2013-2014A广东海洋大学概率论真题(有答案版)
广东海洋大学数学物理方法2014,2015年考博真题
3701《数学物理方法》 第 1 页 共 3 页 广东海洋大学2014年攻读博士学位研究生招生考试试题考试科目(代码)名称:3701数学物理方法 满分100(所有答案写在答题纸上,写在试卷上不给分,答完后同试卷一并交回。
)一、 试推导水槽中的浅水重力波方程。
已知:水槽截面为矩形,槽长为L ,槽宽为H ,两端由刚性平面封闭,槽中的水在平衡时深度为h 。
(20分)二、 用行波法求解下列一维波动方程Chauchy 问题的解:(20分)若初始速度为0,分析其解的物理意义。
三、 一条半无限均匀细杆,热量沿x 轴一维传播,侧面绝热,端点温度变化已知,杆的初始温度为0°C 。
用拉普拉斯积分变换法求x 点在时刻t 的温度分布(,)u x t 。
(20分)四、 用傅里叶变换求解波动方程的柯西问题 (20分) 22222000 -,0(), 0 - t t t u u a x t t x u x u x ϕ==⎧∂∂-=∞<<∞>⎪∂∂⎨⎪==∞<<∞⎩22222000 -<,0() ()t t t u u a x t t x u x u x ϕψ==⎧∂∂-=∞<+∞>⎪∂∂⎨⎪==⎩3701《数学物理方法》 第 2 页 共 3 页五、 在xoy 平面内区域D 有边界l ,域D 内u (x,y )满足:试用数值差分法求解上述Laplace 方程。
(20分)广东海洋大学2015年攻读博士学位研究生招生考试试题考试科目(代码)名称:3701数学物理方法 满分100分 (所有答案写在答题纸上,写在试卷上不给分,答完后连同试卷一并交回。
)六、 已知:矩形水槽截面的槽、槽宽及槽中的水在平衡时深度,两端由刚性平面封闭,试推导水槽中的浅水重力波方程。
(20分)七、 用行波法求解波动方程的解并解析其物理意义:(20分)2222+=0 (,)lu u x y u f x y ⎧∂∂⎪∂∂⎨⎪=⎩22222000 -,0sin , 0 t t t u u a x t tx u x u ==⎧∂∂-=∞<<∞>⎪∂∂⎨⎪==⎩3701《数学物理方法》 第 3 页 共 3 页八、 一条半无限均匀细杆,热量沿x 轴一维传播,侧面绝热,端点温度变化已知,杆的初始温度为0°C 。
广东海洋大学13--14高数
广东海洋大学2013 ——2014学年第一学期 《高等数学2》课程试题 课程号: 1920001 □ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 □ 开卷一. 计算.(20分,各4分). 1.x x x x sin 2cos 1lim 0-→. 2.⎰+x dx 2cos 1. 3.⎰-++1121sin 1dx x x . 4.x x x x )1232(lim ++∞→. 5.⎰262cos ππxdx . 二.计算.(20分,各5分). 1.求)arcsin(tan x y =的导数。
2.求由方程0=-+e xy e y 所确定的隐函数y 的二阶导数22dx y d 。
3.已知⎩⎨⎧==t e y t e x t t cos sin ,求当3π=t 时dx dy 的值。
4.设x y y x z 33-=,求x y z x z ∂∂∂∂∂2,. 三.计算.(25分,各5分).1. dx x x ⎰+9232.dx e x ⎰班级:姓名: 学号: 试题共2页加白纸4张密封线GDOU-B-11-3023.dt te dt e x t x t x ⎰⎰→0202022)(lim .4.求]1)1ln(1[lim 0xx x -+→. 5.dx x ⎰-202sin 1π.四.解答(14分,各7分).1.问12+=x x y ()0≥x 在何处取得最小值?最小值为多少? 2.证明x x x x <+<+)1ln(1. 五.解答(21分,各7分).1.求由2x y =与x y 2=围成图形的面积。
2.求由x x x y ),0(,sin π≤≤=轴围成的图形绕x 轴所产生的旋转体的体积。
3.计算σd y x D⎰⎰+)(22,其中D 是矩形闭区域:1,1≤≤y x .。
概率论2013-2014答案
广东财经大学试题参考答案及评分标准2013-2014年第二学期 课程名称 概率论与数理统计(A 卷) 共3页 ………………………………………………………………………………………………………………一、 填空题(每题3分,共30分)1,74; 2,0.7; 3,32; 4,0; 5,0; 6, 3; 7 -1; 8,5; 9,0.5 10,0.8二 、选择题(每题3分,共15分)1,D; 2,C ; 3,A ; 4,D ; 5,A 。
三、计算题(每题10分,共40分)1 . 解 (1) 321,,A A A 分别表示甲乙丙车间的产品,B 表示次品则35.0)(,45.0)(21==A P A P ,2.0)(3=A P05.0)(,02.0)(,04.0)(321===A B P A B P A B P ……………………2.分(1)P(B)=0.45*0.04+0.35*0.02+0.2*0.05=0.035…………7.分 (2) )(1B A P =51.00.05*0.20.02*0.350.04*0.450.04*0.45=++…………10分2. 解(1)dy y x f x f X ⎰+∞∞-=),()(⎪⎩⎪⎨⎧≤≤===⎰其他020210121233102x x xy dy xy ………………………………..3分 dx y x f y f Y ⎰+∞∞-=),()(⎪⎩⎪⎨⎧≤≤===⎰其他0103024323222202y y y x dx xy ……………………………5分(2)34=EX ,43=EY532=EY …………………………………………………………..8分22=EXVarX=92 VarY=803……………….. ………………..…………………………………….10分3 . 解:8,2,1,0,)1()(88 =-==-i x x x i ix p p C x X P i i i 似然函数分分分80180)]([ln 6)1ln()8(ln )ln()(ln 4)1()()1()()(11'1118818188111 =-∑-+∑+=-∑-+∑+=∑-∑=-========-==-=∏∏∏∏==p x n px p L p x n p x C p L p p C p p C x X P p L i n i i n i i n i i ni n i x x n x n i x n i x x x n i i i i i ni i n i i i i i只有一个驻点 nx p i n i 81∑==,必为L(p)的最大值点。
2013~2014年全国自考概率论与数理统计试题及答案要点
全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
广东海洋大学概论历年考题 答案
广东海洋大学2007 —— 2008学年 第一学期《概率论与数理统计》课程试题课程号: 1920004 √ 考试 □ A 卷 √ 闭卷 □ 考查√ B 卷□ 开卷一 选择题(在各小题的四个备选答案中选出一个正确答案,填在题末的横线上,每小题3分,共15分)1 设B A ,为两随机事件,且B A ⊂,则下列式子正确的是 A ))()(A P B A P = B ))()(A P AB P =C ))()|(B P A B P =D ))()()(A P B P A B P -=- 2设离散型随机变量X 的分布律为{}(),,2,1, ===k k X P k λ且0>λ,则λ为 A )2=λ B )1=λ C )2/1=λ D )3/1=λ 3随机变量X 服从参数为λ的泊松分布,且已知)2()1(===X P X P ,则)1(+X E = A ) 1 B ) 2 C ) 3 D ) 4 4设4321,,,X X X X 是取自总体)4,1(~N X的样本,则∑==4141i iX X 服从分布是_____A ))4,1(NB ))1,1(NC ))1,0(ND ))16,4(N 5设总体),0(~2σN X,其中2σ未知,1234,,,X X X X 为其样本,下列各项不是统计量的是____ A)4114ii XX ==∑ B)32σXC)3232221X XX ++班级:姓名:学号:试题共六页加白纸 三 张密封线GDOU-B-11-302D)4211()3ii S X X ==-∑二 填空题 (每小题3分,共39分)1十把钥匙中有三把能打开门,今不放回任取两把,求恰有 一把能打开门的概率为2已知3.0)(=B P ,6.0)(=A P ,且A 与B 相互独立,则=)(B A P3设每次试验的成功率为)10(<<p p ,则在3次重复试验中至多失败一次概率为 4设随机变量),(Y X 具有概率密度函数⎩⎨⎧<<<<=其它10,106),(2y x yx y x f则=<>}5.0,5.0{Y X P5设随机变量)4.0,3(~b X ,且随机变量2)3(X X Y -=,则==}1{YP6已知(X,Y )的联合分布律为:则===}0|1{X YP7设随机变量),(Y X 具有概率密度函数⎩⎨⎧<<<<+=其它0,10)(2),(x y x y x y x f则随机变量X 的边缘概率密度为 8设正态随机变量X 的概率密度为)(,221)(8/)1(2R x ex f x ∈=--π则)12(+-XD =9生产灯泡的合格率为0.5,则100个灯泡中合格数在40与 60之间的概率为 (9772.0)2(=Φ) 10设某种清漆干燥时间),(~2σμN X取样本容量为9的样本,得样本均值和标准差分别为33.0,6==s x,则μ的置信水平为90%的置信区间为 (86.1)8(05.0=t ) 11已知总体),1,0(~N X又设4321,,,X X X X 为来自总体的样本,则~24232221X X X X ++____ __ _(同时要写出分布的参数)12设4321,,,X X X X 是来自总体X的一个简单随机样本,4321214181kXX XX +++是总体期望)(X E 的无偏估计量,则=k 13设n X X X ,,,21 是总体X)1,1(~+-θθU 的简单随机样本,则未知参数θ的矩估计量为三 一箱产品由甲,乙两厂生产,若甲,乙两厂生产的产品分别占70%,30%,其次品率分别为1%,2%.现从中任取一件产品,得到了次品,求它是哪个厂生产的可能性更大.(12分)四 设总体X 的概率密度为⎪⎩⎪⎨⎧=-01)(/θθx ex f 00≤>x x (0>θ,未知),n x x x ,,,21 是来自总体X 的一个样本观察值,求未知参数θ的最大似然估计值。
(理)概率统计试卷和答案2
3
x 1 2 xe , x 0 6. 设总体 X 具有概率密度 f ( x) , 其中 0 为未知参数,X 1 , X 2 , , X n 0, x0
是来自 X 的样本, x1 , x2 , , xn 是相应的样本观察值. (1)求 的最大似然估计量. (2)试判断求得的估计量是否是无偏估计量.
x
n
ˆ X . 为 2
(2)因为 E (
6分
X 1 n 2n ) E( X i ) ,所以最大似然估计量是无偏估计量. 2 2n i 1 2n
10 分
7.解:本题要求在显著性水平 0.05 下检验假设 H 0 : 0 0.005,
H1 : 0 .
3. 一批机器零件共有 100 件,其中有 5 件次品,从中抽取 20 件,每次抽 1 件,设 X 表示其 中包含的次品数, 如果抽取后放回, 则 X 的分布律为 可估计 P{| X | 10 } 5. Z 检验和 t 检验都是关于 当 未知时,用 t 检验. .
4. 设随机变量 X 的数学期望 E ( X ) 及方差 D ( X ) 2 ,由切比雪夫(Chebyshev)不等式 . 的假设检验. 当 已知时,用 Z 检验;
p ,故由全概率公式 2
p p2 p (1 p) ; 2 2 p2 p 3 p p2 p2 P ( AB ) P ( B | A) P ( A) p 2 ,故 P (C ) p . 2 2 p2 p P ( AB ) p2 2p 2 (2) P ( AB ) p 2 , P( B) ,故 P ( A | B) . P( B) ( p p) / 2 p 1 2 p 注:(1)中也可用 P ( A B ) P ( A) P ( AB ) p (1 p ) 直接求解. 2
2013-2014学年《概率论与数理统计》期末考试试卷-(A)答案
1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-《概率论与数理统计》期末考试试卷 (A)一、填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = __0.5_____; 若 A 与 B 相互独立, 则 P (A ⋃B ) = ____0.58____.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = _____2/5_________.3.设随机变量 X 的分布函数为,2,1 21 ,6.011 ,3.01,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F 则 X 的分布律为___________________________ .4.若离散型随机变量 X 的分布律为则常数 a = _0.3________; 又 Y = 2X + 3, 则 P {Y > 5} = _0.5________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ___10_____, D (X ) = _8__________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) =___21______.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) = σ 2, 则由切比雪夫不等式有 P {|X - μ | < 3σ } ≥ _________________.8.从正态总体 N (μ, 0.1 2) 随机抽取的容量为 16 的简单随机样本, 测得样本均值5=x ,则未知参数 μ 的置信度为0.95的置信区间是 ____________________________. (用抽样分布的上侧分位点表示). 1. D 2. A 3. C 4. B 5. D 6. C详解:2.因为⎰∞-=xt t f x F d )()( 故⎰-∞-=-at t f a F d )()( 令u =-t ⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=a t t f 0d )(21 (21d )(0=⎰+∞t t f )详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P二、选择题(只有一个正确答案,每小题3分,共18分)1.设A , B , C 是三个随机变量,则事件“A , B , C 不多于一个发生” 的逆事件为( D ).(A) A , B , C 都发生 (B) A , B , C 至少有一个发生 (C) A , B , C 都不发生 (D) A , B , C 至少有两个发生2.设随机变量 X 的概率密度为 f (x ), 且满足 f (x ) = f (-x ), F (x ) 为 X 的分布函数, 则对任意实数 a , 下列式子中成立的是 ( A ). (A) 错误!未找到引用源。
(完整word版)2013-2014学年第一学期概率论与数理统计期末考试试卷(A卷)答案
北京交通大学2013〜2014学年第一学期概率论与数理统计期末考试试卷( A 卷)某些标准正态分布的数值X 0.34 0.53 0.675 1.16 1.74 1.96 2.33 2.58 Q(x )0.66310.70190.750.8770.95910.9750.990.995其中①[X 是标准正态分布的分布函数.一.(本题满分8分)某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为0.4、0.35和0.25,而钥匙在上述三个地方被找到的概率分别为 0.5、0.65和0.45 •如果钥匙最终被找到, 求钥匙是在路上被找到的概率.解:设B = “钥匙被找到”.A 二“钥匙掉在宿舍里”,A ?二“钥匙掉在教室里”,A 3二“钥匙掉在路上”.由Bayes 公式,得PA 3B = 3PA 3PBA3Z P (A P (B A )i 10.25 0.450.2083 .0.4 0.5 0.35 0.65 0.25 0.45二.(本题满分8分)抛掷3枚均匀的硬币,设事件A 」「至多出现一次正面 \B =「正面与反面都出现1判断随机事件 A 与B 是否相互独立(4分)?如果抛掷 4枚均匀的硬币,判断上述随机事件 A 与B 是否相互独立(4分)?100解:⑴如果抛掷3枚硬币,则样本点总数为21 2 3=8 .P A 丄丄,P B 丄丄,P AB ,8 28 4 8所以有 P AB =- =1 3二PAPB ,因此此时随机事件A 与B 是相互独立的. 8 2 4⑵ 如果抛掷4枚硬币,则样本点总数为24=16.514 74 1P A , P B, P AB 二1616 8 16 4P AB — - =P A P B ,因此此时随机事件 A 与B 不是相互独立的. 416 8.(本题满分8分)设随机变量X 的密度函数为0 : x :: 1其它E X (4 分);⑵ plx E X / (4 分).解::: 1E (X )= J xf (x dx = J x 4(1 - x j dx1⑵ P 〈XE X [;-P a 0.2 ; = j 41 -x 3dx0.2所以有 求:⑴ 1=4 x - 3x 2 3x 3ddx=4 丄1 3」124 5 丿 10.2.52013-2014学年第一学期概率论与数理统计学期末考试试卷( A 卷)答案 Page 2 of 9100四.(本题满分8分) 某加油站每周补给一次汽油,如果该加油站每周汽油的销售量 度函数为0 : x :: 100 其它1=4 1 _3x 3x 2dx =40.2 X-3X 2x 」x 2 4 0.2 25 60.409662 5 X (单位:千升)是一随机变量,其密试问该加油站每次的储油量需要多大,才能把一周内断油的概率控制在2%以下?解:设该加油站每次的储油量为a •则由题意,a应满足0 ::: a ::: 100 ,而且P X a <0.02 .而P(X > a )= [ f (x dx = [ f (x dx + [ f (x )dx = [—x 1 -a 20 I 100丿1」100100所以,应当有,1」兰0.02.、一 100 丿 所以,得 1 一上 <V0.02,即 1 —1002 兰 2 , 100 100 因此有 a -100 1 -5 0.02 =54.2694948因此可取a = 55 (千升),即可使一周内断油的概率控制在5%以下.五.(本题满分8分)设平面区域D 是由双曲线 , x 0以及直线y =x , x =2所围,二维随机变量 xX, Y 服从区域D 上的均匀分布.求:⑴ 二维随机变量 X, Y 的联合密度函数f x, y (4分);⑵随机变量丫的边缘密度函数 f Y y (4分).解:⑴区域D 的面积为2* 1 2 A = J x-— dx =(2x 2- In x ) = 6- In 2 ,x 丿 r 1所以,二维随机变量 X, Y 的联合密度函数为10 (x, y 弹 D1 ⑵当丄"£1时,2-be 2 / 、 1 1 1fY (y )— J f (X, ydx- f dx -2——“ h —1— (x, y )^ D f (x ,y )=【6-l n2y6—1 n2 ;6—In 2 I y 丿y所以,随机变量Y 的边际密度函数为必求出Y 的密度函数,只需指出Y 是哪一种分布,以及分布中的参数即可.)解:由于X 1 ~ N 0,匚2 , X 2~N0,-2,而且X 1与X 2相互独立,所以X 1 X 2 ~ N 0,2;「2 , X 1—X 2~N0,2匚2 .-be卜八f x.y dx =16 —In 22dx1 6 —In 22-y •六.(本题满分8分)f Y(y )=«其它设随机变量 X 与Y 满足:var X =2 , var Y =4 , cov X ,Y = 1 ,再设随机变量U = 2X - 3Y ,V =3X -2丫,求二维随机变量 U, V 的相关系数:-U ,V .解:var U = var 2X -3Y =4 var X 9 var Y -12cov X, Y [=4 2 9 4 -12 =32 , var V =var3X-2Y = 9var X i 亠 4 var Y -12 cov X, Y ]=9 24 4-12 =22 ,cov U , V =cov 2X -3Y, 3X - 2Y^6var X 6var X -4cov X, Y -9cov X, Y [=6 26 4-13 1 =23.所以,二维;U ,V_covU,_V . 23 =23“8668451157、var U var V . 32 . 228、1123七.(本题满分8分)设X 1, X 2是取自正态总体 N 0,匚2中的一个样本.试求随机变量X^X 2 “―X22的分布(不1 6 — l n21 < y ::: 1 2由于covX1 X2,X r _X2= v a rX1-v a rX2=0 ,所以, 广X1 +X2 2<屈丿21,_X2相互独立.所以,Y二乂+x2丫l X1- X2 丿「X1 +X2 22 X1 二X2 i占b八.(本题满分8分)某射手射击,他打中10环的概率为0.5,打中9环的概率为0.3,打中8环的概率为0.1,打中7环的概率为0.05,打中6环的概率为0.05 .他射击100次,试用中心极限定理近似计算他所得的总环数介于900环与930环之间的概率.x 1.25 1.30 1.35 1.40①(x)0.8944 0.90230 0.91149 0.91924解:设X k表示该射手射击的第则X k的分布律为X k 10 9 8 7 6P 0.5 0.3 0.1 0.05 0.05所以,E X k1=10 0.5 9 0.3 8 0.1 7 0.05 6 0.05 715,=102 0.5 92 0.3 82 0.1 - 72 0.05 62 0.05 =84.95,所以,D X k二EX: -Ex k2=84.95-9.152=1.2275.因此,X1, X2,…,X100是独立同分布的随机变量,故1 0 0P 9002X k 兰930『P1 0 0 1 0 0 1 0 0 1 0 0900、E X k ' X k-' E X k 930、E X k k £.:::k =1km.:::k T一,1 0 0 — 110 0「D X k ' D X k[k d . k=11 0 0' D X kk =12,而且X1 X2, X1 —X2服从二元正态分布,所以X1 X2与X1 —X2相互独立./ 100送 X k —100x9.15=P —1.35388 兰 7 l J100 汉 1.2275「Q1.35 ]尬[1.35 U 1.35 -1 =2 0.91149 -1 =0.82289 .九.(本题满分9分)设随机变量X 与Y 相互独立而且同分布,其中随机变量X 的分布列为P^X =1 j p 0, P 「X =0 =1 - p 0 ,再设随机变量”1 X +Y 为偶数 Z =」0 X +Y 为奇数■-⑴ 写出随机变量 X, Z 的联合分布律以及 X 与Z 各自的边缘分布律;⑵ 问p 取什么值时,随机变量X 与Z 相互独立?解:⑴X 与Z 的联合分布列以及X 与Z 各自的边际分布列为其中 P 〈X =0, Z =0丄 P 「X =0,Y =1丄 P 〈X =0:PY =1、p 1 - p ; P 〈X =0, Z =1 丄 P 「X =0,Y =0 .;S x "pY =0 .;h [1 - p 2;P :X =1, Z =0 ; = P :X =1, Y =0 ; = P :X =1P "Y =0^= p 1 — p ; P^X =1, Z =1 ; = P 「X =1, Y =1 ;S x=1 ;=P 2 ;900-100 9.15 J00 1.2275100X k -100 9.15•::: 一k -J100x 1.2275930-100 9.15 -<1 00 1.2275<1.35388)第6页共9页⑵如果X 与Z 相互独立,则有P :X =1, Z =0、p 1 一 p 二 P 「X =<:piz =0、p 2p 1 一 p , 1 1解方程 p1-P 二p ・2p1 — p ,得p =—.并且当p =-时,有221Pi • X1 1 1 044211 1 1 4 4 21 1 p j22可以验证,此时X 与Z 是相互独立的.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为冬-5的指数分布.X 的密度函数为由题意,知 ^X Y ,设T 的密度函数为f T t ,则-be-bef T t = f X x f Y t - x dx 二 5e _5x f Y t - x dx-:作变换 u=t-x ,贝U du =-dx ,当x =0时,u =t ;当x - 时,u —;匚.代入上式,得f (x5e _5xx 0 xE0现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令: T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数.解:5e*xX 的密度函数为fx (x )=」x 0 x 乞0丫的密度函数为fY (y )= “ 5e^ytf r (t )= - \5e~^~ F Y (U du =5e~ Je 5u fY(u dut-20当仁0时,由f Y y =0,知f r t =o ; 当t 0时,tf T t =5e® e 5u 5e“u du =25te^综上所述,可知随机变量T 的密度函数为(本题满分9分) 设总体X 的密度函数为1 _ixf x;e 二,-:::x26其中二0是未知参数. X 1,…,X n 是从中抽取的一个样本•求解:r 的似然函数为1_(日)=口 f (X i ;日 Ay^exh —4 送 X i ;>, y(2日)I 日-‘ 则有‘ / 1 nIn L (e )=—nln (2&)— —为 x i ,对。
广东海洋大学高数答案
0 2 0r 3
……………(2 分)
D
e x
2
y2
d = d e r rdr
2
2
3
0
0
…………………………………(3 分) ……………………………………(2 分)
= (1 e 9 )
四 .计算题(8×4=32 分) 1. 判别级数
6
n 1
………………………………(3 分)
三 .计算下列积分(7×4=28 分) 1. x y d , 其中 D 是由 x 轴 y 轴以及直线 x 2 y 2 所围成的闭区域。
D
1 0 y 1 x 解:积分区域 D 可表示为 2 …………………………(2 分) 0 x2
z 1 x z x x sin , 2 sin …………………………(4 分) x y y y y y x y
1 x x x dz sin dx 2 sin dy …………………………(3 分) y y y y
第 1 页 共 4 页
2.设 z f ( x, y ) 是由方程 e z y xz 0 所确定的具有连续偏导数的函 数,求
0 y 0 x ,则 D 可表示为 ……(2 分) 0 x y x y
0
dy e x cos xdx dx e x cos xdy
0 0 x
y
= ( x)e x cos xdx ……………………………………(3 分)
GDOU-B-11-302 广东海洋大学 2013—2014 学年第 二 学期
《 高 等 数 学 》课程试题答案及评分标准
广东海洋大学2013-2014-2线性代数(A)
第 3 页 共 4 页
1 2 0 3 3 1 5 4 五、设 1 , 2 , 3 , 4 ,求 1 , 1 4 6 3 2 3 7 1
3 1 2 5、矩阵 A 1 0 1 , A* 是 A 的伴随矩阵,则 A* 中的第 2 行第 2 1 4
3 列的元素是______。
第 1 页 共 4 页
6、设矩阵 A
2 1 ,且 BA B E ,则 B 1 ______。 1 2
7、已知3 4 矩阵 A 的行向量组线性无关,则 R ( AT ) ______ 。
2 8、设 A 为 n 阶可逆阵,且 A A E ,则 A* ______。
2 (0,1,1)T , 3 (3,4,0)T ,则 31 2 2 3 9、设 1 (1,1,0) T ,
______。 10、齐次线性方程组 的个数为______。 二、计算 n 阶行列式 D 的值。 (12 分)
a D b b b a b b b a x1 x2 x3 0 的基础解系所含解向量 2 x1 x2 3 x3 0
七、已知 Ra1 , a 2 , a3 2, Ra2 , a3 , a4 3 ,证明:
a3 线性表示; (1) a1 能由 a2 , a3 线性表示。 a2 , (2) a4 不能由 a1 ,
(8 分)
第 4 页 共 4 页
2, 3 , 4 的一个极大线性无关组,并把其余向量用这个极大
线性无关组表示。 (14 分)
六、 求非齐次线性方程组
广东海洋大学往年高数第二学期期末考试试题 含A B卷 完整版
广东海洋大学2010—2011学年第二学期《高等数学Ⅱ》课程试题课程号:19221102x2□√考试□A 卷□√闭卷□考查□√B 卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数243046100实得分数一.填空(3×8=24分)1.多元函数在0P 处有偏导数是该函数在0P 处可微的条件。
2.微分方程212x y xy e -'+=的通解为。
3.22044x dx -⎰=。
4.已知()F x 是2x e -的原函数,()F x dx ⎰=。
5.()f x dx '=⎰,(())f x dx '=⎰。
6.方程5650y y y '''++=的通解为。
7.函数(,)f x y 具有连续的一阶偏导数是该函数可微的条件。
8.020sin lim x x tdt x →=⎰。
二.求积分(6×5=30分)1.⎰+-dx e x x)51( 2.⎰dxx2cos 2班级:姓名:学号:试题共4页加白纸2张密封线3.⎰xdx x sin4.⎰+3032dx x x 5.121(sin )x x x dx -+⎰ 6.sin x e xdx⎰三.求解下列各题(46分)1.已知某函数满足方程(1)y ydx y xdy e dy++=,且当1y =时,12e e x -+=。
求解此函数(10分)。
2.已知sin ,,ln x y x ux v u e v x =++==,求dy dx(6分)。
3.已知曲线3223y x =。
(1)利用定积分求曲线与1,3x x ==及x 轴所围图形的面积.(5分);(2)利用二重积分再算该图形的面积(5分)。
4.计算221Dx y dxdy ++⎰⎰,其中D 是由圆周224x y +=及坐标轴所围成的在第一象限内的闭区域。
(10分)5.研究函数32321111(,)63232f x y x x x y y =--++的极值(10分)。
广东海洋大学概率论与数理统计历年考卷(内含答案)
概率论试题2014-2015一、填空题(每题3分,共30分)1、设A 、B 、C 表示三个事件,则“A 、B 都发生,C 不发生”可以表示为_⎺A ⎺BC__。
2、A 、B 为两事件,P(A ⋃B)=0.8,P(A)=0.2,P(B )=0.4,则P(B-A)=__0.6_______。
P (B-A )=P(B)-P(AB) P(AUB)=P(A)+P(B)-P(AB)3、一口袋装有6只球,其中4只白球,2只红球。
从袋中不放回的任取2只球,则取到一白一红的概率为_____8/15___。
4、设随机变量X~b(3,0.4),且随机变量Y=2)3(X X -.则P{Y=1}=___0.72______。
X=1或x=2 5、设连续性随机变量X~N(1,4),则21-x =____N(0,1)_____。
6、已知(X,Y )的联合分布律为:4161411610610210\y x 则P{Y ≥1 I X ≤0}=___1/2___。
(1/6)/(1/3)=1/27、随机变量X 服从参数为λ泊松分布,且已知P(X=1)=p(X=2),则E(X 2+1)=_______7__ 入=D(X)=E(X)=2, E(X 2)=D(X)+[E(X)]²=6,E(X 2+1)=E(X 2)+1=6+1=78、设X 1,X 2,......,X n 是来自指数分布总体X 的一个简单随机样本,21X 1-41X 2-cX 3是未知的总体期望E(X)的无偏估计量,则c=___-3/4______。
1/2+(-1/4)+(-C)=1,C=-3/49、已知总体X~N (0,σ²),又设X 1,X 2,X 3,X 4,X 5为来自总体的样本,则252423222132X X X X X +++=__F(3,2)_____。
服从F 分布10、设X 1,X 2,....,X n 是来自总体X 的样本,且有E(X)=μ,D(X)=σ2,则有E(X )=__μ___,则有D(X)=__σ2/_N_。
广东海洋大学概率论与数理统计近几年试题docx.
ce(3x4 y) , x 0, y 0 4、设二维随机变量(X,Y)的联合密度为: f ( x , y ) , (1) 0, 其它
求参数 c ; (2)求边缘密度并判断 X、Y 是否独立; (3)求 E ( XY ) 。 (15 分)
8. 设 X 1 , X 2 , X 3 是 来 自 指 数 分 布 总 体 X 的 一 个 简 单 随 机 样 本 ,
1 1 X 1 X 2 cX 3 是未知的总体期望 E ( X ) 的无偏估计量,则 c 2 4
9. 已知总体 X ~ N (0, 2 ), 又设 X 1 , X 2 , X 3 , X 4 , X 5 为来自总体的样本,则
5、设总体X服从参数为 的指数分布,设 X 1 , X 2 , , X n 为来自总体 X 的一个 样本容量为 n 的简单随机样本,求(1)参数 的矩估计量 (2)参数 的极 大似然估计量。 (15分)
6、一批螺丝钉中,随机抽取 9 个, 测得数据经计算 x 16.10cm, s 2.10cm 。 设螺丝钉的长度服从正态分布, 均值 未知。 试求该批螺丝钉长度方差 2 的 置 信 度 为 0.95 的 置 信 区 间 。 (已知: 0.025 2 (8) 17.535, 0.975 2 (8) 2.18; 0.025 2 (9) 19.02, 0.975 2 (9) 2.7) (10 分)
第 5 页 共 10 页
会迟到,而坐火车、轮船、汽车来迟到的概率分别为 1/4,1/3,1/12。 结果他迟到了,问他是坐火车来的概率为多少。(10 分)
2、20 件产品中有 3 件不合格品,若从中不放回地随机抽取 3 件,试 求其中不合格品件数 X 的分布律及其分布函数。 (10 分)
(广外)概率论试题答案+答案
一、填空:(20%)1.设A 、B 为随机事件,P (A )=0.5,P (B/A )= 0.4,则P (A B )= 。
2.两封信随机的向编号为Ⅰ、Ⅱ、Ⅲ、Ⅳ的4个邮筒投寄,前两个邮筒中各有一封信的概率是 。
3. 设三次独立重复的伯努利试验中事件A 发生的概率均为p ,若已知A 至少发生一次的概率为19/27,则p = _______________。
4.设三个相互独立的事件A 、B 、C 都不发生的概率为1/27,而且P(A)=P(B)=P(C),则 P (A )= 。
5. 设连续型随机变量X 的概率密度函数为: ax+1 0<x<2f (x) =0 其他 , 则a = ________________。
6.已知E ξ=3,E η=3,则E(3ξ-4η+3)=____________。
7. 设随机变量X 在[-6,6]上服从均匀分布,则DX =______。
8.某汽车站每天出事故的次数X 服从参数为λ的泊松分布,且已知一天内发生一次事故和发生两次事故的概率相同,则λ = 。
9.设随机变量X 服从均值为10,方差为202.0的正态分布,即X ~()202.0,10N ,已知()9938.05.20=Φ,则X 落在区间(∞-,10.05)上的概率()10.05P X <= ____________10.设随机变量ξ在[2,5]服从均匀分布,现在对ξ进行四次独立观测,则恰好有两次观测值大于3的概率为_______________。
二、单项选择题:(20%)1.A 、B 为相互独立的事件,P (A )=0.4,P (A + B )=0.7,则P (B )= 。
( ) A .0.5 B .0.6 C .0.7 D .0.82.某人购买某种奖券,已知中奖的概率为P ,若此人买奖券直到中奖时停止,则其第k 次才中奖的概率为: ( ) A .P k-1×(1-P)B .P×(1-P)k - 1C .P kD .(1-P )k3.下列函数中,( )可以作为连续型随机变量X 的概率密度函数: ( )A . sin ()0xf x ⎧=⎨⎩ 32x ππ≤≤其它B . sin ()0xf x -⎧=⎨⎩ 32x ππ≤≤其它C . cos ()0xf x ⎧=⎨⎩ 32x ππ≤≤其它D . cos ()0x f x ⎧=⎨⎩ 32x ππ≤≤其它4.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使()()()x bF x aF x F 21+=是某随机变量的分布函数在下列给定的各组数值中应取。
(广外)概率论试题答案+答案
一、填空:(20%)1.设A 、B 为随机事件,P (A )=0.5,P (B/A )= 0.4,则P (A B )= 。
2.两封信随机的向编号为Ⅰ、Ⅱ、Ⅲ、Ⅳ的4个邮筒投寄,前两个邮筒中各有一封信的概率是 。
3. 设三次独立重复的伯努利试验中事件A 发生的概率均为p ,若已知A 至少发生一次的概率为19/27,则p = _______________。
4.设三个相互独立的事件A 、B 、C 都不发生的概率为1/27,而且P(A)=P(B)=P(C),则 P (A )= 。
5. 设连续型随机变量X 的概率密度函数为: ax+1 0<x<2f (x) =0 其他 , 则a = ________________。
6.已知E ξ=3,E η=3,则E(3ξ-4η+3)=____________。
7. 设随机变量X 在[-6,6]上服从均匀分布,则DX =______。
8.某汽车站每天出事故的次数X 服从参数为λ的泊松分布,且已知一天内发生一次事故和发生两次事故的概率相同,则λ = 。
9.设随机变量X 服从均值为10,方差为202.0的正态分布,即X ~()202.0,10N ,已知()9938.05.20=Φ,则X 落在区间(∞-,10.05)上的概率()10.05P X <= ____________10.设随机变量ξ在[2,5]服从均匀分布,现在对ξ进行四次独立观测,则恰好有两次观测值大于3的概率为_______________。
二、单项选择题:(20%)1.A 、B 为相互独立的事件,P (A )=0.4,P (A + B )=0.7,则P (B )= 。
( ) A .0.5 B .0.6 C .0.7 D .0.82.某人购买某种奖券,已知中奖的概率为P ,若此人买奖券直到中奖时停止,则其第k 次才中奖的概率为: ( ) A .P k-1×(1-P)B .P×(1-P)k - 1C .P kD .(1-P )k3.下列函数中,( )可以作为连续型随机变量X 的概率密度函数: ( )A . sin ()0xf x ⎧=⎨⎩ 32x ππ≤≤其它B . sin ()0xf x -⎧=⎨⎩ 32x ππ≤≤其它C . cos ()0xf x ⎧=⎨⎩ 32x ππ≤≤其它D . cos ()0x f x ⎧=⎨⎩ 32x ππ≤≤其它4.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使()()()x bF x aF x F 21+=是某随机变量的分布函数在下列给定的各组数值中应取。
广东海洋大学量子力学2014-2015 A答案
广东海洋大学 2014 ——2015 学年第一学期《 量子力学 》课程试题1课程号:√ 考试 √ A 卷 √ 闭卷 □ 考查□ B 卷□ 开卷一、填空题(每小题4 分,共40分) 1. 波粒。
2.E=h ν, p=/h λ 。
3.粒子在x —dx 范围内的几率。
4.厄米。
5.[],x p i = 。
6.本征值 。
7.t E i n n ex t x -=)(),(ϕψ。
8.实数,相互正交。
9.),(ϕθm l Y 。
10.dx et x px i ⎰+∞∞--ψ),(。
二、证明题(每小题10分,共20分)1.(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:班级:姓名:学号:试题共页加白纸 2张密封线GDOU-B-11-302z y x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z xy z y x p x p z p z p y L L --=2.(10分)证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
三、计算题(共40分)]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x p i y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =1.(10分)在0 K 附近,钠的价电子动能约为3 eV,求其德布罗意波长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论试题2013-2014第二学期A 卷
一、填空题(每题3分,共30分)
1、设A 、B 、C 表示三个事件,则“A 、B 都发生,C 不发生”可以表示为_⎺A ⎺BC 应该是AB 和C 取反_。
2、A 、B 为两事件,P(A B)=0.8,P(A)=0.2,P()=0.4,则P(B-A)=__0.6_______。
P (B-A )=P(B)-P(AB) P(AUB)=P(A)+P(B)-P(AB)
3、一口袋装有6只球,其中4只白球,2只红球。
从袋中不放回的任取2只球,则取到一白一红的概率为_____8/15___。
4、设随机变量X~b(3,0.4),且随机变量Y=.则P{Y=1}=___0.72______。
X=1或x=2
5、设连续性随机变量X~N(1,4),则=____N(0,1)_____。
6、已知(X,Y )的联合分布律为:
则P{Y ≥1 I X ≤0}=___1/2___。
(1/6)/(1/3)=1/2
7、随机变量X 服从参数为λ泊松分布,且已知P(X=1)=p(X=2),则E(X 2+1)=_______7__ 入=D(X)=E(X)=2, E(X 2)=D(X)+[E(X)]²=6,E(X 2+1)=E(X 2)+1=6+1=7
8、设X 1,X 2,......,X n 是来自指数分布总体X 的一个简单随机样本,X 1-X 2-cX 3
是未知的总体期望E(X)的无偏估计量,则c=___-3/4______。
1/2+(-1/4)+(-C)=1,C=-3/4
9、已知总体X~N (0,σ²),又设X 1,X 2,X 3,X 4,X 5为来自总体的样本,则
=__F(3,2)_____。
服从F 分布 10、设X 1,X 2,....,X n 是来自总体X 的样本,且有E(X)=μ,D(X)=σ2,则有
E()=__μ___,则有D()=__σ2
/_N_。
(其中=)
二、计算题(70分)
1、若甲盒中装有三个白球,两个黑球;乙盒中装有一个白球,两个黑球。
由甲盒中任取一球投入乙盒,再从乙盒中任取一个球。
(1)求从乙盒中取得一个白球的概率;(2)若从乙盒中取得一个黑球,问从甲盒中也取得一个黑球的概率。
(10分)
⋃B 2
)
3(X X -2
1
-x 4161411
6106102
10\y x 214
1
2
52
4232
2
2132X X X X X +++X X X ∑=n
i X 1
i n 1
解.设A1表示从甲盒中取出的球为白球,A2表示从甲盒中取出的球为黑球,B1表示乙盒中取得白球,B2表示乙盒中取黑球,C表示从乙盒中取得一个黑球从甲盒中也取得一个黑球,则P(A1)=0.6,P(A2)=0.4,
解:(1)A1发生的情况下B1发生的概率P(B|A1)=0.5,
A2发生的情况下B1发生的概率P(B1|A2)=0.25,
P(B1)=P(A1)P(B1|A1)+P(A2)P(B1|A2)=0.6*0.5+0.4*0.25=0.4
(2)由(1)可知,从乙中取出一个黑球的概率P(B2)=1-P(B1)=0.6
A2发生的情况下B2发生的概率P(B2|A2)=0.3,则P(C)=0.3/0.6=0.5
2
、设二维随机变量(X,Y)的联合密度为:
ƒ(x,y)=
(1)求参数A;(2)求两个边缘密度并判断X,Y是否独立;(3)求F
x
(x) (15
分)
其他
1
0,2
)
(<
<
<
<
+y
x
y
x
A
3、设盒中装有3支蓝笔,3支绿笔和2支红笔,今从中随机抽取2支,以X表示取得蓝笔的支数,Y表示取得红笔的支数,求(1)(X,Y)联合分布律;(2)E(XY) (10分)
4、据某医院统计,凡心脏手术后能完全复原的概率是0.9,那么再对100名病人实施手术后,有84至95名病人能完全复原的概率是多少?
(ϕ(1.67)=0.9525 ; ϕ(2)=0.9972) (10分)
5、已知总体X服从参数为λ的指数分布,其中λ是未知参数,设X
1,X
2
,....,
X n 为来自总体X样本,其观察值为x
1
,x
2
,x
3
,......,x
n。
求未知参数λ:(1)
矩估计量:
(2)最大似然估计量。
(15分)
6、设某种清漆的9个样品,其干燥时间(以小时记)分别为:
6.0 5.7 5.8 6.5
7.0 6.3 5.6 6.1 5.0 。
设干燥时间总体服从正态分布N(μ,σ2)。
求:若方差σ2为未知数时,μ的置信水平为0.95的置信区间。
(t
0.025(8)=2.3060 : t
0.025
(9)=202622) (10分)。