高数论文

合集下载

大学数学论文(5篇)

大学数学论文(5篇)

大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。

首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。

这些是数学竞赛得以顺当开展的基础。

第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。

最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。

这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。

基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。

2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。

不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。

主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。

限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。

还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。

还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。

基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。

高数数学论文

高数数学论文

⾼数数学论⽂ ⾼数成为⽣活中不可或缺的重要学科之⼀,对于⾼数微积分在社会⽣活中的运⽤也越来越⼴泛。

下⾯店铺给你分享⾼数数学论⽂,欢迎阅读。

⾼数数学论⽂篇⼀ 摘要:⽬前,改⾰在各个学校中都在进⾏,在课堂上对学⽣的⼈⽂修养和礼仪道德,⼈⽂知识以及专业技巧知识还有相关的科学知识的拓展等各个层⾯的综合培养就是所谓的素质教育,提倡素质教学,结合每个科⽬⽽且联系实际才能有效地应⽤。

⾼数教学中的素质教育是指学⽣对事物的认知和接触辨析能⼒包括思维逻辑、逻辑变通和数理规则还有抽象图形等,不仅包括数学的公式运算,还有相关数学知识、运算⽅法、分析要领和数学领域的科研⽅向以及与相关学科相关联部分的桥梁知识。

因此,只有通过⾼等数学教学中数学素养的培养,带动促进⼈才全⾯素质的提⾼,加强学⽣学习能⼒和创新思维,才能为社会培养每⼀个具有创新精神的合格的⼈才。

关键词:⾼等数学教学数学素质培养 ⼀个学⽣良好的数学素质离不开⾼等院校的数学素质教育,在社会发展的⼤浪潮中我国的数学素质教学必然会遇到⼀些困难,我们要迎风⽽上,为开辟数学素质教学起到积极意义。

本⽂就我国⾼等数学素质教育进⾏⼀些简单和基本⽅法性问题的研究与探讨。

⼀、全⾯提升⼈才素质离不开数学素养的提⾼ 辩证思想深深扎根于⾼等数学理论,举个例⼦来说:⽆穷⼤与⽆穷⼩的论证、有限和⽆限的相互论证等。

这对于知识接受者⾃⾝的素养不仅是数学素养包括全⾝⼼的素养甚⾄是帮助⼈形成正确的⼈⽣观价值观都起着⾮常⼤的作⽤。

⾼数作为⼀种理性思维的教育,以培养逻辑思维能⼒和创造性思维能⼒为⼰任。

通过理性的教育,使得知识接受者具备相应的现实想象⼒,进⽽才能具有建设和发展社会的能⼒。

抽象性是数学理论显著的⼀个特点,对数学理论的持续研究,可以很好地提升逻辑推理、抽象思维和分析并解决问题的能⼒。

各种教学⼼理学研究成果显⽰:知识接受者的学习动⼒的源泉是⾃⾝社会的知识所形成价值观作⽤于社会的感受程度。

这个不难理解,数学与⽣活息息相关,因为,数学本来就是从⽣活、⽣产和科研等实际需要来逐渐发展⽣成的,实际的问题引发新的理论,理论联系实际,⽬标明确,进⽽提升学⽣学习的热情与渴望。

大学高等数学论文2500字_大学高等数学毕业论文范文模板

大学高等数学论文2500字_大学高等数学毕业论文范文模板

大学高等数学论文2500字_大学高等数学毕业论文范文模板大学高等数学论文2500字(一):当代大学高等数学课程教学模式分析与改革探讨论文【摘要】高等数学以变量为主要研究对象,有着高度的抽象性、严密的逻辑性和广泛的应用性。

其教学目标达成情况对后续课程学习以及学生后续发展都有着十分重要的影响。

本文就高等数学课程教学模式当前一般情况进行分析和探讨,从而得出相应的改革策略和方法,进而推动高等数学课程更好地适应时代需求,提高教学效率,缩小个体差异。

【关键词】高等数学课程教学模式分析与改革随着本科教育教学改革全面深化和信息技术迅猛发展,面对知识获取和传授方式的革命性变化,高等学校课程教学模式改革迎来了崭新的发展空间。

在这样的时代背景之下,为实现人才培养目标,各个学科课程教学都在不断地进行着研究和创新。

数学是研究客观世界中数量关系和空间形式的科学,通过逻辑推理、符号演算和科学计算认识世界;数学是自然界的语言,是自然科学与社会科学的基础,为其他学科提供思想、观念和研究方法;数学是一种文化,在人类文明的进程中起着重要的推动作用。

高等数学作为本科教育阶段大多数专业的一门专业基础课,是大学生熟练掌握数学工具的主要课程,是培养大学生数学思维能力的重要途径,是学生感受数学之美的重要载体。

为了更好地实施高等数学教学,需要教师们不断互相交流,经常总结经验,创新课程教学模式。

一、高等数学教学过程中出现的问题(一)教学方法单一教学方法单一,是影响高等数学教学的因素之一。

在实际教学过程中,一些教师大多数时间采用满堂灌输式教学,只注重知识点的讲解,很少给学生动脑筋的机会。

学生往往处于被动接受知识的状态,长时间持续听讲和忙于做笔记,容易导致丧失对高等数学的学习兴趣。

(二)教学手段落后在教育领域,随着科学技术的进一步发展,信息技术逐渐参与到教学过程当中,由此推动了教学方式产生了新的变革。

在这样的教学背景之下,习惯于以口头讲述为主的教师和一些信息技术掌握程度较低的老师,在讲课的过程中,对信息技术这种新的教学手段的利用率低,这种情况的出现在一定程度上也不利于数学教学的开展。

大学高等数学论文范文

大学高等数学论文范文

大学高等数学论文范文推荐文章浅谈高等数学论文范文格式模板热度:高等数学相关论文范文热度:有关大学教育论文范文热度:高等教育学论文相关范文热度:高等院校会计专业论文热度:大学高等数学教育是促进学生发展全面性的一门基础性学科,其在学生思维、思辨能力的培养过程中扮演着十分重要的角色。

下面是店铺为大家整理的大学高等数学论文范,供大家参考。

大学高等数学论文范范文一:数学史教育高等数学论文一、在高等数学的教学中融入数学史的必要性(一)在教学过程中插入数学史教育在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。

著名数学家陈省身说:“了解历史的变化是了解这门科学的一个步骤。

将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。

”高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。

高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。

在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。

(二)将数学史蕴涵的思想、方法融入到高等数学教学中弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行“再创造”。

数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。

大一高等数学论文范文

大一高等数学论文范文

大一高等数学论文范文高等数学是大学重要的基础课程,是理、工、农、医等高等教育中涉及学生最多、对学生的影响最远的课程之一.作为一门基础科学,高等数学具有高度的抽象性、严密的逻辑性和广泛的应用性等特点。

下面是小编为大家整理的大一高等数学论文,供大家参考。

大一高等数学论文范文一:高等数学学习心得通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。

首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。

一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。

所以希望大家无论如何,一定要把高数考好。

记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。

说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。

其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意)。

可能之前会听到家长或者老师会说,到了大学就可以好好玩了。

不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。

而且,大学其实并不比高中轻松(这句话大家一定注意)。

下面我来介绍一下,大学高数的一些学习方法:第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。

因为,大学课程的进程可不是一般的快。

希望大家能保持课时比老师快两节,练习比老师快一节。

最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。

第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。

有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。

高等数学课程教学方法论文(共3篇)

高等数学课程教学方法论文(共3篇)

高等数学课程教学方法论文(共3篇)第1篇:高等数学课程教学方法论文给你一篇高等数学课程教学方法论文的写作范例,你可以参考它的格式与写法,进行适当修改。

【摘要】本文数学论文从多个方面论述了在大学数学教学中应注意的问题,提出了一些切实可行的教学方法,对于不断提高高等数学的教学质量,提高学生的综合素质,具有一定的指导意义。

【关键词】高等数学,教学方法,教学模式高等数学是高等院校理工科专业的一门重要基础课程,它既是学生学习后续课程的基础,也是培养学生学习方法和解决问题能力的重要途径,兼具了工具实用性和逻辑思辨性两个特点。

随着高等教育的大众化,生源情况发生了巨大的变化,高等数学教学面临着巨大的困难与挑战,教学的压力逐渐加大,在后续专业课对高等数学的要求不断提高、对学生能力的培养更加重视的情况下,如何利用较少的授课时间来获得较高的教学质量,是我们广大高等数学教师应思考的问题。

一、提高学生对高等数学的重视程度首先,让学生明确学习高等数学的目的、认识学习的意义、了解课程的主要内容与地位,介绍高等数学的学习方法,以帮助学生端正学习动机。

其次,必须让学生明确高等数学的重要性以及它在各个领域的广泛应用,高等数学不但深入到物理化学生物等传统领域,而且深入到信息经济金融等各领域中,对于大多数人而言,并不希望成为一个数学专业人员,而是希望将数学作为研究其他学科的工具,随着科学技术和经济的飞速发展,学习高等数学的过程可以使学生具备独立获取知识、分析问题、解决问题的能力及具有创造性的科学精神,符合21世纪对人才培养的要求。

再次,将数学文化作为一种教育理念,使学生受到重视。

张奠宙教授指出:数学文化必须走进课堂,在实际数学教学中使得学生在学习数学的过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位和世俗的人情味。

二、引导学生主动学习,提高学生学习效率在高等数学教学中,要不断激发学生的学习兴趣,让学生主动去学习。

例如,在教学过程中,可改变过去的僵化的教学模式,从以教师为中心转移到以学生为中心,彻底改变过去的“单一讲授——被动接受”的填鸭式教学方法,打破传统的老师讲学生听,只有老师可向学生提问,学生不能向老师质疑的教学模式。

高等数学论文范文

高等数学论文范文

高等数学论文范文随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。

下面是店铺为大家整理的高等数学论文,供大家参考。

高等数学论文范文一:高等数学在高职教育中的对策分析一、高等数学在地方高等职业教育中遇到的问题及解决办法(一)数学师资力量短缺,教师学历偏低地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。

由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。

要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。

2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。

(二)学生对数学课重要性认识不够,学习热情不高目前,在高职院校学生中普遍存在着“专业至上”的观念。

他们片面地认为只要专业课学好了,其他的文化课无足轻重。

所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。

针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。

在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。

他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。

这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。

兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。

这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。

高数学习方法总结论文【精选4篇】

高数学习方法总结论文【精选4篇】

高数学习方法总结论文【精选4篇】高数学习方法总结论文【精选4篇】在日常学习、工作或生活中,需要学习的内容越来越多,想要高效的学习,就一定要掌握正确的学习方法!那么,大家知道要怎样正确高效的学习吗?以下是小编为大家整理的高数学习方法总结论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

高数学习方法总结论文1大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。

高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。

首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。

极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。

(一)做题的方法和技巧学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。

高等数学教学论文(5篇)

高等数学教学论文(5篇)

高等数学教学论文(5篇)高等数学教学论文(5篇)高等数学教学论文范文第1篇爱好是最好的老师,数学又是美的,但是数学学习往往是枯燥的,同学很难体会到这种奇妙。

如何提高同学对高等数学的爱好是授课老师需要思索的问题。

我在教学中为了让教学更加生动加入了一些生活中的数学应用。

比如,为什么人们能精确猜测几十年后的日食,却没法精确猜测明天的天气;为什么人们可以通过https平安地扫瞄网页而不会被监听;为什么全球变暖的速度超过一个界限就变得不行逆了;为什么把文本文件压缩成zip体积会削减许多,而mp3文件压缩成zip大小却几乎不变;民生统计指标究竟应当采纳平均数还是中位数;当人们说两种乐器声音的音高相同而音色不同的时候究竟是什么意思在这些例子中数学是好玩的,体现了基础、重要、深刻、美的数学。

二、培育同学自我学习力量授人以鱼不如授人以渔,单纯教会同学某一道题目的计算不如使同学把握解题的方法。

因此讲解题目时可以结合方法论:开头解一道题的时候我会告知同学这就和解决任何一个实际问题一样,首先从要观看事物开头,把数学题目观看清晰;接下来就需要分析事物,搞清晰题目的特点、有什么样的函数性质、证明的条件和结论会有什么样的联系,依据计算状况预备相应的定理和公式;最终就是解决问题,结合把握的计算和推理技巧完成题目的求解。

通过这样的讲解,和必要的练习,同学完成的不再是一道道独立的数学题目,实现的是方法论的应用,也是更清楚的规律思维的训练,有助于提高同学的自我学习力量。

“教是为了不教”,把握解题方法,有自学力量,以后工作遇到实际问题也能迎刃而解。

三、重视规律思维的训练不管是工作还是生活中人们都会遇到数学问题,假如没有规律思维只是表面理解就有可能陷入“数学陷阱”。

在教学中我经常举这样一个例子:有个婴儿吃了某款奶粉后突发急病死亡,而奶粉厂却高调坚称奶粉没有问题,是否有股对这个黑心奶粉厂口诛笔伐并将之搞垮的冲动呢?且慢,不妨先做道算术题:假设该奶粉对婴儿有万分之一的致死率,同时有100万婴儿使用这款奶粉,那就应当有约100名孩子中招,但事实上称使用该奶粉后死亡的说法却远远没有100个。

大一高等数学论文

大一高等数学论文

大一高等数学论文第一篇:大一高等数学论文高等数学论文高等数学作为一门基础课程,他在各个领域的重要性就不言而喻了,但现如今在大学普遍的教学方式:“定义→性质→例题”。

这种模式显然不够,并且在大学一个课堂的内容很多,各种各样新的概念更是层出不穷,让学生应接不暇,而我们学习大多是在课后自己去学的,这样就会产生一种自我满足心理,对于学过的内容去看资料做习题时就会认为自己会做了差不多能懂了,便认为自己学会了;还有就是对如何学、学到什么程度,在别的课程影响下,学习高等数学的深度也是不同的,学习太深会感到越难,从而影响到学习兴趣,这样的人大有人在。

但在现今学习的潮流下,我们总不能说不学了,学习还是要学的,关键就在于怎么学、如何去学。

你想要老师改变教学方式是不可能的,因为老师不是为你一个人而讲的,要考虑到大多数同学,在几十人甚至一百多人的课堂上,固定的教学模式也成了普遍的事,我们可以做的就是跟老师交流,建议老师做出细微的调整,那么我们学习便主要靠自己了,改变自己才是最好的方法,虽说每个人都知道学习的方式很多,但大都会感到力不从心,无从下手。

我在这就谈谈我自己的看法吧。

如今进入大学,首先第一点需要做的就是改变自己的思想观念。

记得刚来时,学习高等数学还像以前那样总是等着老师,很少预习,老师讲到哪,书就看到。

结果才几堂课就发现自己跟不上了。

例如对于学习函数的极限用“ξ~δ”语言表示时,老师讲的很快,感觉定义一下子就弹出来了,感到有点突兀,接下来讲的例题就有点跟不上了,学习也有了影响。

后来作了深刻的思考,明白大学跟高中是完全不同的,高中老师是带着你督促你学,而大学老师是引导你学,给你一个方向,剩下的路要你自己一步步去寻找,同时老师也在课堂上多次强调这种观念,让我们先从思想上作出调整。

还记得后来花了很长时间才弄清弄熟,这就要我们预习了,提前作了解、思考,也能更深入了解定义了,走在老师的前面是有必要的。

虽说明白了这反面,但实际上做起来就不是那么快改过来的,这需要一个调整期的,不要心急,想学习好就得坚持。

高中数学教学论文10篇【论文】

高中数学教学论文10篇【论文】

高中数学教学论文10篇【论文】1. 数学教学中的问题及对策探讨本文探讨了高中数学教学中的常见问题,并提出了相应的解决对策,以提高教学效果和学生的研究兴趣。

2. 创新技术在高中数学教学中的应用研究该论文研究了创新技术在高中数学教学中的应用,包括利用电子教学资源、互动教学工具等,以优化教学过程和提升学生的研究成绩。

3. 高中数学教学中的差异化教育探索本文探讨了如何在高中数学教学中实施差异化教育,以满足不同学生的研究需求和能力水平,并提高整体教学效果。

4. 高中数学课堂教学的互动性研究该论文研究了高中数学课堂教学中的互动性,包括教师与学生之间的互动、学生之间的互动等,以探索提高教学效果和促进学生参与的方法。

5. 高中数学教学中的跨学科教育研究本文研究了高中数学教学中的跨学科教育,包括与科学、艺术、文学等学科之间的融合,以拓宽学生的知识面和培养综合素质。

6. 提高高中数学研究动机的措施研究该论文研究了提高高中学生数学研究动机的措施,包括启发性教学法、激励机制等,以激发学生对数学研究的兴趣和积极性。

7. 数学教学中的评价方法研究本文研究了高中数学教学中的评价方法,包括传统评价和综合评价等,以确定学生的研究水平和提供个性化的教学反馈。

8. 高中数学教学中的素质教育实践该论文研究了高中数学教学中的素质教育实践,包括培养学生的创新精神、团队合作能力等,以提高学生的综合素质和应用能力。

9. 数学教学中的问题解决思维培养研究本文研究了高中数学教学中的问题解决思维培养,包括培养学生的逻辑思维、创造性思维等能力,以提高他们解决实际问题的能力。

10. 高中数学教学中的形式与内容的平衡研究该论文研究了高中数学教学中形式与内容的平衡问题,旨在找到适合学生研究特点和课程要求的教学模式,以达到有效传授数学知识的目的。

以上是10篇关于高中数学教学的论文题目,通过研究这些方面,我们可以进一步优化教学策略,提高学生的学习效果和综合素质。

高等数学数学论文4600字_高等数学数学毕业论文范文模板

高等数学数学论文4600字_高等数学数学毕业论文范文模板

高等数学数学论文4600字_高等数学数学毕业论文范文模板高等数学数学论文4600字(一):数学建模竞赛与高等数学课堂教学论文摘要:现阶段,随着社会的发展,我国的教育水平的发展也有了改善。

高等教育法第五条规定:“高等教育的任务是培养具有创新精神和实践能力的高级专门人才,发展科学技术文化,促进社会主义现代化建设。

”因此,培养创新型人才是高等教育的根本目标。

教育特别是高等教育承担着为国家培养创新型人才的神圣使命,世界各国的经济和综合国力的竞争,归根到底就是人才创新能力的竞争。

培养创新型人才的核心是创新意识和创新思维能力的培养。

高等数学是高等院校中的基础学科,它在培养大学生抽象逻辑思维能力、创新精神以及创新能力都具有独特而重要的作用。

我校除了文科专业外均开设了高等数学课程,与学校坚持“建设高水平理工大学,培养应用型创新人才”的办学方向相一致。

关键词:数学建模竞赛;高等数学课堂;教学引言:数学建模旨在用数学知识和和方法来解决实际问题,在数学建模的过程中,首先通过分析问题,把实际问题转化为数学语言,从而描述成大家较熟悉的数学问题。

然后借助数学理论、计算机理论等工具对这些数学问题进行求解,最终获得相对应实际问题的解决方案或者对相应实际问题有更深入和更详细的了解。

随着科学技术的发展日益迅猛,数学建模已经被广泛应用在生物、化学、医学、工程技术、航天科技等众多领域。

因此数学建模也越来越受到社会的普遍重视,并成为现代科学技术工作者必备的重要能力之一。

很多高等院校也把每年的全国大学生数学建模成绩作为衡量教学水平的一个重要指标。

一、将数学建模思想融入高等数学混合式教学中数学建模是一种数学的思维方式,是利用数学思想和方法,通过预设、简化和概括建立的与实际问题比较接近并基本能处理实际问题的一种模型或方法,并在工程、经济、生态乃至于社会科学等领域的问题都可以融入数学建模的方法。

因此,数学和数学思想越来越广泛地得到了应用。

混合式教学简单的说就是把线下(传统)学习和线上(网络)学习的优势结合在一起,换句话说,既要发挥教师教学设计、教学指导、教学启发以及教学评价的主导作用,又要体现学生主动学习和自觉学习的主体地位。

高考数学论文(5篇)

高考数学论文(5篇)

高考数学论文(5篇)高考数学论文(5篇)高考数学论文范文第1篇一、近年来高考试题中涉及工科高等数学学问的考题类型及难度分析1、涉及函数与极限部分的试题这部分试题大都以客观题的形式消失,分值不大,难度中等或较低,只需结合初等数学学问作简洁整理和代入。

但是同学必需娴熟把握简洁极限的求法以及函数连续的定义。

如(2021年陕西12题),(2021年湖北6题),(2021年四川5题)2、涉及导数及其应用部分的试题此类试题考试形式敏捷,涉及导数的几何意义、单调性、极值、最值、不等式的证明以及实际应用问题等,所占分值在12分左右。

客观题难度较低,主观题其次小问通常有肯定难度,而且有些问题需要借助于高等数学的定理来证明(例6需要拉格朗日定理作依托)。

完整解答问题需要同学具有良好的数学素养,能全面考察同学力量。

如(2021全国大纲卷8题),(2021安徽17题),(2021辽宁21题),(2021福建18题)3、涉及向量及其运算的试题直接涉及向量内积、向量夹角、向量间关系试题多以客观题形式消失,立体几何中证明线、面平行、垂直、求动点的轨迹、最值等“动态”型问题通常以主观题形式考查且分值都在10份以上。

主要考察同学用向量学问识把抽象的空间图象关系、空间中的点、线、面的位置关系转化为详细的数量关系,降低思维难度,淡化推理论证,简化思维过程的力量。

如(2021安徽13题),(2021全国大纲卷19题),(2021江苏15题)4、涉及定积分的试题由于新课程标准的实施,涉及定积分制试点的试题消失在近年来全国新课标卷中,基本是以客观题的形式消失,分值不高,主要考查定积分的定义、几何意义以及简洁的计算。

如(2021全国新课标9题)除了涉及高等数学的学问点外,高考命题越来越注意“力量立意”。

增加了有关数学建模思想、数学算法思想以及数学探究等开放性试题,在考查同学一般数学力量(思维力量、计算力量、空间想象力量)的基础上,全面地测量同学观看、试验、联想、猜想、归纳、类比、推广等思维活动的水平以及抽象、概括并建立数学模型的力量。

高等数学论文毕业范文.doc

高等数学论文毕业范文.doc

高等数学论文毕业范文高等数学课程不仅是学生掌握一些实用的数学工具的主渠道,它更是培养学生的数学思维、数学素质、创新能力的重要载体,所以,高等数学教学对大学生有着重要的意义。

下面是我为大家整理的高等数学论文,供大家参考。

高等数学论文范文一:独立学院高等数学分层教学摘要:独立学院学生的学习基础差别比较大,并且高等数学内容繁多,学生学习起来有一定的难度,所以有必要对独立学院的学生进行分层次教学。

文章对独立学院高等数学分层教学进行研究。

关键词:独立学院;高等数学;分层教学一、前言近年来随着高校招生规模的扩大独立学院应运而生,独立学院所招的学生高考分数一般在公办普通高校本科和专科之间,由于在这一区间内的分值范围比较大,所以独立学院所招的学生学习能力和学习基础差别较大。

因此,不能照搬公立本科院校的教学模式对独立学院的学生进行教学。

二、独立院校高等数学分层教学的必要性和重要性高等数学是高校理工类学生必修的公共课程,首先这门课程具有内容繁多,公式复杂,推理证明过程对学生的逻辑性思维要求较高的特点,学生学习起来有一定的难度。

其次,大学同初中和高中不同。

由于现在的学生长期接受初中、高中教师耳提面命式的管教,刚进入大学校门会有种突然解放的感觉,他们会不自觉的放松自己。

因为高等数学是一门非常重要的基础课程,学习高等数学可以为以后的理工科课程的学习打下基础,所以一般大学都将高等数学教学放在大一进行。

加之独立学院招收学生的学习基础相差比较大,如果实行大班不加区分的统一授课的话基础较差的学生学习起来会比较吃力,进而打击到学生学习高等数学的积极性,这对于刚刚进入大学校门还没有来得及适应大学生活和学习规律的大一新生来说无疑是致命的。

所以,独立院校高等数学分层教学是很有必要的。

独立院校的高等数学教师应当在开课之前对新生的学习情况有所了解,根据学生学习能力和基础的好坏进行分层备课和教学。

这种分层次教学的理念在一些地方的初中、高中有所实行,但是大学中很少使用。

大学高数论文范文

大学高数论文范文

大学高数论文范文高等数学教育是现代大学教学中的一项基础的课程,并在大学教学体系中占有十分重要的地位。

下面是店铺为大家整理的大学高数论文,供大家参考。

大学高数论文范文一:高等数学课程学习网站设计应用1设计拟达到的目标使用网络媒体,高等数学教学资源可以多种方式组合,以适应A 级、B级、C级不同学习者的需要。

高等数学的教学从单纯课堂教学延伸到了网络上的协同辅导、学习和工作。

网络提供的各种学习资源还可以被不同高校共享,并在每个学习者需要的时间和地点被使用,使高等数学的教学突破了时间和空间的限制。

本设计利用云南省昆明市西南林业大学已经建设完成的遍布各教室、各学生宿舍的校园网络,以高等数学课程教学内容为核心,以高等数学教学资源库、网络课程、模拟测试题库等为资源支撑,建设高等数学课程教学网站,为教师所需集成各自教学内容、为学生自主学习和个性化培养提供全面的支持和服务。

2课程学习网站功能模块结构2.1数学新闻数学新闻信息显示,由课程负责人在后台添加新闻信息,包括标题、添加时间、简要描述、详细描述等内容,前端以列表形式进行展示,学生点击新闻标题,进入相应的新闻详细信息页浏览新闻内容。

对新技术、新知识的分享,让学生能从课堂之余学习新知识。

2.2教学团队办学质量的好坏,取决于学校管理的各个方面,而最关键乃教学管理。

该项主要展示学校数学的教育师资力量。

3.3数学史话数学科学具有悠久历史,与自然科学相比,数学更是积累性学科,其概念和方法更具有延续性。

从古至今,从国内到国外的著名数学大师趣事收集于此,不仅能让学生更多的了解数学发展历程,还能提高学习兴趣,从各素材中汲取养分,为今后学习奠定基石。

2.4课程安排学生进入高等数学课程网站后,从导航菜单中进入课程安排选项,浏览每位教师制定的教学安排计划,了解各个学习阶段应要学习或掌握的知识,并能根据教师的课程安排计划合理调整自身的学习计划,以不断增强自身知识结构,复习和预习课程内容。

关于高等数学论文3000字_关于高等数学毕业论文范文模板

关于高等数学论文3000字_关于高等数学毕业论文范文模板

关于高等数学论文3000字_关于高等数学毕业论文范文模板关于高等数学论文3000字(一):网络课堂与传统讲堂相结合的模式在高等数学中的应用论文摘要:突如其来的疫情让我们把课堂完完全全地搬到了互联网上,起初,我也存在着一丝丝的担忧。

学生真的可以在网络上进行有效的学习吗?我们真的可以在网络上达到和真实课堂上相同的学习效果吗?当我们从刚开始的摸索尝试到现在形成的“创新性学习”模式,让网络课堂与传统讲堂相结合,这些疑问也就迎刃而解了。

老师的授课热情没有因为网络而打折扣,同学们对知识的渴求也没有因为网络而削减。

关键词:疫情;网络授课;高等数学;传统讲堂乙亥末,庚子春,谁都没有意料到,一场突如其来的疫情使整个中国乃至世界进入到车舟无,万巷空的状态。

众惶恐,举国防,皆闭户。

这里就包含莘莘学子,为了不影响学生的学习,教育部提出了“停课不停教,停课不停学”的要求,学生们开启了居家线上学习,老师们的教学也从教室转到了线上。

我作为《高等数学》课程的授课教师,面向我的学生们进行线上教学。

对于我们这些习惯传统教学的老师来说,刚开始,对于线上教学不知该从何入手。

对于众多学生来说,他们也是更适应传统教学的学习方式。

所以通过一段时间的尝试摸索,可以发现,完全摒弃传统教学方式使用网络教学的学习效果差强人意,网络教学与传统教学相结合的方法比较适合学生。

1网络教学与传统教学相结合的教学模式1.1课前准备每周上课前,会和课程组教师一起开视频会议提前研究教学内容、课程组织和作业布置。

会在学习通上发布本周作业与本周计划上课内容,学习目标,学习重难点,学习视频,学习课件等材料,并在QQ群中告诉同学们本节课的学习任务让学生自主学习把课程中的讲课视频看完,防止上课时间网络拥挤打不开视频,耽误教学进度。

每次都会在学习通上监督学生们的学习进度,并单独警告提醒没有完成视频学习的人,督促他们学习,增强学习的自觉性。

对于自主学习过程中看不懂的内容,随时可以向教师咨询。

高等数学毕业论文范文

高等数学毕业论文范文

高等数学毕业论文范文随着社会的发展进步,高等数学在高等教育中占据着越来越重要的地位。

下面是店铺为大家整理的高等数学毕业论文,供大家参考。

高等数学毕业论文范文一:高等数学教学质量提升体会【摘要】本文根据笔者自身的教学经验,提出大学生在学习高等数学时存在认为学习高等数学没有用、学也学不会、学习思维定式三大误区,并针对三大误区提出端正学习态度、激发学生学习兴趣、提高教师自身素质、创新教师教学方法、建立良好的师生关系等方法,从而提高高等数学教学质量,改善教学效果。

【关键词】高等数学教学;教学质量;心得体会高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。

随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。

1高等数学教学中学生存在的误区1.1误区一很多学生认为学数学没有用高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什么用,在将来实际工作中也用不到数学。

1.2误区二高等数学具有很高的抽象性,很多学生觉得学也学不会现在学生不愿意动脑、动笔,碰到题目就在想答案。

往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。

1.3误区三学生习惯于用中学的思维来解题很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。

在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。

随着学习的深入学生发现题目越来越不会做。

高数论文(五篇)

高数论文(五篇)

高数论文(五篇)第一篇:高数论文高数论文短短一个学期的高数的学习就结束了,感觉过的好快有好慢,总得来说收获还是很大,收获了不仅是知识、还有学习知识的方法、研究问题的方法,还有学习的态度。

相比较上个学期,这个学期高数的学习我个人认为难度加大了不少。

在这个学期我们主要学习的是高等数学下册的知识,这本书的基础就是上学期学习的微积分。

学习了向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分,无穷级数。

在向量代数与空间解析几何这一章,我们学习了向量代数的基本知识,空间曲线,曲面及方程,空间平面与直线等,总得来说这一章需要一定的空间想象能力。

在多元函数微分学这一章,我觉得有些地方掌握的不好,隐函数的求导显得很生疏,对于多元函数的隐函数的求导感觉掌握不是很好。

另外,全微分,多元函数微分学也是这一章的重点。

在重积分这一章,不管是几重积分,这都是建立在一元函数的积分的基础之上的,在这一章,化归的思想体现的很是淋漓尽致,这一思想不仅在数学上体现的很明显,在很多领域都有体现。

在积分这一块都采用分割,近似,求和,取极限四个步骤。

此外三重积分的计算,主要从直角坐标系,柱面坐标系,球面坐标系三种坐标系下计算。

另外重积分也应用于物理方面,如运用重积分求物体的质心,转动惯量及引力。

在曲线积分与曲面积分这一章当中,化归的思想继续在体现。

这一章的逻辑性很强,在这一章我们学习了4种积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分。

学完这一章,加上之前学习的一元函数的积分,二重积分,三重积分,我们就学习了七种积分。

在这一章还有一个重要的结论,那就是在对曲面的积分时,偶倍奇零不再是什么时候都是用了,在这里用偶倍奇零需要认真考虑,因为有时是偶零奇倍。

最后一章的无穷级数,很大程度上和数列有很多类似的地方,而且这一章的定理很多,很多东西容易混淆,很多结论都有自己的前提,这是这一章的重点之处,定理成为这一章很重要的解题根据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于高数的极限问题
陈懵比
极限是高数中的重要内容,极限的求法更为重要,下面就我个人的学习总结了一些极限的常见类型及其求法。

极限通常分为数列的极限和函数的极限,我一一做出总结。

极限是微积分的一个重要概念,是贯穿微积分的一条主线,极限的计算又是学好微积分的重要前提条件。

正因为数学之美妙不可言,数学中解题方法的多样性更是引人入胜,许多人都在探索着高等代数中求极限的方法并有所成效。

在前人的基础之上我对求极限的方法作了进一步的归纳总结,希望能让读者从中受益,能让初学者懂得将静态的、内隐的教学规律转化为动态的、外显的探索性的数学活动,从而对数学学习的认知发生一个“质”的飞跃。

一、由定义求极限
极限的本质――既是无限的过程,又有确定的结果。

一方面可从函数的变化过程的趋势抽象得出结论,另一方面又可从数学本身的逻辑体系下验证其结果。

然而并不是每一道求极限的题我们都能通过直观观察总结出极限值,因此由定义法求极限就有一定的局限性,不适合比较复杂的题。

二、利用函数的连续性求极限
此方法简单易行但不适合于f(x)在其定义区间内是不连续的函数,及f(x)在x0处无定义的情况。

三、利用极限的四则运算法则和简单技巧求极限
极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件。

满足条件者,方能利用极限四则运算法则进行求之,不满足条件者,不能直接利用极限四则运算法则求之。

但是,并非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。

而对函数进行恒等变形时,通常运用一些简单技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等。

四、利用两边夹定理求极限
定理如果X≤Z≤Y,而limX=limY=A,则limZ=A
两边夹定理应用的关键:适当选取两边的函数(或数列),并且使其极限为同一值。

注意:在运用两边夹定理求极限时要保证所求函数(或数列)通过放缩后所得的两边的函数(或数列)的极限是同一值,否则不能用此方法求极限。

五、利用两个重要极限求极限
六、利用单调有界原理求极限
单调有界准则即单调有界数列必定存在极限。

使用单调有界准则时需证明两个问题:一是数列的单调性,二是数列的有界性;求极限时,在等式的两边同时取极限,通过解方程求出合理的极限值。

利用单调有界原理求极限有两个难点:一是证明数列的单调性,二是证明数列的有界性,在证明数列的单调性和数列的有界性时,我们通
常都采用数学归纳法。

七、利用洛必达法则求极限
八、利用等价无穷小代换求极限
在实际计算过程中利用等价无穷小代换法或与其它方法相结合,不失为一种行之有效的方法,但并非计算过程中所有的无穷小量都能用其等价的无穷小量来进行计算。

用等价无穷小代换时,只能代换分子、分母中的乘积因子,而不能代换其中的加减法因子。

于是用等价无穷小代换的问题便集中到对于分子、分母中的加减法因子如何进行x的等价无穷小代换这一点上,在利用等价无穷小代换的方法求极限时必须把分子(或分母)看作一个整体,用整个分子(或分母)的等价无穷小去代换。

九、利用泰勒展式求极限
运用等价无穷小代换方法求某些极限,往往可以减少计算量,使问题得以简化。

但一般说来,这种方法仅限于求两个无穷小量是乘或除的极限,而对两个无穷小量非乘或非除的极限,对于一些未能确定函数极限形态的关系式,不能用洛必达法则及等价无穷小代换方法,须用泰勒公式去求极限。

十、利用级数收敛的必要条件求极限
求极限的方法有很多种,在解题时,这些方法并不是孤立的,常常一个问题需要用到几种方法。

根据题目给出的条件,选择适当的方法结合使用,能使运算更简捷,起到事半功倍的效果。

同时又能加强对微积分知识整体上的深层次认识,对学好微积分是大有裨益的。

一、 数列的极限 1.熟悉定义
对数列{ɑ},若存在常数ɑ,对任意>0,总存在N ,对任意自然数n>N 都有|ɑ-ɑ|<,则称ɑ为数列当n 趋于无穷大的极限,
记为 1.数列极限一般求法与类型 化简求极限 如: 夹逼准则 如

二、 函数的极限
1.X 常见有六种趋向情况,分别是
2.熟悉定义
3.将归结出一个定义 设函数f
(x )在点X 的某去心邻域内有定义,若
∀ε>0,∃δ
>0,当0<|x-x |<δ时,有| f (x )-A|<ε,则称常数
n ε∈N +n εlim n n
ɑɑ→∞=1
lim
lim lim 0n n n n n →∞
→∞→∞-===lim lim
lim 1
lim 1
n n n n n
n →∞
→∞
→∞
→∞
+
++
+∙∙∙+

+∙∙∙+

+∙∙∙
==⇒+
++
= 000,,,,,X X X X X X X X X -+→→→→∞→-∞→=∞000,,X X X X X X -+→→→0
A 为f (x )当x-x
的极限 ,记为,其中
1.X →X 时极限的求法
2.多项式的极限:
3.分式的极限:
例:
此题为变换约分
此题利用了等价无穷小,常见的等价无穷小还有 x ~sinx ~tanx ~arcsinx ~arctanx 、~、
x ~ln(1+x)~~、cosx ~~xlna
此题首先用洛必达法则,再利用等价无穷小,1-cosx ~
注:还有一些未定式,也可转换成
3、将
lim ()x x
f x A →=0
lim ()lim (),lim ()x x x x x x f x A f x A f x A -+→→→=⇔==00
0lim ()()x x
P x P x →=⎪⎪⎪⎪⎩⎪⎪⎪⎪
⎨⎧∞

≠=∞≠=→”洛必达法则“穷小约分必达法则,通过等价无分子分母变换约分,洛
,"00"0)(,0)(,0)(,)
()
(lim 000000
x f x g x g x g x f x x 10
1
515lim )5)(5(55lim 2555lim 2=
+→=+--→=--→x x x x x x x x x 1cos 0
lim
cos 0lim cot 0lim "0
"=→→=
→=
x x siinx
x
x x x x x 11-+n x n
x 1-e
x
n
x 1,212-a x
x 22
1x 61
6lim 3cos 1lim )()sin (lim sin lim 22020'3'0"0
0"30==-=-=-→→→→x
x x x x x x x x x x x x x ”式来求”或“0
“∞
∞定义做个归结,,+∞→-∞→∞→x x x
设f(x)在|x|>ɑ,(ɑ>0)时有定义,A 为常数,若
x
1抓大头,即看y 的最高次项
若分子的A 最高次项高于分母最高次项,则 若分子的最高次项低于分母的最高次项,则 若分子与分母的最高次项相同,则看最高次项前面的系数
例: 最后记住两个重要极限 1、 特征:分子为sin □,□内为无形,分母为分子中的□
2、 特征:底数为1+无穷小指数为该无穷下的倒数关于高数极限的学习方法多思考,多总结方法。

极限部分就象春秋时期,内容极少,精益求精。

1. 利用极限的四则运算及复合运算法则
A
)x (f lim ,A )x (f lim A )x (f lim 其中,A )x (f lim 时的极限,记为x )当x (f 为A 则常数,|)(|有||),|(|0,0-x x x ==⇔==∞→<->∀>>∃>∀∞
→∞
→∞
→∞
→εεA x f X x a x X 时极限的求法∞→∞=∞
→)x (g )
x (f lim
x 0)
x (g )
x (f lim
x =∞
→9
9334
5x x 32分母最高次项为x 2592,其中分子最高次项为281)x 2x 4()2x 3()3-x 2(lim =++∞→281
322592)
x 2x 4()2x 3()3-x 2(lim 334
5x ==++∞→”且含三角和反三角0
,常用于“1x sinx lim
】x =∞
→型1,常用于e )x
11(lim
x
】x ∞∞
→=+
2. 利用无穷小的运算法则
3. 利用无穷小与无穷大的关系
4. 利用limf(x)=A <=> f(x)=A+无穷小
5. 利用两个重要极限
6. 利用夹逼定理
7. 利用单调有界准则及解方程
8. 利用等价无穷小代替
9. 利用函数的连续性
10. 利用递推公式
11. 利用合并或分项,因式分解,约分,变量代换,取对数等技巧
12. 利用函数极限与数列极限的关
13. 利用洛必达法则
14. 利用导数定义
15. 利用微分中值定理与泰勒公式
16. 利用定积分定义、定积分性质
17. 利用收敛级数的性质。

相关文档
最新文档