论.本题考查了正多边形和圆、规律型:图形的变化类、全等三角形的判定与性质,解决本题的关键是掌握正多边形的性质.14.【答案】219【解析】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B 2A 2⊥OM ,B 1A 1⊥OM ,∴B 1A 1//B 2A 2,∴B 1A 1=2A 2B 2,∴A 2B 2=2A 1B 1,同法可得A 3B 3=2A 2B 2=22⋅A 1B 1,…,由此规律可得A 20B 20=219⋅A 1B 1,∵A 1B 1=OA 1⋅tan30°=√3×∴A 20B 20=219,故答案为219.利用三角形中位线定理证明A 2B 2=2A 1B 1,A 3B 3=2A 2B 2=22⋅A 1B 1,寻找规律解决问题即可.本题考查解直角三角形,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.√331=1,15.【答案】7【解析】解:设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后,则B 同学有(x +2+3)张牌,A 同学有(x −2)张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:x +2+3−(x −2)=x +5−x +2=7.故答案为:7.本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.本题考查了整式的加减法,此题目的关键是注意要表示清A 同学有(x −2)张.16.【答案】1√5−12【解析】解:(1)∵MN 为⊙O 的直径,∴∠MPN =90°,∵PQ ⊥MN ,∴∠PQN =∠MPN =90°,∵NE 平分∠PNM ,∴∠MNE =∠PNE ,∴△PEN∽△QFN ,∴QF =QN ,即PN =QN ①,∵∠PNQ +∠NPQ =∠PNQ +∠PMQ =90°,PE PN PE QF∴∠NPQ =∠PMQ ,∵∠PQN =∠PQM =90°,∴△NPQ∽△PMQ ,∴PNMP =NQ PQ②,PE QF ∴①×②得PM =PQ,∵QF =PQ −PF ,∴PM =PQ =1−PQ,∴PF PQ PEQF PF +PE PM=1,故答案为:1;(2)∵∠PNQ =∠MNP ,∠NQP =∠NPQ ,∴△NPQ∽△NMP ,∴MN =PN,∴PN 2=QN ⋅MN ,∵PN 2=PM ⋅MN ,∴PM =QN ,∴MQ NQ PNQN =MQ PM,MQ PM ∵tan∠M =∴∴MQ NQ MQ NQ PM =PM MN ,=MN ,=NQ MQ+NQ,MQ 2NQ 2∴NQ 2=MQ 2+MQ ⋅NQ ,即1=设NQ =x ,则x 2+x −1=0,MQ+MQ NQ,解得,x =√,或x =−√<0(舍去),22∴MQ NQ 5−15+1=√5−1,25−12故答案为:√.PE QF PN NQ (1)证明△PEN∽△QFN ,得PN =QN ①,证明△NPQ∽△PMQ ,得MP =式便可求得结果;②,再①×②得PM =PQ,再变形比例PQ PE QF (2)证明△NPQ∽△NMP ,得PN 2=NQ ⋅MN ,结合已知条件得PM =NQ ,再根据三角函数得NQ =MN ,进而得MQ PMMQ与NQ的方程,再解一元二次方程得答案.本题主要考查了圆的性质,相似三角形的性质与判定,角平分线的定义,关键是灵活地变换比例式.17.【答案】4【解析】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG//BT,∵AD=DB,AE=EC,∴DE//BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3√2,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH=∴=,BH3TH1BTBF=DGBF=,31∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.故答案为4.如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH即可解决问题.本题考查相似三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.18.【答案】解:依题意,得:{a+3+(3−1)(b+4)=22,a+(2−1)b=9a=7解得:{.b=2答:a的值为7,b的值为2.【解析】根据小丽分别寄快递到上海和北京的快递质量和费用,即可得出关于a,b的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.【答案】3【解析】解:(1)共有3种可能出现的结果,其中是A的只有1种,因此第1次摸到A的概率为3,故答案为:3;(2)用树状图表示所有可能出现的结果如下:111共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=.9(1)共有3种可能出现的结果,其中是A的只有1种,可求出概率;(2)用树状图表示所有可能出现的结果,进而求出相应的概率.本题考查树状图或列表法求随机事件发生的概率,列举出所有等可能出现的结果情况是得出正确答案的关键.120.【答案】解:(1)把A(0,−4)、B(2,0)代入一次函数y=kx+b得,b=−4k=2{,解得,{,2k+b=0b=−4∴一次函数的关系式为y=2x−4,当x=3时,y=2×3−4=2,∴点C(3,2),∵点C在反比例函数的图象上,∴k=3×2=6,∴反比例函数的关系式为y=x,答:一次函数的关系式为y=2x−4,反比例函数的关系式为y=x;(2)点P在反比例函数的图象上,点Q在一次函数的图象上,∴点P(n,n),点Q(n,2n−4),∴PQ=n−(2n−4),∴S△PDQ =n[−(2n−4)]=−n2+2n+3=−(n−1)2+4,2n166666∴当n=1时,S最大=4,答:△DPQ面积的最大值是4.【解析】(1)由A(0,−4)、B(2,0)的坐标可求出一次函数的关系式,进而求出点C的坐标,确定反比例函数的关系式;(2)根据题意,要使三角形PDQ的面积最大,可用点P的横坐标n,表示三角形PDQ的面积,依据二次函数的最大值的计算方法求出结果即可.本题考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是求函数关系式的常用方法,将面积用函数的数学模型表示出来,利用函数的最值求解,是解决问题的基本思路.21.【答案】26254【解析】解:(1)∵296−270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x=7(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.−1(1)根据折线统计图可得2019年比2013年的全年空气质量优良天数增加的天数;(2)先将这七年的全年空气质量优良天数从小到大排列,即可得中位数;(3)根据表格数据利用加权平均数公式即可求这七年的全年空气质量优良天数的平均天数;(4)用80%×366即可得兰州市空气质量能达标的优良天数.本题考查了折线统计图、加权平均数、中位数,解决本题的关键是掌握折线统计图.22.【答案】80【解析】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240−80)÷80=(小时),∴点E的坐标为(3.5,240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:1.5k+b=80k=80{,解得{,3.5k+b=240b=−40∴线段DE所表示的y与x之间的函数表达式为:y=80x−40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00−8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.(1)观察图象即可得出休息前汽车行驶的速度;(2)根据题意求出点E的横坐标,再利用待定系数法解答即可;(3)求出到达乙地所行驶的时间即可解答.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.π23.【答案】112【解析】解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,∠BAC=∠FCD{∠ABC=∠CDF,AC=CF∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF−S扇形CEH−S△AHC=S扇形ACF−S扇形ECH=故答案为12.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.π30⋅π⋅22360−30⋅π⋅(√3)2360=12.π在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF ,∴EC =√3EF =√3,EH =√3,CH 2=√3EH =2,3在Rt △BOC 中,OC =√OB 2+BC 2=√1+x 2,∴OH =CH =OC =−√1+x 2,23在Rt △EOH 中,则有x 2=(√)2+(−√1+x 2)2,2233解得x =√或−√(不合题意舍弃),334√7∴OC =√1+(3)2=3,77∵CF =2EF =2,∴OF =CF −OC =2−3=3.(1)如图1中,作FD ⊥AC 于D.证明△ABC≌△CDF(AAS)可得结论.(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.根据S 阴=S △EFC +S 扇形ACF −S 扇形CEH −S △AHC =S 扇形ACF 计算即可.(3)如图2中,过点E 作EH ⊥CF 于H.设OB =OE =x.在Rt △EOH 中,利用勾股定理构建方程求解即可.本题考查作图−旋转变换,解直角三角形,全等三角形的性质,扇形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4224.【答案】解:(1)∵直线y =kx −2与抛物线y =x 2−bx +c(b,c 为常数,b >0)的一个交点为A(−1,0),∴−k −2=0,1+b +c =0,∴k =−2,c =−b −1,∴直线y =kx −2的解析式为y =−2x −2,∵抛物线y =x 2−bx +c 的顶点坐标为E(,2∴E(2,b −4b−4−b 24b 4c−b 24),),∵直线y =−2x −2与抛物线y =x 2−bx +c(b,c 为常数,b >0)的另一个交点为该抛物线的顶点E ,∴−4b−4−b 24=−2×2−2,b解得,b=2,或B=−2(舍),当b=2时,c=−3,∴E(1,−4),故k=−2,b=2,c=−3,E(1,−4);(2)由(1)知,直线的解析式为y=−2x−2,抛物线的解析式为y=x2−2x−3,∴C(0,−3),Q(2,−3),如图1,设直线y=−2x−2与y轴交点为N,则N(0,−2),∴CN=1,∴S△ACE=S△ACN+S△ECN=×1×1+×1×1=1,2211∴S△EQM=,2设直线EQ与x轴的交点为D,显然点M不能与点D重合,设直线EQ的解析式为y=dx+n(d≠0),2d+n=−3则{,d+n=−4d=1解得,{,n=−5∴直线EQ的解析式为y=x−5,∴D(5,0),∴S△EQM=S△EDM=S△QDM=2DM×|−4|−2DM×|−3|=2DM=2|5−m|=2,解得,m=4,或m=6;(3)∵点D(b+2,yD)在抛物线y=x2−bx−b−1上,∴yD=(b+2)2−b(b+2)−b−1=−2−4,可知点D(b+2,−2−4)在第四象限,且在直线x=b的右侧,1b311b3111111 1。
【精品高一数学试卷】2019-2020北京高一(上)期中+答案
2019-2020学年北京高一(上)期中数学试卷一、选择题1.(3分)已知集合A={3,5,6,8},B={1,3,5},那么A∩B=()A.{1,3,5,6,8}B.{6,8}C.{3,5}D.{1,6,8} 2.(3分)如果a>b,那么下列不等式一定成立的是()A.a+c>b+c B.c﹣a>c﹣b C.﹣2a>﹣2b D.a2>b23.(3分)给出下列四个函数:①y=﹣x2+1;②y=√x;③y=−1x;④y=|x|.其中在区间(0,+∞)上是减函数的是()A.①B.②C.③D.④4.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4B.﹣2C.2D.45.(3分)如果幂函数f(x)=x a的图象经过点(2,4),则f(x)在定义域内()A.为增函数B.为减函数C.有最小值D.有最大值6.(3分)已知a>0,那么a−2+4a的最小值是()A.1B.2C.4D.5 7.(3分)下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=√x2B.y=x2x C.y=√x23D.y=(√x)28.(3分)设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(3分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 10.(3分)函数f(x)={x 2,x ≥tx ,0<x <t (t >0)是区间(0,+∞)上的增函数,则t 的取值范围是( ) A .1B .(0,+∞)C .(1,+∞)D .[1,+∞)11.(3分)若函数f (x )同时满足:(1)对于定义域内的任意x ,有f (x )+f (﹣x )=0; (2)对于定义域内的任意x 1,x 2,当x 1≠x 2时,有f(x 1)−f(x 2)x 1−x 2<0,则称函数f (x )为“理想函数”.给出下列四个函数:①f (x )=x 2;②f (x )=﹣x 3;③f(x)=x −1x ;④f(x)={−x 2,x ≥0x 2,x <0.其中是“理想函数”的序号是( ) A .①②B .②③C .②④D .③④12.(3分)对于集合M ={a |a =x 2﹣y 2,x ∈Z ,y ∈Z },给出如下三个结论:其中正确结论的个数是( )①如果P ={b |b =2n +1,n ∈Z },那么P ⊆M ; ②如果c =4n +2,n ∈Z ,那么c ∉M ; ③如果a 1∈M ,a 2∈M ,那么a 1a 2∈M . A .1 B .2 C .3 D .0二、填空题13.(3分)已知函数f(x)={1,x ≥0−2x ,x <0,如果f (m )=4,那么实数m 的值为 .14.(3分)已知二次函数f (x )满足如表所给对应关系:x 1 2 4 f (x )﹣1则不等式f (x )<0的解集为 .15.(3分)命题“∀x ∈R ,|x |+1≥1”的否定是 .16.(3分)函数y =f (x )(x ≠0)是奇函数,且当x ∈(0,+∞)时,函数y =f (x )单调递增.若f (1)=0,则f (﹣1)= ;不等式f (x )<0的解集为 . 17.(3分)若“x 2﹣2x ﹣3>0”是“x <a ”的必要不充分条件,则a 的最大值为 . 18.(3分)已知函数f(x)=4√mx −2mx+1的定义域为R ,则实数m 的取值范围是 .19.(3分)设函数f (x )=x ﹣[x ](x ≥0),其中[x ]表示不超过x 的最大整数,如:[√3]=1,[2]=2.若函数y =kx 的图象与函数f (x )的图象恰有3个交点,则实数k 的取值范围是 .20.(3分)已知函数f(x)={x +4x ,0<x <4−x 2+10x −20,x ≥4,若有且仅有不相等的三个正数x 1,x 2,x 3,使得f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的值为 ,若存在0<x 1<x 2<x 3<x 4,使得f (x 1)=f (x 2)=f (x 3)=f (x 4),则x 1x 2x 3x 4的取值范围是 . 三、解答题21.已知集合A ={x |x 2﹣4x +3≤0},B ={x|1x−1>0}. (1)求(∁R B )∪A ;(2)若集合C ={x |(x ﹣a )(x ﹣a ﹣1)<0}(a ∈R ),且C ⊆A ,求实数a 的取值范围. 22.函数f (x )=ax+b 1+x 2是定义在(﹣1,1)上的奇函数,且f (12)=25.(1)确定函数f (x )的解析式;(2)用定义证明f (x )在(﹣1,1)上是增函数; (3)解不等式f (t ﹣1)+f (t )<0.23.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )={30,0<x ≤302x +1800x −90,30<x <100(单位:分钟), 而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? (2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.24.设函数y =f (x )与函数y =f (f (x ))的定义域交集为D ,集合M 是由所有具有性质:“对任意的x ∈D ,都有f (f (x ))=x ”的函数f (x )组成的集合.(1)判断函数f (x )=2x ﹣1和g(x)=1x是不是集合M 中的元素?并说明理由. (2)设函数f (x )∈M ,且f (x )=kx +b (k ≠0),试求函数f (x )的解析式. (3)已知f(x)=axx+b ∈M ,试求实数a ,b 应满足的关系.2019-2020学年北京高一(上)期中数学试卷参考答案与试题解析一、选择题1.【解答】解:∵A={3,5,6,8},B={1,3,5},∴A∩B={3,5}.故选:C.2.【解答】解:∵a>b,∴a+c>b+c,∴A正确.故选:A.3.【解答】解:根据题意,依次分析所给的四个函数:对于①y=﹣x2+1,为二次函数,在(0,+∞)上是减函数;对于②y=√x,在(0,+∞)上是增函数;对于③y=−1x,为反比例函数,在(0,+∞)上是增函数;对于④y=|x|,当x>0时,y=x,即其在(0,+∞)上是增函数;故选:A.4.【解答】解:根据题意,由函数的图象可得f(﹣1)=2,又由函数为奇函数,则f(1)=﹣f(﹣1)=﹣2,故选:B.5.【解答】解:设幂函数f(x)=x a,∵幂函数f(x)=xα的图象经过点(2,4),∴f(2)=2a=4,解得a=2,∴f(x)=x2,∴f(x)在定义域先递减再递增,有最小值,故选:C.6.【解答】解:根据题意,a−2+4a=a+4a−2,又由a>0,则a−2+4a=a+4a−2≥2√a×4a−2=2,当且仅当a=2时等号成立,即a−2+4a的最小值是2;故选:B.7.【解答】解:判断与y=x(x≥0)是否有相同图象,即是判断哪个函数与y=x(x≥0)表示同一个函数,A.y=√x2=|x|,解析式不同,不是同一个函数;B.y=x2x的定义域为{x|x≠0},而y=x(x≥0)的定义域为{x|x≥0},定义域不同,不是同一个函数;C.y=√x23=x23,解析式不同,不是同一个函数;D.y=(√x)2=x的定义域为{x|x≥0},定义域和解析式都相同,是同一个函数.故选:D.8.【解答】解:a,b是实数,如果a=﹣1,b=2则“a+b>0”,则“ab>0”不成立.如果a=﹣1,b=﹣2,ab>0,但是a+b>0不成立,所以设a,b是实数,则“a+b>0”是“ab>0”的既不充分也不必要条件.故选:D.9.【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1 升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1 升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km 时,耗油1 升,故行驶1 小时,路程为80km,燃油为8 升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确;故选:D.10.【解答】解:∵y=x2和y=x在(0,+∞)上都是增函数,要想函数f(x)={x2,x≥tx,0<x<t(t>0)是区间(0,+∞)上的增函数,只需在端点处y=x2的图象在y=x的上方即可,∴t2≥t解得t≥1,故选:D.11.【解答】解:若f(x)是“理想函数”,则满足以下两条:①对于定义域上的任意x ,恒有f (x )+f (﹣x )=0,即f (﹣x )=﹣f (x ), 则函数f (x )是奇函数;②对于定义域上的任意x 1,x 2,当x 1≠x 2时,有f(x 1)−f(x 2)x 1−x 2<0,即(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0,∴x 1<x 2时,f (x 1)>f (x 2),即函数f (x )是单调递减函数. 故f (x )为定义域上的单调递减的奇函数.①f (x )=x 2在定义域R 是偶函数,所以不是“理想函数”;②f (x )=﹣x 3在定义域R 上是奇函数,且在R 上单调递减,所以是“理想函数”; ③f (x )=x −1x在定义域所在区间(﹣∞,0),(0,+∞)上分别单调递增,所以不是“理想函数”;④f (x )={−x 2,x ≥0x 2,x <0,在定义域R 上既是奇函数,又是减函数,所以是“理想函数”. 故选:C .12.【解答】解:集合M ={a |a =x 2﹣y 2,x ∈Z ,y ∈Z }, 对于①,b =2n +1,n ∈Z , 则恒有2n +1=(n +1)2﹣n 2,∴2n +1∈M ,即P ={b |b =2n +1,n ∈Z },则P ⊆M ,①正确; 对于②,c =4n +2,n ∈Z ,若4n +2∈M ,则存在x ,y ∈Z 使得x 2﹣y 2=4n +2, ∴4n +2=(x +y )(x ﹣y ), 又x +y 和x ﹣y 同奇或同偶,若x +y 和x ﹣y 都是奇数,则(x +y )(x ﹣y )为奇数,而4n +2是偶数;若x +y 和x ﹣y 都是偶数,则(x +y )(x ﹣y )能被4整除,而4n +2不能被4整除, ∴4n +2∉M ,即c ∉M ,②正确; 对于③,a 1∈M ,a 2∈M ,可设a 1=x 12﹣y 12,a 2=x 22﹣y 22,x i 、y i ∈Z ; 则a 1a 2=(x 12﹣y 12)(x 22﹣y 22)=(x 1x 2)2+(y 1y 2)2﹣(x 1y 2)2﹣(x 2y 1)2=(x1x2+y1y2)2﹣(x1y2+x2y1)2∈M那么a1a2∈M,③正确.综上,正确的命题是①②③.故选:C.二、填空题13.【解答】解:当m≥0时,∵函数在x≥0时,f(x)=1,∴f(m)=1≠4,不合题意舍去;当m≤0时,∵函数x<0时,f(x)=﹣2x,∴f(m)=﹣2m=4,∴m=﹣2.故答案为:﹣2.14.【解答】解:设函数f(x)=ax2+bx+c,(a≠0),由表中数据知1和4是方程f(x)=0的两根,又f(2)=﹣1<0,故此二次函数是开口向上的抛物线,并且与X轴交于两点(1,0)和(4,0),∴不等式f(x)<0的解集为1<x<4.故答案为:(1,4).15.【解答】解:命题“∀x∈R,|x|+1≥1”是全称命题,其否定为特称命题,∴命题“∀x∈R,|x|+1≥1”的否定是“∃x0∈R,|x0|+1<1”.故答案为:“∃x0∈R,|x0|+1<1”.16.【解答】解:根据题意,因为函数y=f(x)(x≠0)是奇函数,则f(﹣1)=﹣f(1)=0,即f(1)=0;当x∈(0,+∞)时,函数y=f(x)单调递增,且f(1)=0,则在区间(0,1)上,f (x)<0,在区间(1,+∞)上,f(x)>0,又由f(x)为奇函数,则在区间(﹣1,0)上,f(x)>0,在区间(﹣∞,﹣1)上,f (x)<0,综合可得:不等式f(x)<0的解集为(﹣∞,﹣1)∪(0,1);故答案为:(﹣∞,﹣1)∪(0,1).17.【解答】解:因x 2﹣2x ﹣3>0得x <﹣1或x >3,又“x 2﹣2x ﹣3>0”是“x <a ”的必要不充分条件,知“x <a ”可以推出“x 2﹣2x ﹣3>0”, 反之不成立. 则a 的最大值为﹣1. 故答案为:﹣1.18.【解答】解:∵f (x )的定义域为R , ∴不等式mx 2﹣2mx +1>0的解集为R , ①m =0时,1>0恒成立,满足题意; ②m ≠0时,{m >0△=4m 2−4m <0,解得0<m <1,∴实数m 的取值范围是[0,1). 故答案为:[0,1).19.【解答】解:画出f (x )的示意图如下:当y =kx 过(3,1)时,k =13,当y =kx 过(4,1)时,k =14, 所以k ∈(14,13),故答案为:(14,13).20.【解答】解:不妨设x 1、x 2、x 3、x 4按从左到右顺序排列: 如下图:当y=4或5时,有且仅有不相等的三个正数x1,x2,x3,使得f(x1)=f(x2)=f(x3),则当y=4时,x1=2,x2=4,x3=6,此时x1+x2+x3=12;当y=5时,x1=1,x2=4,x3=5,此时x1+x2+x3=11.如图,,结合上问可知,当y∈(4,5)时,存在0<x1<x2<x3<x4,使得f(x1)=f(x2)=f(x3)=f(x4),不妨令此时y=a,则对于x1、x2满足方程x+4x=a,即x2﹣ax+4=0,所以x1x2=4;对于x3、x4满足方程﹣x2+10x﹣20=a,即﹣x2+10x﹣20﹣a=0,所以x3+x4=10,则有x4=10﹣x3,所以x 1x 2x 3x 4=4x 3x 4=4x 3(10﹣x 3)=﹣4(x 3﹣5)2+100,其中x 3∈(4,5),则﹣4(x 3﹣5)2+100∈(96,100),故答案为:12或11;(96,100).三、解答题21.【解答】解:(1)A ={x |1≤x ≤3},B ={x |x >1},∴∁R B ={x |x ≤1},(∁R B )∪A ={x |x ≤3};(2)C ={x |a <x <a +1},且C ⊆A ,∴{a ≥1a +1≤3,解得1≤a ≤2, ∴实数a 的取值范围为[1,2].22.【解答】解:(1)由题意得{f(0)=0f(12)=25, 由此可解得{a =1b =0, ∴f(x)=x 1+x 2. (2)证明:设﹣1<x 1<x 2<1,则有f(x 1)−f(x 2)=x 11+x 12−x 21+x 22=(x 1−x 2)(1−x 1x 2)(1+x 12)(1+x 22), ∵﹣1<x 1<x 2<1,∴x 1﹣x 2<0,1+x 12>0,1+x 22>0,1﹣x 1x 2>0,∴f (x 1)﹣f (x 2)<0,∴f (x )在(﹣1,1)上是增函数.(3)f (t ﹣1)+f (t )<0,∴f (t ﹣1)<﹣f (t ),即f (t ﹣1)<f (﹣t ),∵f (x )在(﹣1,1)上是增函数,∴﹣1<t ﹣1<﹣t <1,解之得0<t <12.23.【解答】解;(1)由题意知,当30<x <100时,f (x )=2x +1800x −90>40, 即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40−x 10; 当30<x <100时, g (x )=(2x +1800x −90)•x %+40(1﹣x %)=x 250−1310x +58;∴g (x )={40−x 10x 250−1310x +58; 当0<x <32.5时,g (x )单调递减;当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.24.【解答】解:(1)对任意x ∈R ,f (f (x ))=2(2x ﹣1)﹣1=4x ﹣3≠x ,所以f (x )不是集合M 中的元素;g 对任意x ≠0,(g (x ))=11x =x ,所以g (x )是集合M 中的函数;(2)因为函数f (x )∈M ,所以f (f (x ))=k (kx +b )+b =k 2x +(k +1)b =x , 所以k 2=1,(k +1)b =0,解得k =1,b =0,或k =﹣1,b 取任何实数,则f (x )=x 或f (x )=﹣x +b ;(3)因为f(x)=ax x+b ∈M ,所以f (f (x ))=a⋅ax x+b ax x+b +b =x ,即(a +b )x 2﹣(a 2﹣b 2)x =0恒成立,故a +b =0.。
北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)
2018-2019学年北京市101中学高一(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1.设集合M={x|x<1},N={x|0<x≤1},则M∪N=( )A. B. C. D.【答案】C【解析】【分析】对集合M和N取并集即可得到答案.【详解】∵M={x|x<1},N={x|0<x≤1};∴M∪N={x|x≤1}.故选:C.【点睛】本题考查集合的并集运算.2.下列函数中,在(-1,+∞)上为减函数的是( )A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的单调性,即可得答案.【详解】根据题意,依次分析选项:对于A,y=3x,为指数函数,在R上为增函数,不符合题意;对于B,y=x2-2x+3=(x-1)2+2,在(1,+∞)上为增函数,不符合题意;对于C,y=x,为正比例函数,在R上为增函数,不符合题意;对于D,y=-x2-4x+3=-(x+2)2+7,在(-2,+∞)上为减函数,符合题意;故选:D.【点睛】本题考查指数函数和二次函数的单调性,关键是掌握常见函数的单调性,属于基础题.3.计算log416+等于( )A. B. 5 C. D. 7【答案】B【解析】【分析】利用指数与对数运算性质即可得出.【详解】log416+=2+3=5.【点睛】本题考查指数与对数运算性质,属于基础题.4.函数=+的定义域为().A.B.C.D.【答案】A【解析】试题分析:由题,故选考点:函数的定义域。
5.函数y=的单调增区间是( )A. B. C. D.【答案】D【解析】【分析】利用复合函数的单调性进行求解即可.【详解】令t=-x2+4x+5,其对称轴方程为x=2,内层二次函数在[2,+∞)上为减函数,而外层函数y=为减函数,∴函数y=的单调增区是[2,+∞).故选:D.【点睛】本题考查指数型复合函数的单调性,复合函数的单调性满足同增异减,是基础题.6.已知偶函数f(x)在区间[0,+∞)上是减函数,则满足f(2x-1)>f()的x的取值范围是( )A. B.C. D.【答案】C【解析】【分析】由函数为偶函数得f(|2x-1|)>f(),由函数的单调性可得|2x-1|<,解不等式即可得答案.【详解】根据题意,偶函数f(x)在区间[0,+∞)上是减函数,则f(2x-1)>f()⇒f(|2x-1|)>f()⇒|2x-1|<,解可得:<x<,即x的取值范围为;故选:C.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.7.若函数f(x)=a|x+1|(a>0.a≠1)的值域为[1,+∞),则f(-4)与f(0)的关系是( )A. B. C. D. 不能确定【答案】A【解析】【分析】由函数f(x)的值域可得a>1,然后利用单调性即可得到答案.【详解】∵|x+1|≥0,且f(x)的值域为[1,+∞);∴a>1;又f(-4)=a3,f(0)=a;∴f(-4)>f(0).故选:A.【点睛】本题考查指数函数的单调性,并且会根据单调性比较函数值的大小.8.对于实数a和b定义运算“*”:a•b=,设f(x)=(2x-1)•(x-2),如果关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则m的取值范是( )【答案】C【解析】【分析】画出函数f(x)的图象,由题知y=f(x)与y=m恰有3个交点,观察图像即可得到答案.【详解】由已知a•b=得f(x)=(2x-1)•(x-2)= ,其图象如下:因为f(x)=m恰有三个互不相等实根,则y=m与y=f(x)图像恰有三个不同的交点,所以0<m<,故选:C.【点睛】本题考查函数与方程的综合运用,属中档题.二、填空题(本大题共6小题,共30.0分)9.已知全集U=R,集合A={x|x2-4x+3>0},则∁U A=___.【答案】{x|1≤x≤3}【解析】【分析】求出集合A,然后取补集即可得到答案.【详解】A={x|x<1或x>3};∴∁U A={x|1≤x≤3}.故答案为:{x|1≤x≤3}.【点睛】本题考查集合的补集的运算,属基础题.10.若0<a<1,b<-1,则函数f(x)=a x+b的图象不经过第___象限.【答案】一【解析】利用指数函数的单调性和恒过定点,再结合图像的平移变换即可得到答案.【详解】函数y=a x(0<a<1)是减函数,图象过定点(0,1),在x轴上方,过一、二象限,函数f(x)=a x+b的图象由函数y=a x的图象向下平移|b|个单位得到,∵b<-1,∴|b|>1,∴函数f(x)=a x+b的图象与y轴交于负半轴,如图,函数f(x)=a x+b的图象过二、三、四象限.故答案为:一.【点睛】本题考查指数函数的图象和性质,考查图象的平移变换.11.已知log25=a,log56=b,则用a,b表示1g6=______.【答案】【解析】【分析】先由lg2+lg5=1结合log25=a,解出lg5,然后利用换底公式log56=进行计算整理即可得到答案.【详解】∵log25=a=,解得lg5=.log56=b=,∴lg6=blg5=.故答案为:.【点睛】本题考查了对数运算性质,重点考查对数换底公式的应用,考查推理能力与计算能力,属于基础题.12.函数y=(x≤0)的值域是______.【答案】(-∞,2]∪(3,+∞)【解析】【分析】先对函数进行分离常数,然后利用函数单调性即可求出值域.【详解】y=∴该函数在(-2,0],(-∞,-2)上单调递增;∴x∈(-2,0]时,y≤2;x∈(-∞,-2)时,y>3;∴原函数的值域为(-∞,2]∪(3,+∞).故答案为:(-∞,2]∪(3,+∞).【点睛】考查函数值域的概念及求法,分离常数法的运用,反比例函数值域的求法,属基础题.13.已知a>0且a≠1,函数f(x)=满足对任意不相等的实数x1,x2,都有(x1-x2)[f(x1)-f(x2)]>0,成立,则实数a的取值范围______.【答案】(2,3]【解析】【分析】根据已知条件(x1-x2)[f(x1)-f(x2)]>0得到函数f(x)的单调性,然后利用分段函数的单调性列不等式组即可得到答案.【详解】对任意实数x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,可得f(x)在R上为单调递增,则即解得a的取值范围为:2<a≤3.故答案为:(2,3].【点睛】已知函数的单调性确定参数的值或范围要注意以下几点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围. 14.设函数f(x)=a x+b x-c x,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)①对任意的x∈(-∞,1),都有f(x)>0;②存在x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.【答案】①②③【解析】【分析】在①中,利用不等式的性质分析即可,在②中,举例a=2,b=3,c=4进行说明,在③中,利用零点存在性定理分析即可.【详解】在①中,∵a,b,c是△ABC的三条边长,∴a+b>c,∵c>a>0,c>b>0,∴0<<1,0<<1,当x∈(-∞,1)时,f(x)=a x+b x-c x=c x[()x+()x-1]>c x(+-1)=c x•>0,故①正确;在②中,令a=2,b=3,c=4,则a,b,c可以构成三角形,但a2=4,b2=9,c2=16不能构成三角形,故②正确;在③中,∵c>a>0,c>b>0,若△ABC顶角为120°的等腰三角形,∴a2+b2-c2<0,∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,根据函数零点存在性定理可知在区间(1,2)上存在零点,即∃x∈(1,2),使f(x)=0,故③正确.故答案为:①②③.【点睛】本题考查命题真假的判断,考查指数函数单调性、零点存在性定理和不等式性质的运用.三、解答题(本大题共5小题,共50.0分)15.已知函数f(x)=a x-1(x≥0).其中a>0,a≠1.(1)若f(x)的图象经过点(,2),求a的值;(2)求函数y=f(x)(x≥0)的值域.【答案】(1)4 ;(2)见解析.【解析】【分析】(1)将点(,2)代入函数解析式,即可得到a值;(2)按指数函数的单调性分a>1和0<a<1两种情况,分类讨论,求得f(x)的值域.【详解】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(,2),∴=2,∴a=4.(2)对于函数y=f(x)=a x-1,当a>1时,单调递增,∵x≥0,x-1≥-1,∴f(x)≥a-1=,故函数的值域为[,+∞).对于函数y=f(x)=a x-1,当0<a<1时,单调递减,∵x≥0,x-1≥-1,∴f(x)≤a-1=,又f(x)>0,故函数的值域为.综上:当a>1时,值域为[,+∞).当0<a<1时,值域为.【点睛】本题考查指数函数图像和性质的应用,主要考查函数的单调性和函数值域问题.16.设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】(1)a=-3或a=1;(2){a|a≤-3或a>或a=-2或a=-}.【解析】【分析】(1)根据A∩B={2},可知B中有元素2,带入求解a即可;(2)根据A∪B=A得B⊆A,然后分B=∅和B≠∅两种情况进行分析可得实数a的取值范围.【详解】(1)集合A={x|x2-3x+2=0}={x|x=1或x=2}={1,2},若A∩B={2},则x=2是方程x2+(a-1)x+a2-5=0的实数根,可得:a2+2a-3=0,解得a=-3或a=1;(2)∵A∪B=A,∴B⊆A,当B=∅时,方程x2+(a-1)x+a2-5=0无实数根,即(a-1)2-4(a2-5)<0解得:a<-3或a>;当B≠∅时,方程x2+(a-1)x+a2-5=0有实数根,若只有一个实数根,x=1或x=2,则△=(a-1)2-4(a2-5)=0解得:a=-3或a=,∴a=-3.若只有两个实数根,x=1、x=2,△>0,则-3<a<;则(a-1)=-3,可得a=-2,a2-5=2,可得a=综上可得实数a的取值范围是{a|a≤-3或a>或a=-2或a=-}【点睛】本题考查并,交集及其运算,考查数学分类讨论思想.17.函数f(x)=是定义在R上的奇函数,且f(1)=1.(1)求a,b的值;(2)判断并用定义证明f(x)在(+∞)的单调性.【答案】(1)a=5,b=0;(2)见解析.【解析】【分析】(1)根据函数为奇函数,可利用f(1)=1和f(-1)=-1,解方程组可得a、b值,然后进行验证即可;(2)根据函数单调性定义利用作差法进行证明.【详解】(1)根据题意,f(x)=是定义在R上的奇函数,且f(1)=1,则f(-1)=-f(1)=-1,则有,解可得a=5,b=0;经检验,满足题意.(2)由(1)的结论,f(x)=,设<x1<x2,f(x1)-f(x2)=-=,又由<x1<x2,则(1-4x1x2)<0,(x1-x2)<0,则f(x1)-f(x2)>0,则函数f(x)在(,+∞)上单调递减.【点睛】本题考查函数的奇偶性与单调性的综合应用,属于基础题.18.已知二次函数满足,.求函数的解析式;若关于x的不等式在上恒成立,求实数t的取值范围;若函数在区间内至少有一个零点,求实数m的取值范围【答案】(1)f(x)=2x2-6x+2;(2)t>10;(3)m<-10或m≥-2.【解析】【分析】(1)用待定系数法设二次函数表达式,再代入已知函数方程化简即可得答案;(2)分离参数后求f(x)的最大值即可;(3)先求无零点时m的范围,再求补集.【详解】(1)设二次函数f(x)=ax2+bx+2,(a≠0)∴a(x+1)2+b(x+1)+2-ax2-bx-2=4x-4∴2ax+a+b=4x-4,∴a=2,b=-6∴f(x)=2x2-6x+2;(2)依题意t>f(x)=2x2-6x+2在x∈[-1,2]上恒成立,而2x2-6x+2的对称轴为x=∈[-1,2],所以x=-1时,取最大值10,t>10;(3)∵g(x)=f(x)-mx=2x2-6x+2-mx=2x2-(6+m)x+2在区间(-1,2)内至少有一个零点,当g(x)在(-1,2)内无零点时,△=(6+m)2-16<0或或,解得:-10≤m<-2,因此g(x)在(-1,2)内至少有一个零点时,m<-10或m≥-2.【点睛】本题考查利用待定系数法求函数解析式,考查恒成立问题的解法以及二次函数的零点问题,属于基础题.19.设a为实数,函数f(x)=+a+a.(1)设t=,求t的取值范图;(2)把f(x)表示为t的函数h(t);(3)设f (x)的最大值为M(a),最小值为m(a),记g(a)=M(a)-m(a)求g(a)的表达式.【答案】(1)[,2];(2)h(t)=at+,≤t≤2;(3)g(a)=..【解析】【分析】(1)将t=两边平方,结合二次函数的性质可得t的范围;(2)由(1)可得=,可得h(t)的解析式;(3)求得h(t)=(t+a)2-1-a2,对称轴为t=-a,讨论对称轴与区间[,2]的关系,结合单调性可得h(t)的最值,即可得到所求g(a)的解析式.【详解】(1)t=,可得t2=2+2,由0≤1-x2≤1,可得2≤t2≤4,又t≥0可得≤t≤2,即t的取值范围是[,2];(2)由(1)可得=,即有h(t)=at+,≤t≤2;(3)由h(t)=(t+a)2-1-a2,对称轴为t=-a,当-a≥2即a≤-2时,h(t)在[,2]递减,可得最大值M(a)=h()=a;最小值m(a)=h(2)=1+2a,则g(a)=(-2)a-1;当-a≤即a≥-时,h(t)在[,2]递增,可得最大值M(a)=h(2)=1+2a;最小值m(a)=h()=a,则g(a)=(2-)a+1;当<-a<2即-2<a<-时,h(t)的最小值为m(a)=h(-a)=-1-a2,若-1-≤a<-,则h(2)≥h(),可得h(t)的最大值为M(a)=h(2)=1+2a,可得g(a)=2+2a+a2;若-2<a<-1-,则h(2)<h(),可得h(t)的最大值为M(a)=h()=a,可得g(a)=a+1+a2;综上可得g(a)=.【点睛】本题考查函数的最值求法,注意运用换元法和二次函数在闭区间上的最值求法,考查分类讨论思想方法和化简整理运算能力,属于中档题.。
北京高一第一学期期中考试数学试卷含答案
2019—2020年度第一学期期中考试高一数学试题第Ⅰ卷一.选择题1.设集合{}0,1,2,3M =,{}02N x N x =∈≤≤,则M N ⋂中元素的个数为( )A. 0B. 2C. 3D. 4 2.命题“2,220x x x ∃∈++≤R ”的否定是( )A. 2,220x x x ∀∈++>RB. 2,220x R x x ∀∈++≤C. 2,220x x x ∃∈++>RD. 2,220x x x ∃∈++≥R 3.下列四组函数,表示同一函数的是( )A. ()f x =()g x x =B. ()f x x =,()21x x g x x -=-C. ()f x x =,(),0,0x x g x x x ≥⎧=⎨-<⎩D. ()f x =()g x =4.条件p :a b =是条件q :a b c c>的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 5.已知集合30x A xx ⎧⎫-=≤⎨⎬⎩⎭,{}B x x a =<,若A B B ⋃=,则实数a 的取值范围是( ) A. [)3,+∞ B. ()3,+∞ C. (],0-∞ D. ,0 6.已知偶函数()f x 的定义域为R ,当[)0,+x ∈∞时,()f x 是增函数,()2f -,()f π,()3f -的大小关系是( )A. ()()()23ff f π>->- B. ()()()32f f f π>->- C. ()()()23f f f π>->- D. ()()()32f f f π>->-7.函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的零点个数是( )A. 0B. 1C. 2D. 38.已知函数()2,00x x f x x ⎧≥⎪=<,若()4f a =,则a 等于( ) A. 2 B. 2- C. 2± D. 2或16- 9.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税,已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率%x ),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A. 2B. 6C. 8D. 10 10.定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,已知,αβ为函数()2f x x px q =++的两个零点,若存在整数n 满足1n n αβ<<<+,则()(){}min ,1f n f n +的值( )A. 一定大于12B. 一定小于12C. 一定等于14D. 一定小于14第Ⅱ卷二、填空题11.函数()f x =的定义域是______.12.已知函数()2,01,0x x f x x x ⎧≤=⎨-+>⎩;则()3f f -⎡⎤⎣⎦等于______.13.已知()1,x ∈+∞,则函数91y x x =+-的最小值等于______. 14.已知函数()221f x x x =-++, ①函数的值域是______.②若函数在[]3,a -上不是单调函数,则实数a 的取值范围是______.15.已知实数,a b 满足2850a a -+=,2850b b -+=,则22a b +=______.16.若方程2210ax x --=在()0,1内恰有一个根,则实数a 的取值范围是______.17.函数y = f(x)是定义域为R 的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当[]1,1x ∈-时,y 的取值范围是______;②如果对任意[],x a b ∈ (b <0),都有[]2,1y ∈-,那么b 的最大值是______.18.能够说明“若()0f x <对任意的(]0,2x ∈都成立,则函数()f x 在(]0,2是减函数”为假命题的一个函数是______.(答案不唯一)19.对于函数()1f x x=(0x >)的定义域中任意1x ,2x (12x x ≠)有如下结论: ①()()()1212f x x f x f x +=+;②()()12120f x f x x x ->-;③()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭上述结论中正确结论的序号是______.20.已知函数()212f x x x=+,a ,b 均为正数且2a b +=,则()()f a f b +的最小值等于______. 三、解答题21.已知函数()43f x x x =-+的定义城为A ,集合{}11B x a x a =-<<+ (1)求集合A ;(2)若全集{}5U x x =≤,2a =,求u A B ;(3)若x B ∈是x A ∈的充分条件,求a 的取值范围.22.已知函数()4f x x x=- (1)判断函数的奇偶性,并说明理由:(2)证明:函数()f x 在0,上单调递增; (3)求函数()4f x x x=-,[]4,1x ∈--的值域.23.已知函数()()22f x x a x b =+++,其中a ,b R ∈. (1)当1a =,4b =-时,求函数()f x 的零点;(2)当2b a =时,解关于x 的不等式()0f x ≤;(3)如果函数()f x 的图象恒在直线22y x =+的上方,证明:2b >.参考答案1【答案】C【详解】解:因为集合()0,1,2,3M =,{}02N x N x =∈≤≤, 所以{}{}00,1,22N x N x =∈≤≤=,所以{}0,1,2M N ⋂=,则M N ⋂中元素的个数为3个.故选:C2【答案】A【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确. 故选A.3【答案】C【详解】解: 选项A.:()f x =R ,()g x x =的定义域为R()f x x ==,对应法则不同,不是同一函数.选项B.:()f x x =定义域为R ,()21x x g x x -=-定义域为{}|1x x ≠, 定义域不同,不是同一函数.选项C:()f x x = 定义域为R ,(),0,0x x g x x x ≥⎧=⎨-<⎩定义域为R . (),0,0f x x x x x x ≥⎧=⎨-<=⎩,定义域相同,对应法则也相同,是同一函数.选项D:()f x ={}|1x x ≥,()g x =定义域为|11x x ,定义域不同,不是同一函数.故选:C4【答案】D 详解】解:证充分性:若:p a b =,则a b c c=,则 p q ≠>,则充分性不成立.证必要性: 若q : a b c c>,则a b >,则q p ≠>,则必要性不成立. 故条件:p a b =是条件q :a b c c>的既不充分也不必要条件. 故选:D5【答案】B【详解】解: {}3003x A x x x x ⎧⎫-=≤=<≤⎨⎬⎩⎭, 又因为: {}B x x a =<,若A B B ⋃=,所以A B ⊂,则|3a a所以实数a 的取值范围是: ()3,+∞.故选:B6【答案】B【详解】由题意,函数()f x 为定义域上的偶函数,可得()()2(2),3(3)f f f f -=-=, 又由当[)0,+x ∈∞时,()f x 是增函数,且32π>>,所以()()()32f f f π>>,即()()()32f f f π>->-.故选:B .7【答案】B【详解】解: ()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩,当1x ≥ 时, ()10f x x ==无解,则不存在零点. 当1x < 时,()220f x x =-+=,解得x =1x =>(舍去),则零点为x =综上所述: ()f x 的零点个数是1.故选:B8【答案】D【详解】解:因为函数()2,0,x xf xx x⎧≥⎪=⎨-<⎪⎩,()4f a=当0a≥时, ()24f a a==,解得2a=.当0a<时, ()4f a a=-=,解得16a=-故a等于2或16-.故选:D9【答案】A【详解】2(10010)70%1121016028x x x x x-⨯⨯≥⇒-+≤∴≤≤,x的最小值为2,选A. 10【答案】D【详解】由题可得:()()10f nf n⎧>⎪⎨+>⎪⎩.又,αβ为函数()2f x x px q=++的两个零点,所以pαβ+=-,qαβ⋅=.将函数()2f x x px q=++图像往上平移时,开口大小保持不变,如图当函数()2f x x px q=++图像往上平移时,()(){}min,1f n f n+变大,即:当αβ→时,()(){}min,1f n f n+越大,又由二次函数的对称性得:当2121,22n nαβ++→→时,()(){}min,1f n f n+最大令212nαβ+==,则:122nαβ+=-,()(){}min,1f n f n+就是()f n.又()2f n n pn q=++=2112222p q αβαβ++⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ ()2112222αβαβαβαβ++⎛⎫⎛⎫=--+-+⋅ ⎪ ⎪⎝⎭⎝⎭ =()2144αβ--由已知得αβ<,所以()f n 一定小于14, 所以()(){}min ,1f n f n +一定小于14. 故选D 【点睛】本题主要考查了韦达定理及方程与函数关系,考查了计算能力及转化能力,属于中档题. 11【答案】[]2,2-【详解】解: ()f x =:20x -≥,解得22x -≤≤ ,故函数的定义域为:[]2,2-.故答案: []2,2-12【答案】8-【解析】【详解】解: 因为函数()2,01,0x x f x x x ⎧≤=⎨-+>⎩, 则()()()2339918f f f f ⎡⎤-=-==-+=-⎡⎤⎣⎦⎣⎦. 故答案为:8-.【点睛】本题考查分段函数求值,看清楚自变量所在的区间是解题的关键.13【答案】7【详解】解: 已知()1,x ∈+∞,则10x ->, 所以()991111y x x x x =+=-++--17≥=, 当且仅当911x x -=-,即4x =时,等号成立. 所以函数91y x x =+-的最小值为7. 故答案为: 714【答案】 (1). (],2-∞ (2). 1,【详解】解: ①()221f x x x =-++,定义域为R ,开口向下,()221f x x x =-++()2212x x =--++()2122x =--+≤,所以函数的值域是(],2-∞.②因为()()212f x x =--+,对称轴为1x =,若函数在[]3,a -上不是单调函数,则1a >,故实数a 的取值范围是1,.故答案为: ①(],2-∞;②1,15【答案】54或54±【详解】解:因为2850a a -+=,2850b b -+=, ①当a b 时,可设,a b 是方程2850x x -+=的两根, 85a b a b , ()2222282554a b a b ab ∴+=+-=-⨯=②当a b =时,解2850a a -+=得411a ,所以当4a b ==, 2254a b +=+当4a b ==, 2254a b +=-综上所述: 22a b +的值为54或54±.故答案为: 54或54±16【答案】1,【详解】解:令()221f x ax x =--.当0a =时,()1f x x =--,0f x 的根为1x =-,显不在区间0,1内,所以0a =时不成立.当0a ≠时,若一元二次方程0f x在0,1内恰有一个根, 则有以下两种情况:①0f x有两个相等的实数根, 则180a ,18a =, 此时0f x的解为2x =-,不在区间0,1内, 所以18a =时不成立; ②0f x 有两个不相等的实数根,且有一个根在0,1内,则()()010f f ⋅<,则()()22200121110a a ⨯--⋅⨯--<,解得1a >.综上可知,实数a 的取值范围是:1,.故答案为: 1,17【答案】 (1). []1,2 (2). 2-【详解】由图象可知,当0x =时,函数在[]1,1-上的最小值min 1y =, 当1x =±时,函数在[]1,1-上的最小值max 2y =, 所以当[]1,1x ∈-,函数()y f x =值域为[]1,2;当[]0,3x ∈时,函数()()212f x x =--+,当[)3,x ∈+∞时,函数()5f x x =-, 当()1f x =时,2x =或7x =,又因为函数为偶函数,图象关于y 轴对称,所以对于任意[],(0)x a b b ∈<,要使得[]2,1y ∈-,则a R ∈,7b =-或2b =-, 则实数b 的最大值是2b =-. 故答案为[]1,22-;18【答案】()sin f x x =-(答案不唯一)【详解】解:令()sin f x x =-,则对任意的(]0,2x ∈,()0f x <都成立. ()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递减,在,22π⎛⎤ ⎥⎝⎦单调递增. 故函数()f x 在(]0,2是减函数不成立.故()sin f x x =-是符合题意的一个函数.故答案为: ()sin f x x =-(答案不唯一)19【答案】③【详解】解: 对于①,12121f x x x x ,121211f x f x x x , 显然()()()1212f x x f x f x +≠+,故①不正确;对于②,取121,2x x ==,则1211,2f x f x , 可得()()121211120122f x f x x x --==-<--,故②不正确; 对于③121222x x f x x +⎛⎫=⎪+⎝⎭,()()12121212111222f x f x x x x x x x +⎛⎫+=+= ⎪⎝⎭, 2121212121222f x f x x x x x f x x x x ,120,0x x 且12x x ≠,21212120x x x x x x , 1212022f x f x x x f , 121222f x f x x x f ,故③正确.故答案为: ③20【答案】3【详解】解:因为a ,b 均为正数且2a b +=,所以20b a ,则02a <<,()()221122a b a f a f b b ++=++ ()212422a b a b ab ab ab ab+=+-+=-+ 因为a ,b 均为正数且2a b +=,所以a b +≥,则2220122a b ab +⎛⎫⎛⎫<≤== ⎪ ⎪⎝⎭⎝⎭令t ab =,则01t <≤, ()142f t t t=-+在01t <≤单调递减, 所以()min 142131f t =-⨯+= 所以()()3f a f b +≥. 故()()f a f b +的最小值等于3.故答案为:321【答案】(1)|34x x A ;(2){}|3134U A B x x x =-<≤-≤≤或;(3)|3a a .【详解】解: (1)要使函数()f x =有意义, 则4030x x -≥⎧⎨+>⎩,即34x 所以函数的定义域为|34x x.所以集合|34x x A(2)因为全集{}5U x x =≤,2a =, , {}{}1113B x a x a x x ∴=-<<+=-<<{}|135U B x x x ∴=≤-≤≤或,{}|3134U A B x x x =-<≤-≤≤或;(3)由(1)得|34x x A, 若x B ∈是x A ∈的充分条件,即B A ⊆,①当B =∅时, B A ⊆,即11,a a -≥+0a ∴≤②当B ≠∅时, B A ⊆,11013403143a a a a a a a a -<+>⎧⎧⎪⎪-≥-⇒≤⇒<≤⎨⎨⎪⎪+≤≤⎩⎩,综上所述: a 的取值范围为{}|3a a ≤ 22【答案】(1)证明见解析;(2)证明见解析;(3)[]3,3--.【详解】解: (1)证明:定义域为(,0)(0,)-∞+∞; 444()()f x x x x f x x x x ,f x 为奇函数.(2)证明:对任意的()12,0,x x ∈+∞,且12x x <,()()12112244x x f x f x x x ⎛⎫=--- ⎝-⎪⎭()121244x x x x ⎛⎫=--- ⎪⎝⎭()()1212124x x x x x x -=-+()121241x x x x ⎛⎫=-+ ⎪⎝⎭120x x <<,12120,0x x x x ,()()120f x f x ∴-<()()12f x f x ∴<f x 在0,上单调递增. (3)f x 为奇函数且在0,上是增函数, 则()f x 在,0上是增函数,f x 在[]4,1--上是增函数,()()()41f f x f -≤≤-,即()33f x -≤≤,所以函数()4f x x x=-,[]4,1x ∈--的值域为[]3,3-- 23【答案】(1) 4-或1;(2)当2a =时,解集为|2x x ,当2a >时解集为,2a ,当2a <时,解集为2,a ;(3)证明见解析.【详解】解: (1)因为函数()()22f x x a x b =+++, 当1a =,4b =-时, ()()2221434f x x x x x =++-=+- 0f x ,则2340x x +-=,解得4x =-或1x =. 所以函数的零点为4-或1;(2)当2b a =时,()()222f x x a x a =+++, 令0f x 解得x a =-或2x =-,①当2a =时, ()0f x ≤的解集为|2x x②当2a >时, ()0f x ≤的解集为,2a , ③当2a <时, ()0f x ≤的解集为2,a .(3)如果函数()f x 的图象恒在直线22y x =+的上方, 则()22f x x >+对任意的x ∈R 恒成立,即220x ax b ++->对任意的x ∈R 恒成立24(2)0a b ∴=--<,即224a b -> 又因为204a ≥,所以20b ->,2b >. 所以函数()f x 的图象恒在直线22y x =+的上方, 2b >成立.。
2019-2020学年北京市101中学高一(上)期中数学试卷
2019-2020学年北京市101中学高一(上)期中数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分考试时间:120分钟卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1.设集合,,若,则实数a的值为()A. 2 B. C. D.2.计算的结果是()A. B. C.- D.-3.下列函数中,是偶函数的是()A. B. C. D.4.函数的零点所在的区间是()A. (0,1) B. (1,2) C. (2,3) D. (3,4)5.已知,则函数的大致图像是()A. B.C. D.6.设a=,b=,c=,则a,b,c的大小关系为()A. a>c>b B. a>b>c C. b>a>c D. c>a>b7.已知,恒成立,则实数a的取值范围是()A .B .C .D .8.设函数 ,其中 表示不超过x 的最大整数,若函数 的图象与函数 的图象恰有3个交点,则实数a 的取值范围是() A . B . C . D .9. 已知函数)(x f 是R 上的偶函数,当x ≥0时)(x f =1-x ,则)(x f <0的解集是A. (-1,0)B. (0,1)C. (∞-,1-) (1,+∞)D. (-1,1) 10. 若a >1,b <0,则函数b a y x +=的图象有可能是二、填空题:(本大题共4小题,每小题5分,共20分) 11. 计算:2lg +5lg =________;328=________。
12. 若函数)(x f y =的定义域为[-2,3],则函数)1(-=x f y 的定义域为________。
13. 函数34)(2--=x x x f ,则其图象的对称轴方程为x =________;)(x f 的增区间是________。
14. 已知函数⎩⎨⎧>≤--=0,0,2)(2x x x x x x f ,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________。
【精品高一数学试卷】2019-2020北京高一(上)期中数学+答案
2019-2020学年北京高一(上)期中数学试卷一.选择题:本大题共10小题,每小题5分,共50分1.(5分)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合A∩B =()A.{2,3,4,5}B.{3}C.{1,4,5}D.{1,3,4,5}2.(5分)函数f(x)=√x−1x−2的定义域是()A.R B.{x|x>2}C.{x|x≥1}D.{x|x≥1且x≠2} 3.(5分)若a>b,则下列各式中正确的是()A.ac>bc B.ac2>bc2C.a+c2>b+c2D.1a <1b4.(5分)下列函数中,在区间(0,+∞)上为减函数的是()A.y=x2﹣2x B.y=|x|C.y=2x+1D.y=−√x 5.(5分)命题“∀x∈R,x3﹣x2+1≤0”的否定是()A.∃x∈R,x3﹣x2+1≥0B.∃x∈R,x3﹣x2+1>0C.∃x∈R,x3﹣x2+1≤0D.∀x∈R,x3﹣x2+1>06.(5分)下列函数中:①y=2x②y=1(x+1)2③y=x2+1④f(x)={x+1,x<01−x,x>0偶函数的个数是()A.0B.1C.2D.37.(5分)“x>1”是“x2﹣x>0”的()A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)函数f(x)=x3﹣2x﹣3一定存在零点的区间是()A.(2,+∞)B.(1,2)C.(0,1)D.(﹣1,0)9.(5分)下列函数中,满足f(2x)=2f(x)的是()A.f(x)=(x+2)2B.f(x)=x+1C.f(x)=4x D.f(x)=x﹣|x|10.(5分)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是()A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0二.填空题:本大题共6小题,每小题5分,共30分11.(5分)设全集U =R ,集合A ={x |0<x <2},B ={﹣3,﹣1,1,3},则集合(∁U A )∩B = .12.(5分)已知f(x)={2x −1,x ≥03x 2,x <0,则f (f (﹣1))的值为 .13.(5分)函数y =x 2+3x ﹣1,x ∈[﹣2,3]的值域是 . 14.(5分)若x >0,则f(x)=4x +19x的最小值为 . 15.(5分)若二次函数f (x )的图象关于x =2对称,且f (a )≤f (0)<f (1),则实数a 的取值范围是 .16.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i )男学生人数多于女学生人数; (ii )女学生人数多于教师人数; (iii )教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 . 三.解答题:本大题共3小题,共30分17.(10分)设集合A ={x |x 2﹣2x ﹣3>0},B ={x |x 2+4x +3<0},C ={x |2k ﹣1<x <2k +3}. (1)求A ∪B ;(2)若C ⊆A ∪B ,求实数k 的取值范围. 18.(8分)已知a ,b >0,证明:a 3+b 3≥a 2b +ab 2.19.(12分)已知函数f(x)=2x−1a,g(x)=2x−1a(a∈R,a≠0).(1)当a=1时,解关于x的不等式f(x)>0;(2)若f(x)+g(x)≥0在(0,+∞)上恒成立,求a的取值范围.二.填空题:本大题共5小题,每小题4分,共20分20.(4分)已知集合M={0,1,2,3},N={x|x=2a,a∈M},则集合M∩N=.21.(4分)不等式|x﹣1|+|x+2|≤5的解集是.22.(4分)已知x>y>z,x+y+z=0,则①xz<yz②xy>yz③xy>xz④x|y|>z|y|四个式子中正确的是.(只填写序号)23.(4分)设f(x)={(x−a)2,x≤0 x+1x,x>0.(1)当a=12时,f(x)的最小值是;(2)若f(0)是f(x)的最小值,则a的取值范围是.24.(4分)已知集合M={x∈N|1≤x≤15},集合A1,A2,A3满足①每个集合都恰有5个元素;②A1∪A2∪A3=M.集合A i中元素的最大值与最小值之和称为集合A i的特征数,记为X i(i=1,2,3),则X1+X2+X3的最大值与最小值的和为.三.解答题:本大题共2小题,共20分25.(10分)已知函数f(x)=x2+a|x﹣1|.(1)当a=2时,解方程f(x)=2;(2)若f(x)在[0,+∞)上单调递增,求实数a的取值范围.26.(10分)设a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.若f(x),g(x)满足①f(x)有零点;②f(x)的零点均为g(f(x))的零点;③g(f(x))的零点均为f(x)的零点.则称f(x),g(x)为一对“K函数”.(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“K函数”,并说明理由;(2)若f(x),g(x)为任意一对“K函数”,求d的值;(3)若a=1,f(1)=0,且f(x),g(x)为一对“K函数”,求c的取值范围.2019-2020学年北京高一(上)期中数学试卷参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分 1.【解答】解:∵A ={1,3},B ={3,4,5}, ∴A ∩B ={3}. 故选:B .2.【解答】解:函数f(x)=√x−1x−2中, 令{x −1≥0x −2≠0, 解得x ≥1且x ≠2,所以函数f (x )的定义域是{x |x ≥1且x ≠2}. 故选:D .3.【解答】解:由a >b ,可得ac 与bc 大小关系不确定,ac 2≥bc 2,a +c 2>b +c 2,1a与1b 的大小关系不确定. 因此只有C 确定. 故选:C .4.【解答】解:由二次函数的性质可知,y =x 2﹣2x 在(0,+∞)上先减后增,故A 错误; y =|x |在(﹣∞,0)上为减函数,(0,+∞)上为增函数,故B 错误; 由一次函数的性质可知,y =2x +1在(0,+∞)上为增函数,故C 错误;由幂函数的性质可知,y =√x 在(0,+∞)上为增函数,从而有y =−√x (0,+∞)上为减函数,故D 正确; 故选:D .5.【解答】解:将量词否定,结论否定,可得∃x ∈R ,x 3﹣x 2+1>0 故选:B .6.【解答】解:①由y =2x =f (x ),可得f (﹣x )=−2x =−f (x ),即不为偶函数; ②f (x )=y =1(x+1)2的定义域为{x |x ≠﹣1},关于原点不对称,不是偶函数;③由二次函数的性质可知,y =x 2+1的图象关于y 轴对称,为偶函数; ④由f(x)={x +1,x <01−x ,x >0可得f (﹣x )={1+x ,x <0−x +1,x >0=f (x )是偶函数.故选:C.7.【解答】解:∵x2﹣x>0⇔x>1或x<0,∴当x>1时,x2﹣x>0成立,当x2﹣x>0时,x>1不一定成立,∴“x>1”是“x2﹣x>0”的充分不必要条件.故选:A.8.【解答】解:∵f(x)=x3﹣2x﹣3,∴f(1)=﹣4<0,f(2)=1>0,由函数零点判定定理可知,函数在(1,2)上一定存在零点.故选:B.9.【解答】解:根据题意,依次分析选项:对于A,f(x)=(x+2)2,f(2x)=(2x+2)2=4(x+1)2,2f(x)=2(x+2)2,f(2x)≠2f(x);对于B,f(x)=x+1,f(2x)=2x+1,2f(x)=2(x+1)=2x+2,f(2x)≠2f(x);对于C,f(x)=4x,f(2x)=42x=2x,2f(x)=8x,f(2x)≠2f(x);对于D,f(x)=x﹣|x|,f(2x)=2x﹣|2x|=2x﹣2|x|,2f(x)=2x﹣2|x|,f(2x)=2f(x),符合题意;故选:D.10.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=bc2>0,∴b>0,由f(x)=0得ax+b=0,即x=−b a,即函数的零点x=−ba>0,∴a<0,综上a<0,b>0,c<0,故选:C.二.填空题:本大题共6小题,每小题5分,共30分11.【解答】解:全集U=R,集合A={x|0<x<2},B={﹣3,﹣1,1,3},则集合∁U A={x|x≤0或x≥2},所以集合(∁U A )∩B ={﹣3,﹣1,3}. 故答案为:{﹣3,﹣1,3}. 12.【解答】解:根据题意,f(x)={2x −1,x ≥03x 2,x <0,则f (﹣1)=3×(﹣1)2=3, 则f (f (﹣1))=f (3)=2×3﹣1=5; 故答案为:5.13.【解答】解:因为y =x 2+3x ﹣1,所以函数对称轴为x =−32,因为x ∈[﹣2,3],所以当x =−32时,y 的值最小为(−32)2+3×(−32)−1=−134, 当x =3时,y 的值最大为32+9﹣1=17, 所以函数的值域为[−134,17]. 故答案为:[−134,17]. 14.【解答】解:∵x >0,∴4x +19x ≥2√4x ⋅19x =43(当且仅当4x =19x 即x =16时,取“=”号), ∴当x =16时,f (x )最小值为43.故答案为:43.15.【解答】解:由题意可知二次函数f (x )的对称轴为x =2, 因为f (0)<f (1),所以f (x )在(﹣∞,2)上单调递增,所以二次函数f (x )开口向下,在(﹣∞,2)上单调递增,在(2,+∞)上单调递减. ①当a ∈(﹣∞,2)时:{a <2a ≤0,解得a ≤0.②当a ∈(2,+∞)时:因为f (4)=f (0), 所以{a >2a ≥4,解得a ≥4.综上所求:a ≤0或a ≥4. 故答案为:a ≤0或a ≥416.【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则{x>yy>42×4>x,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则{x>yy>z2z>x,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12三.解答题:本大题共3小题,共30分17.【解答】解:(1)集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},B={x|x2+4x+3<0}={x|﹣3<x<﹣1},则A∪B={x|x<﹣1或x>3};(2)由C={x|2k﹣1<x<2k+3},且C⊆A∪B,令2k﹣1≥3或2k+3≤﹣1,解得k≥2或k≤﹣2,所以实数k的取值范围是k≤﹣2或k≥2.18.【解答】证明:(a3+b3)﹣(a2b+ab2)=a2(a﹣b)+b2(b﹣a)=(a﹣b)(a2﹣b2)=(a﹣b)2(a+b)∵a>0,b>0,∴a+b>0,(a﹣b)2≥0,∴(a﹣b)2(a+b)≥0,则有a3+b3≥a2b+b2a.19.【解答】解:(1)当a=1时,f(x)=2x−1.∵f(x)>0,∴2x−1>0,∴0<x<2,∴不等式的解集为{x|0<x<2};(2)f (x )+g (x )=2x −1a +2x −1a =2x +2x −2a, ∵f (x )+g (x )≥0在(0,+∞)上恒成立, ∴2a ≤2x+2x 在(0,+∞)上恒成立,∴只需2a≤(2x+2x)min .∵当x >0时,2x+2x ≥2√2x⋅2x =4,当且仅当x =1时取等号,∴(2x +2x)min =4,∴2a≤4,∴a <0或a ≥12,∴a 的取值范围为(﹣∞,0)∪[12,+∞).二.填空题:本大题共5小题,每小题4分,共20分 20.【解答】解:∵M ={0,1,2,3},N ={0,2,4,6}, ∴M ∩N ={0,2}. 故答案为:{0,2}.21.【解答】解:根据绝对值的意义可得,|x ﹣1|+|x +2|表示数轴上的x 对应点到1和﹣2对应点的距离之和,而﹣3、2对应点到1和﹣2对应点的距离之和正好等于5, 故不等式|x ﹣1|+|x +2|≤5的解集是[﹣3,2], 故答案为:[﹣3,2].22.【解答】解:已知x >y >z ,x +y +z =0,则①x >0,y >0,z <0,②x >0,y <0,z <0,③x +z =0,y =0.所以①xz <yz 正确.②xy >yz ,不正确.③xy >xz ,正确.④x |y |>z |y |,不正确. 故答案为:①③.23.【解答】解:(1)当a =12时,当x ≤0时,f (x )=(x −12)2≥(−12)2=14, 当x >0时,f (x )=x +1x≥2√x ⋅1x=2,当且仅当x =1时取等号, 则函数的最小值为14,(2)由(1)知,当x >0时,函数f (x )≥2,此时的最小值为2,若a <0,则当x =a 时,函数f (x )的最小值为f (a )=0,此时f (0)不是最小值,不满足条件.若a ≥0,则当x ≤0时,函数f (x )=(x ﹣a )2为减函数, 则当x ≤0时,函数f (x )的最小值为f (0)=a 2,要使f (0)是f (x )的最小值,则f (0)=a 2≤2,即0≤a ≤√2, 即实数a 的取值范围是[0,√2], 故答案为:14,[0,√2].24.【解答】解:解:由题意集合M ={x ∈N *|1≤x ≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A 1={1,4,5,6,7},A 2={3,12,13,14,15},A 3={2,8,9,10,11}时, X 1+X 2+X 3取最小值:X 1+X 2+X 3=8+18+13=39,当A 1={1,4,5,6,15},A 2={2,7,8,9,14},A 3={3,10,11,12,13}时, X 1+X 2+X 3=16+16+16=48,当A 1={1,2,3,4,15},A 2={5,6,7,8,14},A 3={9,10,11,12,13}时, X 1+X 2+X 3取最大值:X 1+X 2+X 3=16+19+22=57, ∴X 1+X 2+X 3的最大值与最小值的和为:39+57=96. 故答案为:96.三.解答题:本大题共2小题,共20分25.【解答】解:(1)当a =2时,f (x )=x 2+2|x ﹣1|=2. 当x <1时,x 2+2(1﹣x )=2,x 2﹣2x =0,得x =0; 当x ≥1时,x 2+2(x ﹣1)=2,x 2+2x ﹣4=0,得x =√5−1. 综上,方程f (x )=2的解为x =0或x =√5−1.(2)x ≥1时,f (x )=x 2+a (x ﹣1)=x 2+ax ﹣a 在[1,+∞)上单调递增, 则x =−a2≤1,故a ≥﹣2; 0≤x <1时,f (x )=x 2﹣ax +a ,x =a2≤0,故a ≤0. 且1﹣a +a ≤1+a ﹣a 恒成立.综上,实数a 的取值范围是[﹣2,0].26.【解答】解:(1)若f (x ),g (x )为任意一对“K 函数”,求d 的值;由f (x )=x +1=0,得x =﹣1,所以g (f (﹣1))=g (0)=1,故x =﹣1不是g (f (x ))的零点,故不满足②,所以不是一对“K 函数”,(2)设r 为方程的一个根,即f (r )=0,则由题设得g (f (r ))=0. 于是,g (0)=g (f (r ))=0,即g (0)=d =0.所以d =0,反之g (f (x ))=f (x )[f 4(x )+bf (x )+cf (x ))=0,则f (x )=0成立,故d =0;(3)因为d =0,由a =1,f (1)=0得b =﹣c ,所以f (x )=bx 2+cx =﹣cx (x ﹣1),g (f (x ))=f (x )[f 2(x )﹣cf (x )+c ], 由f (x )=0得x =0,1,可以推得g (f (x ))=0,根据题意,g (f (x ))的零点均为f (x )的零点,故f 2(x )﹣cf (x )+c =0必然无实数根 设t =﹣cx (x ﹣1),则t 2﹣ct +c =0无实数根,当c >0时,t =﹣c (x −12)2+c 4≤c 4,h (t )=t 2﹣ct +c =(t −c 2)2+c −c 24, 所以h (t )min =h (c4)>0,即c 216−c 24+c >0,解得c ∈(0,163),当c <0时,t =﹣c (x −12)2+c 4≥c 4,h (t )=t 2﹣ct +c =(t −c 2)2+c −c 24,所以h (t )min =h (c2)>0,即c −c 24>0,解得c ∈(0,4),因为c <0,显然不成立,当c =0时,b =0,此时f (x )=0在R 上恒成立,g (f (x ))=c =0也恒成立, 综上:c ∈[0,163).。
北京101中学高一(上)期中数学4
北京名校高一数学优质试题汇编(附详解)北京101中学高一(上)期中数 学一、选择题(共8小题,共40分)1.设全集U =R ,{0123}M =,,,,{101}N =-,,,则图中阴影部分所表示的集合是( )A .{1}B .{1}-C .{0}D .{01},2.下列函数中与y x =具有相同图象的一个函数是( )A .2()y x =B .2y x =C .2x y x = D .33y x =3.已知()f x 为奇函数,当0x >时,2()2f x x x =-+,则()f x 在[31]--,上是( )A .增函数,最小值为1-B .增函数,最大值为1-C .减函数,最小值为1-D .减函数,最大值为1-4.已知函数10()(2)0x x f x f x x +≤⎧=⎨->⎩,,,则(3)f 的值等于( )A .4B .2C .1D .05.若一次函数()f x ax b =+有一个零点2,则函数2()g x bx ax =-的图像可能是( )A .B .C .D .6.已知函数221()3x x y +=,则其单调增区间是( ) A .(0]-∞, B .(1]-∞-, C .[1)-+∞, D .[2)-+∞,7.已知函数212()321x x f x x x -<⎧⎪=⎨≥⎪⎩-,,,则函数()()1g x f x =-的零点个数为( ) A .2 B .3 C .4 D .58.定义在R 上的函数()f x 满足(0)0f =,()(1)1f x f x +-=,1()()52x f f x =,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2017f 等于( ) A .164 B .132 C .116 D .18 二、填空题(共6小题,共30分)9.计算:1100.753210.064()160.014---++= . 10.已知集合{|210}A x x =+>,{|320}B x x =+≤,则A B = .11.已知函数()y f x =的定义域是[23]-,,则(21)y f x =-的定义域是 .12.函数21()(21)4f x x a x =+-+的值域为[0)+∞,,则实数a 的取值范围是 .13.已知()f x 是定义在R 上的偶函数,且(4)(2)f x f x +=-,若当[30]x ∈-,时,()6x f x -=,则(919)f = .14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论:○1 该食品在6C 的保鲜时间是8小时; ○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少;○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是 .三、解答题(共5小题,共50分)15.(7分)已知集合2{|150}A x x px =-+=,2{|0}B x x ax b =++=,且{23}A B =,,{3}A B =,求实数p a b ,,的值及集合A B , .16.(10分)已知2()ax b f x x+=是定义在(3][1)b b -∞--+∞,,上的奇函数. (1)若(2)3f =,求a b ,的值;(2)若1-是函数()f x 的一个零点,求函数()f x 在区间[24],的值域.17.(10分)已知二次函数()f x 满足(1)(1)f x f x --=-,其图象过点(0,1),且与x 轴有唯一交点.(1)求()f x 的解析式;(2)设函数()()(2)g x f x a x =-+,求()g x 在[12],上的最小值()h a .18.(12分)函数2()1ax b f x x +=+是定义在[11]-,上的奇函数,且14()25f =. (1)确定函数()f x 的解析式;(2)判断并用定义证明()f x 在(1,1)-上的单调性;(3)若(13)(1)0f m f m -++≥,求实数m 的所有可能的取值.19.(11分)已知函数2()21g x ax ax b =-++(0a >)在区间[24],上的最大值为9,最小值为1,记()()f x g x =.(1)求实数a b ,的值;(2)若不等式(2)1k f >成立,求实数k 的取值范围;(3)定义在[]p q ,上的函数()x ϕ,设011i i n p x x x x x q-=<<<<<<=,121n x x x -,,将区间[]p q ,任意划分成n 个小区间,如果存在一个常数0M >,使得和式11()()n i i i x x Mϕϕ-=-≤∑恒成立,则称函数()x ϕ为在[]p q ,上的有界变差函数,试判断函数()f x 是否为[04],上的有界变差函数?若是,求M的最小值;若不是,请说明理由.。
2019-2020学年北京市101中学高一(上)期中数学试卷试题及答案
2019-2020学年北京市101中学高一(上)期中数学试卷一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.方程2560x x --+=的解集为( ) A .{6-,1}B .{2,3}C .{1-,6}D .{2-,3}-2.“2x >”是“24x >”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件3.下列函数中,在区间(1,)+∞上为增函数的是( ) A .31y x =--B .2y x=C .245y x x =-+D .|1|2y x =-+4.已知()f x 是定义在R 上的奇函数,且当0x >时,2()f x x =,则1()(2f -= )A .14-B .14 C .94-D .945.设函数1()41(0)f x x x x=+-<,则()(f x ) A .有最大值3B .有最小值3C .有最小值5-D .有最大值5-6.若函数()()af x x a R x=+∈在区间(1,2)上恰有一个零点,则a 的值可以是( )A .2-B .0C .1-D .37.已知函数(3)5,1()2,1a x x f x a x x-+⎧⎪=⎨>⎪⎩…是R 上的减函数,则实数a 的取值范围是( )A .(0,2)B .(0,2]C .(0,3)D .(0,3]8.设函数()f x 在(,)-∞+∞上有意义,且对于任意的x ,y R ∈,有|()()|||f x f y x y -<-并且函数(1)f x +的对称中心是(1,0)-,若函数()()g x f x x -=,则不等式2(2)(2)0g x x g x -+-<的解集是( )A .(-∞,1)(2⋃,)+∞B .(1,2)C .(-∞,1](2,)-+∞D .(1,2)-二、填空题共6小题,每小题5分,共30分.9.已知1x ,2x 是方程2250x x +-=的两根,则211122x x x x ++的值为 .10.已知方程210ax bx ++=的两个根分别为14-,3,则不等式210ax bx ++>的解集为 .(结果用区间表示)11.命题“0x ∀>,2230x x +->”的否定是 .12.已知()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且32()()2f x g x x x -=++,则f (1)g +(1)的值等于 .13.若函数2()21f x x x =-+在区间[a ,2]a +上的最小值为4,则实数a 的取值集合为 . 14.已知函数||2,(),x x x x a f x x x a -+⎧=⎨<⎩…(1)若0a =,则函数()f x 的零点有 个;(2)若()f x f …(1)对任意的实数x 都成立,则实数a 的取值范围是 . 三、解答题共5题,共50分.解答应写出文字说明、演算步骤或证明过程. 15.设集合2{A x =,1}x -,{5B x =-,1x -,9}. (1)若3x =-,求A B ;(2)若{9}A B =,求AB .16.已知函数2()f x ax x=-.(1)求定义域,并判断函数()f x 的奇偶性;(2)若f (1)f +(2)0=,证明函数()f x 在(0,)+∞上的单调性,并求函数()f x 在区间[1,4]上的最值.17.一元二次方程2210x mx m m -++-=有两实根1x ,2x . (1)求m 的取值范围; (2)求12x x 的最值;(3)如果12||x x ->m 的取值范围.18.某住宅小区为了使居民有一个优雅舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200平方米的十字型地域.现计划在正方形MNPQ 上建花坛,造价为4200元/平方米,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/平方米,再在四个空角上铺草坪,造价为80元/平方米.(1)设总造价为S 元,AD 的边长为x 米,DQ 的边长为y 米,试建立S 关于x 的函数关系式;(2)计划至少要投入多少元,才能建造这个休闲小区.19.已知函数2()f x x bx c =++,其中b ,c R ∈. (Ⅰ)当()f x 的图象关于直线1x =对称时,b = ;(Ⅱ)如果()f x 在区间[1-,1]不是单调函数,证明:对任意x R ∈,都有()1f x c >-; (Ⅲ)如果()f x 在区间(0,1)上有两个不同的零点.求2(1)c b c ++的取值范围.2019-2020学年北京市101中学高一(上)期中数学试卷参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.方程2560x x --+=的解集为( ) A .{6-,1}B .{2,3}C .{1-,6}D .{2-,3}-【解答】解:2560x x --+=, 2560x x ∴+-=, (6)(1)0x x ∴+-=, 6x ∴=-或1,方程2560x x --+=的解集为{6-,1}. 故选:A .2.“2x >”是“24x >”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件【解答】解:由24x >,解得2x >,或2x <-. ∴ “2x >”是“24x >”的充分不必要条件.故选:B .3.下列函数中,在区间(1,)+∞上为增函数的是( ) A .31y x =--B .2y x=C .245y x x =-+D .|1|2y x =-+【解答】解:由一次函数的性质可知,31y x =--在区间(1,)+∞上为减函数,故A 错误; 由反比例函数的性质可知,2y x=在区间(1,)+∞上为减函数, 由二次函数的性质可知,245y x x =-+在(,2)-∞上单调递减,在(2,)+∞上单调递增,故C 错误;由一次函数的性质及图象的变换可知,|1|2y x =-+在(1,)+∞上单调递增. 故选:D .4.已知()f x 是定义在R 上的奇函数,且当0x >时,2()f x x =,则1()(2f -= )A .14-B .14 C .94-D .94【解答】解:根据题意,()f x 满足0x >时,2()f x x =,则2111()()224f ==,又由函数()f x 为奇函数,则111()()224f f -=-=-;故选:A .5.设函数1()41(0)f x x x x=+-<,则()(f x ) A .有最大值3B .有最小值3C .有最小值5-D .有最大值5-【解答】解:当0x <时,11()41[(4)]1)15f x x x x x x=+-=--+---=---…. 当且仅当14x x -=-,即12x =-时上式取“=”.()f x ∴有最大值为5-.故选:D .6.若函数()()af x x a R x=+∈在区间(1,2)上恰有一个零点,则a 的值可以是( )A .2-B .0C .1-D .3【解答】解:由()0af x x x=+=可得,2a x =-, 由函数()()af x x a R x=+∈在区间(1,2)上恰有一个零点,可知2a x =-在(1,2)只有一个零点,当(1,2)x ∈时,2(4,1)y x =-∈--,41a ∴-<<-,结合选项可知,A 符合题意.故选:A .7.已知函数(3)5,1()2,1a x x f x a x x-+⎧⎪=⎨>⎪⎩…是R 上的减函数,则实数a 的取值范围是( )A .(0,2)B .(0,2]C .(0,3)D .(0,3]【解答】解:因为()f x 为R 上的减函数, 所以1x …时,()f x 递减,即30a -<①,1x >时,()f x 递减,即0a >②,且(3)152a a -⨯+…③, 联立①②③解得,02a <…. 故选:B .8.设函数()f x 在(,)-∞+∞上有意义,且对于任意的x ,y R ∈,有|()()|||f x f y x y -<-并且函数(1)f x +的对称中心是(1,0)-,若函数()()g x f x x -=,则不等式2(2)(2)0g x x g x -+-<的解集是( )A .(-∞,1)(2⋃,)+∞B .(1,2)C .(-∞,1](2,)-+∞D .(1,2)-【解答】解:由函数(1)f x +的对称中心是(1,0)-,可得()f x 的图象关于(0,0)对称即()f x 为奇函数,()()f x f x ∴-=-, ()()g x f x x -=, ()()g x f x x ∴=+,()()()()g x f x x f x x g x ∴-=--=--=-,对于任意的x ,y R ∈,有|()()|||f x f y x y -<-, |()()()|||g x g y x y x y ∴---<-, ∴|()()()|1||g x g y x y x y ---<-,即()()|1|1g x g y x y--<-,()()02g x g y x y-∴<<-,即()0g x '>,()g x ∴单调递增,2(2)(2)0g x x g x -+-<, 2(2)(2)(2)g x x g x g x ∴-<--=-,222x x x ∴-<-,整理可得,2320x x -+>, 解可得,2x >或1x <, 故选:A .二、填空题共6小题,每小题5分,共30分.9.已知1x ,2x 是方程2250x x +-=的两根,则211122x x x x ++的值为 0 . 【解答】解:1x ,2x 是方程2250x x +-=的两根, 则211250x x +-=,125x x =-.211122550x x x x ∴++=-=.故答案为:0.10.已知方程210ax bx ++=的两个根分别为14-,3,则不等式210ax bx ++>的解集为 (4,3) .(结果用区间表示) 【解答】解:由已知方程210ax bx ++=的两个根分别为14-,3,134b a ∴-+=-,11()34a -⨯=;解得:43a =-,113b =.∴不等式210ax bx ++>对应的二次函数开口向下,且对应方程的根为:14-和3. ∴所求不等式的解集为1(4-,3).故答案为:1(4-,3).11.命题“0x ∀>,2230x x +->”的否定是 00x ∃>,20230x x +-… . 【解答】解:命题为全称命题,则命题“0x ∀>,2230x x +->”的否定是为00x ∃>,200230x x +-…,故答案为:00x ∃>,20230x x +-…. 12.已知()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且32()()2f x g x x x -=++,则f (1)g +(1)的值等于 2 .【解答】解:()f x ,()g x 分别是定义在R 上的偶函数和奇函数, ()()f x f x ∴-=,()()g x g x -=-,32()()2f x g x x x -=++, 32()()2f x g x x x ∴-+-=++,则f (1)g +(1)1122=-++=. 故答案为:213.若函数2()21f x x x =-+在区间[a ,2]a +上的最小值为4,则实数a 的取值集合为 {3-,3} .【解答】解:因为函数22()21(1)f x x x x =-+=-, 所以对称轴为1x =,顶点坐标为(1,0). 令2214x x -+=得:2230x x --=, 解得:1x =-或3, 所以21a +=-或3a =, 即:3a =-或3. 故答案为:{3-,3}14.已知函数||2,(),x x x x a f x x x a -+⎧=⎨<⎩…(1)若0a =,则函数()f x 的零点有 2 个;(2)若()f x f …(1)对任意的实数x 都成立,则实数a 的取值范围是 . 【解答】解:(1)当0a =时,如图,由图可知,()f x 有2个零点.(2)①当0a …时,22,(),x x x af x x x a ⎧-+=⎨<⎩…,如图,(1,0)A ,当x a =在A 点左侧时,总能满足()f x f …(1),此时01a <…; 当x a =在A 点右侧时,不满足, ②当0a <时,22,(),x x x a f x x x a ⎧+=⎨<⎩…,如图,此时,无论a 取何值均不能满足()f x f …(1). 综上01a <….故答案为:2;01a <….三、解答题共5题,共50分.解答应写出文字说明、演算步骤或证明过程. 15.设集合2{A x =,1}x -,{5B x =-,1x -,9}. (1)若3x =-,求A B ;(2)若{9}AB =,求AB .【解答】解:(1)3x =-时,{9A =,4}-,{8B =-,4,9}, {9}AB ∴=; (2){9}AB =,9A ∴∈,29x ∴=,或19x -=,解得3x =±或10,3x =时,不满足集合B 中元素的互异性,3x ∴=-或10,由(1)知,3x =-时,{8A B =-,4-,4,9},10x =时,{100A =,9},{5B =,9-,9},{9AB ∴=-,5,9,100}.16.已知函数2()f x ax x=-.(1)求定义域,并判断函数()f x 的奇偶性;(2)若f (1)f +(2)0=,证明函数()f x 在(0,)+∞上的单调性,并求函数()f x 在区间[1,4]上的最值.【解答】解:(1)由题意可得,0x ≠, 2()()f x ax f x x-=-+=-, ()f x ∴为奇函数;(2)由f (1)f +(2)2210a a =-+-=, 1a ∴=,2()f x x x=-, 设120x x <<,则1212122112222()()()(1)f x f x x x x x x x x x -=-+-=-+, 120x x <<,120x x ∴-<,12210x x +>, 12122()(1)0x x x x ∴-+<,即12()()f x f x <, ()f x ∴在(0,)+∞上的单调递增,∴函数()f x 在区间[1,4]上的最大值f (4)72=,f (1)1=-. 17.一元二次方程2210x mx m m -++-=有两实根1x ,2x . (1)求m 的取值范围; (2)求12x x 的最值;(3)如果12||x x ->m 的取值范围.【解答】解:(1)一元二次方程2210x mx m m -++-=有两实根1x ,2x .∴△22()4(1)0m m m =--+-…, 从而解得:223m-剟. (2)一元二次方程2210x mx m m -++-=有两实根1x ,2x .∴由根与系数关系得:2212151()24x x m m m =+-=+-, 又由(1)得:223m -剟, ∴2515()1424m -+-剟, 从而,12x x 最小值为54-,最大值为1. (3)一元二次方程2210x mx m m -++-=有两实根1x ,2x .∴由根与系数关系得:21212,1x x m x x m m +==+-,∴212||x x m -===>从而解得:113m -<<-, 又由(1)得:223m-剟, ∴1(1,)3m ∈--. 18.某住宅小区为了使居民有一个优雅舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200平方米的十字型地域.现计划在正方形MNPQ 上建花坛,造价为4200元/平方米,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/平方米,再在四个空角上铺草坪,造价为80元/平方米.(1)设总造价为S 元,AD 的边长为x 米,DQ 的边长为y 米,试建立S 关于x 的函数关系式;(2)计划至少要投入多少元,才能建造这个休闲小区.【解答】解:(1)由题意,有22004x AM x-=,由0AM >,有 0x <<;则22222004200210(200)802()4x S x x x -=+-+⨯⨯; 2422222400000400010400000420042000210400038000x x S x x x x x -+=+-+=++; S ∴关于x 的函数关系式:22400000400038000S x x =++,(0x <<); (2)22240000040003800038000118000S x x x =+++=…;当且仅当224000004000x x =时,即x =(0,,S 有最小值;∴当x =118000min S =元.故计划至少要投入118000元,才能建造这个休闲小区.19.已知函数2()f x x bx c =++,其中b ,c R ∈.(Ⅰ)当()f x 的图象关于直线1x =对称时,b = 2- ;(Ⅱ)如果()f x 在区间[1-,1]不是单调函数,证明:对任意x R ∈,都有()1f x c >-; (Ⅲ)如果()f x 在区间(0,1)上有两个不同的零点.求2(1)c b c ++的取值范围.【解答】解:(Ⅰ)函数2()f x x bx c =++的对称轴为2b x =-, 由()f x 的图象关于直线1x =对称,可得12b -=,解得2b =-, 故答案为:2-.(Ⅱ)证明:由()f x 在[1-,1]上不单调,可得112b -<-<,即22b -<<, 对任意的x R ∈,222()()2424b b b b f x fc c -=-+=-…, 由22b -<<,可得2()14b f xc c ->-…; (Ⅲ)()f x 在区间(0,1)上有两个不同的零点,设为r ,s ,()r s ≠,r ,(,1)s ∈,可设()()()f x x r x s =--,由2(1)(1)(0)c b c c b c f f ++=++=(1)(1)(1)rs r s =--,且22(1)(1)10(1)(1)[][]2216r r s s rs r s +-+-<--<=, 则2(1)(0c b c ++∈,1)16.。
北京市一零一中学2019-2020学年高一上学期期中数学试题(解析版)
北京一零一中学2019-2020学年高一上学期期中考试数学试题一、选择题(本大题共8小题)1.方程-x 2-5x +6=0的解集为( ).A. {}6,1-B. {}2,3C. {}1,6-D. {}2,3--【答案】A 【解析】 【分析】因式分解法求解一元二次方程.【详解】∵-x 2-5x +6=0,∴x 2+5x -6=0, ∴(x +6)(x -1)=0, ∴x =-6或1,方程-x 2-5x +6=0的解集为{-6,1}. 故选:A .【点睛】本题属于简单题,解一元二次方程时注意观察方程特征,本题采用因式分解法会快速精准解题.2.“2x >”是“24x >”的 ( ) A. 必要不充分条件 B. 充分不必要条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【详解】因为242x x >⇔>或2x <-,所以,“2x >”能推出“24x >”, “24x >”不能推出“2x >”, “2x >”是“24x >”的充分不必要条件,故选B.3.下列函数中,在区间(1,+∞)上为增函数的是( ). A. 31y x =--B. 2y x=C. 245y x x =-+D. 12y x =-+【答案】D 【解析】 【分析】结合一次函数,二次函数及反比例函数的图象及图象变换分别进行判断即可. 【详解】由一次函数的性质可知,y =-3x -1在区间(1,+∞)上为减函数,故A 错误;由反比例函数的性质可知,y =2x在区间(1,+∞)上为减函数, 由二次函数的性质可知,y =x 2-4x +5在(-∞,2)上单调递减,在(2,+∞)上单调递增,故C 错误; 由一次函数的性质及图象的变换可知,y =|x -1|+2在(1,+∞)上单调递增. 故选:D .【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.4.已知()f x 是定义在R 上的奇函数,且当0x >时,2()f x x =,则1()2f -=A. 14-B.14 C. 94-D.94【答案】A 【解析】 【分析】由题意结合函数的解析式和函数的奇偶性确定函数值即可. 【详解】由奇函数的性质结合题意可得:211112224f f ⎛⎫⎛⎫⎛⎫-=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 本题选择A 选项.【点睛】本题主要考查函数的奇偶性,奇函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力. 5.设函数f (x )=4x +1x-1(x <0),则f (x )( ). A. 有最大值3 B. 有最小值3C. 有最小值5-D. 有最大值5-【答案】D 【解析】 【分析】直接利用基本不等式求得函数f (x )=4x +1x-1(x <0)的最值得答案.【详解】当x <0时,f (x )=4x +1x -1=-[(-4x )+1x-]-115≤-=-. 当且仅当-4x =-1x ,即x =-12时上式取“=”. ∴f (x )有最大值为-5.故选:D .【点睛】本题考查利用基本不等式求函数的最值,是基础题.6.若函数()af x x x=+ (a ∈R)在区间(1,2)上有零点,则a 的值可能是( ) A. -2 B. 0 C. 1 D. 3【答案】A 【解析】 【分析】利用零点存在性定理逐个选项代入验证,即可得到答案. 【详解】函数()af x x x=+()a R ∈的图象在()12,上是连续不断的,逐个选项代入验证,当2a =-时,()()112022110f f =-<,=-=>,.故()f x 在区间()12,上有零点,同理,其他选项不符合, 故选A.【点睛】本题考查了函数的零点与方程的根的应用,属于基础题.7.已知函数(3)5,1()2,1a x x f x ax x-+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是 A. (0,3) B. (0,3]C. (0,2)D. (0,2]【答案】D 【解析】 【分析】由()f x 为R 上的减函数,根据1x ≤和1x >时,()f x 均单调递减,且2(3)151aa -⨯+≥,即可求解. 【详解】因为函数()f x 为R 上的减函数,所以当1x ≤时,()f x 递减,即30a -<,当1x >时,()f x 递减,即0a >,且2(3)151aa -⨯+≥,解得2a ≤, 综上可知实数a 的取值范围是(0,2],故选D.【点睛】本题主要靠考查了分段函数的单调性及其应用,其中熟练掌握分段的基本性质,列出相应的不等式关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.设函数f (x )在(-∞,+∞)上有意义,且对于任意的x ,y ∈R ,有|f (x )-f (y )|<|x -y |并且函数f (x +1)的对称中心是(-1,0),若函数g (x )-f (x )=x ,则不等式g (2x -x 2)+g (x -2)<0的解集是( ).A. ()(),12,-∞⋃+∞B. ()1,2C. (],1(2-∞-⋃,)+∞D. ()1,2-【答案】A 【解析】 【分析】由已知可知f (x )为奇函数,从而可得g (-x )也为奇函数,然后结合|f (x )-f (y )|<|x -y |,得()()0g x g y x y->-,从而可得g (x )单调递增,结合单调性及奇函数的定义可求.【详解】由函数f (x +1)的对称中心是(-1,0),可得f (x )的图象关于(0,0)对称即f (x )为奇函数, ∴f (-x )=-f (x ), ∵g (x )-f (x )=x ,∴g (x )=f (x )+x ,∴g (-x )=f (-x )-x =-f (x )-x =-g (x ),∵对于任意的x ,y ∈R ,有|f (x )-f (y )|<|x -y |, ∴|g (x )-g (y )-(x -y )|<|x -y |,∴()()()g x g y x y 1x y----<,即|()()g x g y 1x y---|<1,∴0<()()g x g y x y--<2,由对任意实数,()x y x y ≠有()()0g x g y x y->-得g (x )单调递增,∵g (2x -x 2)+g (x -2)<0, ∴g (2x -x 2)<-g (x -2)=g (2-x ), ∴2x -x 2<2-x ,整理可得,x 2-3x +2>0, 解可得,x >2或x <1, 故选:A .【点睛】本题主要考查了利用函数的奇偶性及单调性求解不等式,解题的关键是结合单调性定义判断出函数g (x )的单调性.二、解答题(本大题共11小题,共80.0分)9.已知x 1,x 2是方程x 2+2x -5=0的两根,则x 12+2x 1+x 1x 2的值为______.【答案】0【解析】【分析】x1,x2是方程x2+2x-5=0的两根,可得x12+2x1-5=0,x1x2=-5.即可得出.【详解】∵x1,x2是方程x2+2x-5=0的两根,则x12+2x1-5=0,x1x2=-5.∴x12+2x1+x1x2=5-5=0.故答案为:0.【点睛】本题考查了一元二次方程的根与系数的关系、方程的根,考查了推理能力与计算能力,属于基础题.10.已知方程210ax bx++=两个根为14-,3,则不等式210ax bx++>的解集为______.【答案】134x x⎧⎫-<<⎨⎬⎩⎭【解析】【分析】根据韦达定理求出,a b,代入不等式,解一元二次不等式求得结果.【详解】由题意得:1341134baa⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩43113ab⎧=-⎪⎪⇒⎨⎪=⎪⎩则不等式可化为:241130x x--<134x⇒-<<本题正确结果:134x x⎧⎫-<<⎨⎬⎩⎭的【点睛】本题考查一元二次方程的根与一元二次不等式求解的问题,属于基础题.11.命题“∀x>0,x2+2x-3>0”的否定是______.【答案】∃x0>0,x02+2x0-3≤0【解析】【分析】根据含有量词的命题的否定即可得到结论.【详解】命题为全称命题,则命题“∀x>0,x2+2x-3>0”的否定是为∃x0>0,x02+2x0-3≤0,故答案为:∃x0>0,x02+2x0-3≤0.【点睛】本题主要考查含有量词的命题的否定,比较基础.12.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+2,则f(1)+g(1)的值等于______.【答案】2【解析】【分析】由已知可得f(-x)=f(x),g(-x)=-g(x),结合f(x)-g(x)=x3+x2+2,可得f(-x)+g(-x)=x3+x2+2,代入x=-1即可求解.【详解】f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(-x)=f(x),g(-x)=-g(x),∵f(x)-g(x)=x3+x2+2,∴f(-x)+g(-x)=x3+x2+2,则f(1)+g(1)=-1+1+2=2.故答案为:2【点睛】本题主要考查了利用奇函数及偶函数定义求解函数值,属于基础试题.13.若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则实数a 的取值集合为______.【答案】{-3,3} 【解析】 【分析】根据函数解析式求出对称轴和顶点坐标,画出函数图象,即可求出a 的值.【详解】因为函数f (x )=x 2-2x +1=(x -1)2,所以对称轴为x =1,顶点坐标为(1,0). 令x 2-2x +1=4得:x 2-2x -3=0, 解得:x =-1或3, 所以a +2=-1或a =3, 即:a =-3或3. 故答案为:{-3,3}【点睛】本题主要考查二次函数的图象,以及利用图象求最值问题.14.已知函数()2,x x x x af x x a -+≥⎧=<⎨⎩.①若0a =,则函数()f x 的零点有______个;②若()()1f x f ≤对任意的实数x 都成立,则实数a 的取值范围是______.【答案】 (1). 2(2). 1⎡⎤-⎣⎦的【解析】 【分析】①把a=0带入,令f(x)=0,求解,有几个解就有几个零点;②分类讨论,令a>0,a=0,a<0分别进行讨论,最后求得a 的取值范围.【详解】①当a=0,22,0(),0x x x f x x x ⎧-+≥=⎨<⎩当0x ≥,时,22x x -+=0,解得x=2或x=0, 当0x <,x=0无解 故有两个零点②(1)当1a >时,f (1)=1,此时()1f a >,不成立,舍;(2)当a=1,此时f (x )的最大值为f (1),所以成立;(3)当1a <,2,(),x x x x a f x x x a⎧-+≥=⎨<⎩令222,0()22,0x x x g x x x x x x x ⎧+<=-+=⎨-+>⎩ ()(1)1f x f ≤= ()1g x ∴≤当x<0时,221,[1x x x +≤∈- 当0x ≥时,221x x -+≤,恒成立;故1a ≥-综上11a --≤≤故答案为1⎡⎤-⎣⎦【点睛】本题考查了函数零点的问题以及恒成立求参数问题,本题第二问的求参数主要考查了分类讨论的思想,如何分类,思路清晰是解题的关键,属于较难的题目.求函数零点方法:1.解方程f(x)=0的根;2.利用函数零点存在性定理和函数的单调性;3.利用数形结合,找图像的交点个数.15.设集合A ={x 2,x -1},B ={x -5,1-x ,9}. (1)若x =-3,求A ∩B ;(2)若A ∩B ={9},求A ∪B .【答案】(1){9} (2)x =-3时,A ∪B ={-8,-4,4,9},x =10时, A ∪B ={-9,5,9,100}.【解析】分析】(1)x =-3时,可求出A ={9,-4},B ={-8,4,9},然后进行交集的运算即可;(2)根据A ∩B ={9}即可得出x 2=9或x -1=9,再根据集合元素的互异性即可求出x =-3或10,从而x =-3时,求出集合A ,B ,然后求出A ∪B ;x =10时,求出集合A ,B ,然后求出A ∪B 即可.【详解】(1)x =-3时,A ={9,-4},B ={-8,4,9},∴A ∩B ={9};(2)∵A ∩B ={9},∴9∈A ,∴x 2=9,或x -1=9,解得x =±3或10, x =3时,不满足集合B 中元素的互异性,∴x =-3或10,由(1)知,x =-3时,A ∪B ={-8,-4,4,9},的【x =10时,A ={100,9},B ={5,-9,9},∴A ∪B ={-9,5,9,100}.【点睛】本题考查了列举法的定义,交集、并集的定义及运算,元素与集合的关系,考查了计算能力,属于基础题.16.已知函数()2f x ax x=-. (1)求定义域,并判断函数f (x )的奇偶性;(2)若f (1)+f (2)=0,证明函数f (x )在(0,+∞)上的单调性,并求函数f (x )在区间[1,4]上的最值.【答案】(1){}|0x x ≠ ,奇函数 (2)单调递增,证明见详解,最大值72,最小值-1; 【解析】【分析】(1)由题意可得,x ≠0,然后检验f (-x )与f (x )的关系即可判断;(2)由f (1)+f (2)=a -2+2a -1=0,代入可求a ,然后结合单调性的定义即可判断单调性,再由单调性可求函数f (x )在区间[1,4]上的最大值f (4),最小值f (1).即可求解.【详解】(1)由题意可得,x ≠0,故定义域为{}|0x x ≠∵f (-x )=-ax +2x=-f (x ), ∴f (x )奇函数;(2)由f (1)+f (2)=a -2+2a -1=0,∴a =1,f (x )=x -2x, 设0<x 1<x 2,则f (x 1)-f (x 2)=x 1-x 22122x x +-=(x 1-x 2)(1+122x x ), ∵0<x 1<x 2,∴x 1-x 2<0,1+122x x >0, ∴(x 1-x 2)(1+122x x )<0,即f (x 1)<f (x 2), ∴f (x )在(0,+∞)上的单调递增,∴函数f (x )在区间[1,4]上的最大值为f (4)=72,最小值为f (1)=-1. 【点睛】本题主要考查了函数奇偶性的判断及函数单调性的定义在单调性判断中的应用,属于函数性质的简单应用.17.一元二次方程x 2-mx +m 2+m -1=0有两实根x 1,x 2.(1)求m 的取值范围;(2)求x 1•x 2的最值;(3)如果12x x -m 的取值范围.【答案】(1)223m -≤≤ (2)最小值为54-,最大值为1 (3)113⎛⎫-- ⎪⎝⎭, 【解析】【分析】(1)一元二次方程有两实根,则判别式△≥0;(2)利用根与系数的关系求得两根之积,从而化简求最值;(3)利用公式22121212()4()x x x x x x +-=-得到|x 1-x 2|的表达式从而解不等式求m .【详解】(1)∵一元二次方程x 2-mx +m 2+m -1=0有两实根x 1,x 2.∴△=(-m )2-4(m 2+m -1)≥0,从而解得:-223m ≤≤. (2)∵一元二次方程x 2-mx +m 2+m -1=0有两实根x 1,x 2. ∴由根与系数关系得:2212151()24x x m m m ⋅=+-=+-, 又由(1)得:-223m ≤≤, ∴2515()1424m -≤+-≤, 从而,x 1•x 2最小值为54-,最大值为1. (3)∵一元二次方程x 2-mx +m 2+m -1=0有两实根x 1,x 2.∴由根与系数关系得:212121x m m m x x +=⋅=+-,x ,∴12x x -== 从而解得:113--<m <, 又由(1)得: 223m -≤≤, ∴113m ⎛⎫∈-- ⎪⎝⎭,. 【点睛】本题考点是一元二次方程根与系数的关系,考查用根与系数的关系将根的特征转化为不等式组求解参数范围,本题解法是解决元二次方程根与系数的关系一个基本方法,应好好体会其转化技巧. 18.某住宅小区为了使居民有一个优雅舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200平方米的十字型地域.现计划在正方形MNPQ 上建花坛,造价为4200元/平方米,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/平方米,再在四个空角上铺草坪,造价为80元/平方米.(1)设总造价为S 元,AD 的边长为x 米,DQ 的边长为y 米,试建立S 关于x 的函数关系式; (2)计划至少要投入多少元,才能建造这个休闲小区.【答案】(1)(22400000400038000,0S x x x =++<<;(2)118000元 【解析】【分析】(1)根据由两个相同的矩形ABC D 和E FG H 构成的十字形地域,四个小矩形加一个正方形面积共为200平方米得出AM 的函数表达式,最后建立建立S 与x 的函数关系即得;(2)利用基本不等式求出(1)中函数S 的最小值,并求得当x 取何值时,函数S 的最小值即可.【详解】(1)由题意,有 AM =2200x4x-,由AM >0,有 0<x <; 则S =4200x 2+210(200-x 2)+80×2×22200x ()4x -; S =4200x 2+42000-210x 2+2424000004000x 10x x -+=4000x 2+2400000x +38000; ∴S 关于x 的函数关系式:S =4000x 2+2400000x+38000,(0<x <);(2)S =4000x 2+2400000x ;当且仅当4000x 2=2400000x 时,即x ∈(0,),S 有最小值;∴当x 米时,S m in =118000元.故计划至少要投入118000元,才能建造这个休闲小区.【点睛】本题主要考查了函数模型的选择与应用、基本不等式等基础知识,考查运算求解能力,属于中档题.19.已知函数f (x )=x 2+bx +c ,其中b ,c ∈R .(1)当f (x )的图象关于直线x =1对称时,b =______;(2)如果f (x )在区间[-1,1]不是单调函数,证明:对任意x ∈R ,都有f (x )>c -1;(3)如果f (x )在区间(0,1)上有两个不同的零点.求c 2+(1+b )c 的取值范围.【答案】(1)-2 (2)证明见解析 (3)(0,116) 【解析】【分析】(1)求得f (x )的对称轴,由题意可得b 的方程,解方程可得b ;(2)由题意可得-1<-2b <1,即-2<b <2,运用f (x )的最小值,结合不等式的性质,即可得证; (3)f (x )在区间(0,1)上有两个不同的零点,设为r ,s ,(r ≠s ),r ,s ∈(,1),可设f (x )=(x -r )(x -s ),将c 2+(1+b )c 写为f (0)f (1),再改为r ,s 的式子,运用基本不等式即可得到所求范围.【详解】(1)函数f (x )=x 2+bx +c 的对称轴为x =-2b , 由f (x )的图象关于直线x =1对称,可得-2b =1,解得b =-2, 故答案为:-2.(2)证明:由f (x )在[-1,1]上不单调,可得-1<-b 2<1,即-2<b <2, 对任意的x ∈R ,f (x )≥f (-2b )=24b -22b +c =c -24b , 由-2<b <2,可得f (x )≥c -24b >c -1; (3)f (x )在区间(0,1)上有两个不同的零点,设为r ,s ,(r ≠s ),r ,s ∈(0,1),可设f (x )=(x -r )(x -s ),由c 2+(1+b )c =c (1+b +c )=f (0)f (1)=rs (1-r )(1-s ),且0<rs (1-r )(1-s )<[()12r r +-]2•[()12s s +-]2=116, 则c 2+(1+b )c ∈(0,116). 【点睛】本题考查二次函数的单调性和对称性的应用,考查函数零点问题的解法,注意运用转化思想,以及基本不等式和不等式的性质,考查运算能力,属于中档题.。
2019-2020学年北京一零一中学高三期中数学试题及答案
2019 北京一零一中高三(上)统练五数学(理)一、选择题共8 小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.若复数为纯虚数,则实数的值为()A. 1B. 0C.D. -12.已知为等差数列,为其前n 项和,若,则()A. 17B. 14C. 13D. 33.“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4.将函数的图像向右平移个单位得到函数的图像,则a 的值可以为()A. B. C. D.5.某中学语文老师从《红楼梦》、《平凡的世界》、《红岩》、《老人与海》4 本不同的名著中选出3 本,分给三个同学去读,其中《红楼梦》为必读,则不同的分配方法共有()A. 6 种B. 12 种C. 18 种D. 24 种6.已知△的内角的对边分别为,若,,则△面积的最大值是A. B. C. D.7.如图,已知直线与曲线相切于两点,函数,则函数()A. 有极小值,没有极大值B. 有极大值,没有极小值C. 至少有两个极小值和一个极大值D. 至少有一个极小值和两个极大值8.已知非空集合A,B 满足以下两个条件:①;②A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素,则有序集合对(A,B)的个数为()A. 10B. 12C. 14D. 16二、填空题共 6 小题。
9.已知集合,则M∩N=.10.在等比数列中,,且,则的值为.11.能够说明“恒成立”是假命题的一个x 的值为.12.已知向量a,b 的夹角为60°,,则=.13.在边长为1 的等边三角形ABC 中,点D、E 分别是边AB,BC 的中点,连接DE 并延长到点F,使得DE=2EF. 设,则14.已知;=.(1)若有两个零点,则a 的取值范围是,(2)当时,则满足的x 的取值范围是.三、解答题共 4 小题。
解答应写出文字说明、演算步骤或证明过程。
15.已知函数的图像与x 轴的相铃两个交点的距离为.(1)求的值;(2)设函数,求在区间上的最大值和最小值.16.如图所示,在△ABC 中,D 是BC 边上的一点,且AB=14,BD=6,,.(1)求;(2)求AD 的长和△ABC 的面积.17.设数列的前n 项和为,且,在正项等比数列中,.(1)求和的通项公式;(2)设,求数列的前n 项和.18.已知函数.(1)求函数的单调区间;(2)当时,求函数在区间上的最大值.2019 北京一零一中高三(上)统练五数学(理)参考答案一、选择题共8 小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.(﹣)=( ).﹣..﹣.+﹣+()=是的两个根分别为,分)已知函数分)已知函数.)如果,求2019北京101中学高一(上)期中数学参考答案一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【分析】因式分解法求解一元二次方程.【解答】解:∵﹣x2﹣5x+6=0,∴x2+5x﹣6=0,∴(x+6)(x﹣1)=0,∴x=﹣6或1,方程﹣x2﹣5x+6=0的解集为{﹣6,1}.故选:A.【点评】本题属于简单题,解一元二次方程时注意观察方程特征,本题采用因式分解法会快速精准解题.2.【分析】由x2>4,解得x>2,或x<﹣2.即可判断出结论.【解答】解:由x2>4,解得x>2,或x<﹣2.∴“x>2”是“x2>4”的充分不必要条件.故选:B.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.【分析】结合一次函数,二次函数及反比例函数的图象及图象变换分别进行判断即可.【解答】解:由一次函数的性质可知,y=﹣3x﹣1在区间(1,+∞)上为减函数,故A错误;由反比例函数的性质可知,y=在区间(1,+∞)上为减函数,由二次函数的性质可知,y=x2﹣4x+5在(﹣∞,2)上单调递减,在(2,+∞)上单调递增,故C错误;由一次函数的性质及图象的变换可知,y=|x﹣1|+2在(1,+∞)上单调递增.故选:D.【点评】本题主要考查了基本初等函数的单调性的判断,属于基础试题.4.【分析】根据题意,由函数的解析式可得f()的值,结合函数的奇偶性可得f(﹣)=﹣f(),即可得答案.【解答】解:根据题意,f(x)满足x>0时,f(x)=x2,则f()=()2=,又由函数f(x)为奇函数,则f(﹣)=﹣f()=﹣;故选:A.【点评】本题考查函数奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.5.【分析】直接利用基本不等式求得函数f(x)=4x+﹣1(x<0)的最值得答案.【解答】解:当x<0时,f(x)=4x+﹣1=﹣[(﹣4x)+]﹣1.当且仅当﹣4x=﹣,即x=﹣时上式取“=”.∴f(x)有最大值为﹣5.故选:D.【点评】本题考查利用基本不等式求函数的最值,是基础题.6.【分析】由已知可转化为a=﹣x2在(1,2)只有一个零点,然后结合二次函数的性质可求a的范围.【解答】解:由f(x)=x+=0可得,a=﹣x2,由函数f(x)=x+(a∈R)在区间(1,2)上恰有一个零点,可知a=﹣x2在(1,2)只有一个零点,当x∈(1,2)时,y=﹣x2∈(﹣4,﹣1),∴﹣4<a<﹣1,结合选项可知,A符合题意.故选:A.【点评】本题主要考查了函数零点的简单应用,体现了转化思想的应用.7.【分析】由f(x)为R上的减函数可知,x≤1及x>1时,f(x)均递减,且(a﹣3)×1+5≥2a,由此可求a 的取值范围.【解答】解:因为f(x)为R上的减函数,所以x≤1时,f(x)递减,即a﹣3<0①,x>1时,f(x)递减,即a>0②,且(a﹣3)×1+5≥2a③,联立①②③解得,0<a≤2.故选:B.【点评】本题考查函数单调性的性质,本题结合图象分析更为容易.8.【分析】由已知可知f(x)为奇函数,从而可得g﹣x)也为奇函数,然后结合|f(x)﹣f(y)|<|x﹣y|,及导数的定义可知g′(x)>0,从而可知g(x)单调递增,结合单调性及奇函数的定义可求.【解答】解:由函数f(x+1)的对称中心是(﹣1,0),可得f(x)的图象关于(0,0)对称即f(x)为奇函数,∴f(﹣x)=﹣f(x),∵g(x)﹣f(x)=x,∴g(x)=f(x)+x,∴g(﹣x)=f(﹣x)﹣x=﹣f(x)﹣x=﹣g(x),∵对于任意的x,y∈R,有|f(x)﹣f(y)|<|x﹣y|,∴|g(x)﹣g(y)﹣(x﹣y)|<|x﹣y|,∴,即||<1,∴0<<2,即g′(x)>0,∴g(x)单调递增,∵g(2x﹣x2)+g(x﹣2)<0,∴g(2x﹣x2)<﹣g(x﹣2)=g(2﹣x),∴2x﹣x2<2﹣x,整理可得,x2﹣3x+2>0,解可得,x>2或x<1,故选:A.【点评】本题主要考查了利用函数的奇偶性及单调性求解不等式,解题的关键是结合导数的定义判断出函数g (x)的单调性.二、填空题共6小题,每小题5分,共30分.9.【分析】x1,x2是方程x2+2x﹣5=0的两根,可得x12+2x1﹣5=0,x1x2=﹣5.即可得出.【解答】解:∵x1,x2是方程x2+2x﹣5=0的两根,则x12+2x1﹣5=0,x1x2=﹣5.∴x12+2x1+x1x2=5﹣5=0.故答案为:0.【点评】本题考查了一元二次方程的根与系数的关系、方程的根,考查了推理能力与计算能力,属于基础题.10.【分析】由已知条件以及根与系数的关系求出a,b的值,再根据不等式的解集与对应方程的根之间的关系即可求解.【解答】解:由已知方程ax2+bx+1=0的两个根分别为,3,∴﹣+3=﹣,(﹣)×3=;解得:a=﹣,b=.∴不等式ax2+bx+1>0对应的二次函数开口向下,且对应方程的根为:﹣和3.∴所求不等式的解集为(﹣,3).故答案为:(﹣,3).【点评】本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于基础题.11.【分析】根据含有量词的命题的否定即可得到结论.【解答】解:命题为全称命题,则命题“∀x>0,x2+2x﹣3>0”的否定是为∃x0>0,x02+2x0﹣3≤0,故答案为:∃x0>0,x02+2x0﹣3≤0.【点评】本题主要考查含有量词的命题的否定,比较基础.12.【分析】由已知可得f(﹣x)=f(x),g(﹣x)=﹣g(x),结合f(x)﹣g(x)=x3+x2+2,可得f(﹣x)+g (﹣x)=x3+x2+2,代入x=﹣1即可求解.【解答】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(﹣x)=f(x),g(﹣x)=﹣g(x),∵f(x)﹣g(x)=x3+x2+2,∴f(﹣x)+g(﹣x)=x3+x2+2,则f(1)+g(1)=﹣1+1+2=2.故答案为:2【点评】本题主要考查了利用奇函数及偶函数的定义求解函数值,属于基础试题.13.【分析】根据函数解析式求出对称轴和顶点坐标,画出函数图象,即可求出a的值.【解答】解:因为函数f(x)=x2﹣2x+1=(x﹣1)2,所以对称轴为x=1,顶点坐标为(1,0).令x2﹣2x+1=4得:x2﹣2x﹣3=0,解得:x=﹣1或3,所以a+2=﹣1或a=3,即:a=﹣3或3.故答案为:{﹣3,3}【点评】本题主要考察二次函数的图象,以及利用图象求最值问题.14.【分析】(1)a=0时,画出图象即可得到有2个零点;(2)分别画出a≥0时和a<0时函数示意图,数形结合可得a取值范围.【解答】解:(1)当a=0时,如图,由图可知,f(x)有2个零点.(2)①当a≥0时,f(x)=,如图,A(1,0),当x=a在A点左侧时,总能满足f(x)≤f(1),此时0<a≤1;当x=a在A点右侧时,不满足,②当a<0时,f(x)=,如图,,此时,无论a取何值均不能满足f(x)≤f(1).综上0<a≤1.故答案为:2;0<a≤1.【点评】本题考查函数零点及函数恒成立问题,数形结合数关键,属于中档题.三、解答题共5题,共50分.解答应写出文字说明、演算步骤或证明过程.15.【分析】(1)x=﹣3时,可求出A={9,﹣4},B={﹣8,4,9},然后进行交集的运算即可;(2)根据A∩B={9}即可得出x2=9或x﹣1=9,再根据集合元素的互异性即可求出x=﹣3或10,从而x=﹣3时,求出集合A,B,然后求出A∪B;x=10时,求出集合A,B,然后求出A∪B即可.【解答】解:(1)x=﹣3时,A={9,﹣4},B={﹣8,4,9},∴A∩B={9};(2)∵A∩B={9},∴9∈A,∴x2=9,或x﹣1=9,解得x=±3或10,x=3时,不满足集合B中元素的互异性,∴x=﹣3或10,由(1)知,x=﹣3时,A∪B={﹣8,﹣4,4,9},x=10时,A={100,9},B={5,﹣9,9},∴A∪B={﹣9,5,9,100}.【点评】本题考查了列举法的定义,交集、并集的定义及运算,元素与集合的关系,考查了计算能力,属于基础题.16.【分析】(1)由题意可得,x≠0,然后检验f(﹣x)与f(x)的关系即可判断;(2)由f(1)+f(2)=a﹣2+2a﹣1=0,代入可求a,然后结合单调性的定义即可判断单调性,再由单调性可证函数f(x)在区间[1,4]上的最大值f(4),f(1).即可求解.【解答】解:(1)由题意可得,x≠0,∵f(﹣x)=﹣ax+=﹣f(x),∴f(x)为奇函数;(2)由f(1)+f(2)=a﹣2+2a﹣1=0,∴a=1,f(x)=x﹣,设0<x1<x2,则f(x1)﹣f(x2)=x1﹣x2=(x1﹣x2)(1+),∵0<x1<x2,∴x1﹣x2<0,1+>0,∴(x1﹣x2)(1+)<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上的单调递增,∴函数f(x)在区间[1,4]上的最大值f(4)=,f(1)=﹣1.【点评】本题主要考查了函数奇偶性的判断及函数单调性的定义在单调性判断中的应用,属于函数性质的简单应用.17.【分析】(1)一元二次方程有两实根,则判别式△≥0;(2)利用根与系数的关系求得两根之积,从而化简求最值;(3)利用公式得到|x1﹣x2|的表达式从而解不等式求m.【解答】解:(1)∵一元二次方程x2﹣mx+m2+m﹣1=0有两实根x1,x2.∴△=(﹣m)2﹣4(m2+m﹣1)≥0,从而解得:﹣2.(2)∵一元二次方程x2﹣mx+m2+m﹣1=0有两实根x1,x2.∴由根与系数关系得:,又由(1)得:﹣2,∴,从而,x1•x2最小值为,最大值为1.(3)∵一元二次方程x2﹣mx+m2+m﹣1=0有两实根x1,x2.∴由根与系数关系得:,∴=,从而解得:,又由(1)得:﹣2,∴.【点评】本题考点是一元二次方程根与系数的关系,考查用根与系数的关系将根的特征转化为不等式组求解参数范围,本题解法是解决元二次方程根与系数的关系一个基本方法,应好好体会其转化技巧.18.【分析】(1)根据由两个相同的矩形ABCD和EFGH构成的十字形地域,四个小矩形加一个正方形面积共为200平方米得出AM的函数表达式,最后建立建立S与x的函数关系即得;(2)利用基本不等式求出(1)中函数S的最小值,并求得当x取何值时,函数S的最小值即可.【解答】解:(1)由题意,有AM=,由AM>0,有 0<x<10;则S=4200x2+210(200﹣x2)+80×2×;S=4200x2+42000﹣210x2+=4000x2++38000;∴S关于x的函数关系式:S=4000x2++38000,(0<x<10);(2)S=4000x2++38000≥2+38000=118000;=时,即=时,∈(10)=米时,<﹣<=﹣,可得﹣=<﹣<(﹣)=﹣+﹣,﹣>[]•[]=,,)。