分式方程的应用 精品导学案及练习附解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 分式方程的应用
学教目标:
1.会分析题意找出等量关系.
2.会列出可化为一元一次方程的分式方程解决实际问题.
3.在活动中培养学生乐于探究、合作学习的习惯,引导学生努力寻找解决问题的方法,体会数学的应用价值。

学教重点:利用分式方程组解决实际问题.
学教难点:列分式方程表示实际问题中的等量关系.
学教过程:
一、温故知新:
1、分式方程的解法步骤是什么?完成 P36 第4题。

2、解决应用问题的一般步骤是什么?
3、解分式方程
二、学教互动:(自主探究)
课本例3
分析:这是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程。

基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.
等量关系是:甲队单独做的工作量+两队共同做的工作量=1
认真审题,然后回答下列问题:
1、怎样设未知数,根据哪个关系?
2、题中有哪些相等关系?怎样列方程?
三、随堂练习:
1.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。

这样,这两个小组的每个同学就要比原计划多做4面。

如果这3个小组的人数相等,那么每个小组有多少名学生? 132x x
=-
2. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240
个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.
四、反馈检测:
1、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。

如果设第一次捐款人数为x人,那么x满足怎样的方程?
2.甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器个加入等量水,使它们的浓度相等,那么加入的水是多少升?
第2课时线段的垂直平分线的有关作图
一、学习目标
1、会依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴;
2、掌握作出轴对称图形的对称轴的方法,即线段垂直平分线的尺规作图。

二、温故知新(口答)
1、下面的图形是轴对称图形吗?如果是,请说出它的对称轴。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对所连
的线.
3、与一条线段两个端点距离相等的点,在这条线段的上。

三、自主探究合作展示
【问题】
1、 如果我们感觉两个图形是成轴对称的,你准备用什么方法去验证?
2、 两个成轴对称的图形,不经过折叠,你有什么方法画出它的对称轴?
归纳:
作轴对称图形的对称轴的方法是:找到一对 ,作出连接它们的 的 线,就可以得到这两个图形的对称轴.
【新知应用】
例题1:如图(1),点A 和点B 关于某条直线成轴对称,
你能作出这条直线吗?
1、请同学们按照以下作法在图(1)中完成作图。

作法:
(1)分别以点A 、B 为圆心,以大于
12AB 的长为半径作弧,两弧相交于C 和D 两点; (2)作直线CD .
直线CD 即为所求的直线.
2、思考:(1)在上述作法中,为什么要以“大于
12
AB 的长”为半径作弧?
(2)在上面作法的基础上,连接AB , 直线CD 是线段AB 的垂直平分线吗?并说明理由.
例题反思:
例题2:如图(2),在五角星上作出它的一条对称轴。

例题反思:
四、双基检测
图(1)
图(2)
1、如图(3),下面的虚线中,哪些是图形的对称轴,哪些不是?
2、如图(4),画出图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?
3、如图(5),角是轴对称图形吗?如果是,画出它的对称轴。

4、如图(6),与图形A 成轴对称的是哪个图形?画出它们的对称轴.
五、学习反思
请你对照学习目标,谈一下这节课的收获及困惑。

图(3) 图(4)
图(5)
图(6)。

相关文档
最新文档