绥棱县三中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绥棱县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )
A .1
B .
C .
D .﹣1
2. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )
A .2
B .
C .
D .
3. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )
13 ( B ) 49 (C ) 23 (D ) 89
4. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0
B .∃x ∉R ,x 2+1≥0
C .∀x ∈R ,x 2+1<0
D .∀x ∈R ,x 2+1≥0
5. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )
A .2
B .
C .3
D . 6. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )
A .[1,6]
B .[﹣3,1]
C .[﹣3,6]
D .[﹣3,+∞)
7. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2
,下面的不等式在R 内恒成立的是( )
A .f (x )>0
B .f (x )<0
C .f (x )>x
D .f (x )<x
8. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )
A .为直角三角形
B .为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
9. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}
C .{1,2,3,4,5}
D .∅
10.设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α;
其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④
D .①③
11.执行如图所示的一个程序框图,若f (x )在[﹣1,a]上的值域为[0,2],则实数a 的取值范围是( )
A .(0,1]
B .[1,]
C .[1,2]
D .[,2]
12.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β
二、填空题
13.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .
14.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .
15.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .
16.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
17.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣
)= .
18.(
﹣2)7的展开式中,x 2
的系数是 .
三、解答题
19.已知函数f (x )=,求不等式f (x )<4的解集.
20.已知函数f(x)=在(,f())处的切线方程为8x﹣9y+t=0(m∈N,t∈R)(1)求m和t的值;
(2)若关于x的不等式f(x)≤ax+在[,+∞)恒成立,求实数a的取值范围.
21.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x 2 4 5 6 8
y 30 40 60 50 70
(1)画出散点图;
(2)求线性回归方程;
(3)预测当广告费支出7(百万元)时的销售额.
22.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;111]
(2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.
23.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为
A[]
B[]
C[]
D[]
24.已知函数f(x0=.
(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;
(2)解不等式f(x﹣1)≤﹣.
绥棱县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】A
【解析】解:y'=2ax,
于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行
∴有2a=2
∴a=1
故选:A
【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.
2.【答案】B
【解析】解:由约束条件作出可行域如图,
联立,得A(a,a),
联立,得B(1,1),
化目标函数z=2x+y为y=﹣2x+z,
由图可知z max=2×1+1=3,z min=2a+a=3a,
由6a=3,得a=.
故选:B.
【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.
3.【答案】C
【解析】由1(),21(2),2AD AB AC BE AB AC ⎧
=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE
⎧=-⎪⎪⎨⎪=+⎪⎩ 22422
()()33333
AB AC AD BE AD BE ⋅=-⋅+=.
4. 【答案】D
【解析】解:∵命题“∃x ∈R ,使x 2
+1<0”是特称命题
∴否定命题为:∀x ∈R ,都有x 2
+1≥0.
故选D .
5. 【答案】B
【解析】解:双曲线C :x 2
﹣
=1(b >0)的顶点为(±1,0),
渐近线方程为y=±bx ,
由题意可得
=
,
解得b=1,
c=
=,
即有离心率
e=
=. 故选:B .
【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.
6. 【答案】C
【解析】解:y=x 2﹣4x+1=(x ﹣2)2
﹣3 ∴当x=2时,函数取最小值﹣3 当x=5时,函数取最大值6 ∴函数 y=x 2
﹣4x+1,x ∈[2,5]的值域是[﹣3,6]
故选C
【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置
关系,仔细作答
7. 【答案】A
【解析】解:∵2f(x)+xf′(x)>x2,
令x=0,则f(x)>0,故可排除B,D.
如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,
但f(x)>x 未必成立,所以C也是错的,故选A
故选A.
8.【答案】A
【解析】解:设A(x1,x12),B(x2,x22),
将直线与抛物线方程联立得,
消去y得:x2﹣mx﹣1=0,
根据韦达定理得:x1x2=﹣1,
由=(x1,x12),=(x2,x22),
得到=x1x2+(x1x2)2=﹣1+1=0,
则⊥,
∴△AOB为直角三角形.
故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
9.【答案】B
【解析】解:∵C U A={1,5}
∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.
故选B.
10.【答案】B
【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:
在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;
在②中:若α∥β,β∥γ,则α∥γ,
∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;
在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;
在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.
故选:B .
11.【答案】B
【解析】解:由程序框图知:算法的功能是求f (x )=
的值,
当a <0时,y=log 2(1﹣x )+1在[﹣1,a]上为减函数,f (﹣1)=2,f (a )=0⇒1﹣a=,a=,不符合题意;
当a ≥0时,f ′(x )=3x 2
﹣3>⇒x >1或x <﹣1,
∴函数在[0,1]上单调递减,又f (1)=0,∴a ≥1;
又函数在[1,a]上单调递增,∴f (a )=a 3
﹣3a+2≤2⇒a ≤
.
故实数a 的取值范围是[1,].
故选:B .
【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值.
12.【答案】D
【解析】解:对于A ,α∥β,l ⊂α,n ⊂β,l ,n 平行或 异面,所以错误; 对于B ,α∥β,l ⊂α,l 与β 可能相交可能平行,所以错误;
对于C ,l ⊥n ,m ⊥n ,在空间,l 与m 还可能异面或相交,所以错误. 故选D .
二、填空题
13.【答案】
.
【解析】解:在区间[﹣2,3]上任取一个数a , 则﹣2≤a ≤3,对应的区间长度为3﹣(﹣2)=5,
若f (x )=x 3﹣ax 2
+(a+2)x 有极值,
则f'(x )=x 2
﹣2ax+(a+2)=0有两个不同的根,
即判别式△=4a 2
﹣4(a+2)>0,
解得a >2或a <﹣1, ∴﹣2≤a <﹣1或2<a ≤3,
则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,
∴由几何概型的概率公式可得对应的概率P=,
故答案为:
【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a的取值范围是解决本题的关键.
14.【答案】6.
【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,
∴f(x)﹣2x=a,即f(x)=a+2x,
∴当x=a时,
又∵a+2a=6,∴a=2,
∴f(x)=2+2x,
∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4
≥2+4=6,当且仅当x=0时成立,
∴f(x)+f(﹣x)的最小值等于6,
故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
15.【答案】5
【解析】
试题分析:'2'
=++∴-=∴=.
f x x ax f a
()323,(3)0,5
考点:导数与极值.
16.【答案】3
17.【答案】.
【解析】解:∵θ是第四象限角,
∴,则,
又sin(θ+)=,
∴cos(θ+)=.
∴cos()=sin(θ+)=,sin()=cos(θ+)=.
则tan(θ﹣)=﹣tan()=﹣=.
故答案为:﹣.
18.【答案】﹣280
解:∵(﹣2)7的展开式的通项为=.
由,得r=3.
∴x2的系数是.
故答案为:﹣280.
三、解答题
19.【答案】
【解析】解:函数f(x)=,不等式f(x)<4,
当x≥﹣1时,2x+4<4,解得﹣1≤x<0;
当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1.
综上x∈(﹣3,0).
不等式的解集为:(﹣3,0).
20.【答案】
【解析】解:(1)函数f(x)的导数为f′(x)=,
由题意可得,f()=,f′()=,
即=,且=,
由m∈N,则m=1,t=8;
(2)设h(x)=ax+﹣,x≥.
h()=﹣≥0,即a≥,
h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①
若≤x≤,设g(x)=a﹣,
g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,
则g(x)≥0,即h′(x)≥0在[,]上恒成立.②
由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,
则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;
当a<时,h()<0,不合题意.
综上可得a≥.
【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.
21.【答案】
【解析】解:(1)
(2)
设回归方程为=bx+a
则b=
﹣5
/
﹣5
=1380﹣5×5×50/145﹣5×52
=6.5
故回归方程为=6.5x+17.5
(3)当x=7时, =6.5×7+17.5=63,
所以当广告费支出7(百万元)时,销售额约为63(百万元).
【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,
这是解答正确的主要环节.
22.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】
(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212
(
,)22
x x y y M ++, 由24,(1),
y x y k x ⎧=⎨=-⎩得2222
(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,
考点:曲线的轨迹方程;直线与抛物线的位置关系.
【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件
),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意
参数的取值是)('x f 不恒等于的参数的范围. 23.【答案】B 【解析】
当x ≥0时,
f (x )=,
由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;
由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。
∴当x >0时,。
∵函数f (x )为奇函数, ∴当x <0时,。
∵对∀x ∈R ,都有f (x ﹣1)≤f (x ),
∴2a2﹣(﹣4a2)≤1,解得:。
故实数a的取值范围是。
24.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为
(﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.。