人教版数学八年级上册 轴对称填空选择达标检测卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级上册 轴对称填空选择达标检测卷(Word 版 含解
析)
一、八年级数学全等三角形填空题(难)
1.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.
①ABD ACE ∆≅∆
②45ACE DBC ∠+∠=︒
③BD CE ⊥
④180EAB DBC ∠+∠=︒
【答案】①②③④
【解析】
【分析】
根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.
【详解】
解:∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC ,
即:∠BAD=∠CAE ,
∵AB=AC ,AE=AD ,
∴△BAD ≌△CAE (SAS ),故①正确;
∵△BAD ≌△CAE ,
∴∠ABD=∠ACE ,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,故②正确;
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD ⊥CE ,故③正确;
∵90BAC DAE ∠=∠=︒,
∴∠BAE+∠DAC=180°,
∵∠ADB=∠E=45°,
∴DAC DBC ∠=∠,
∴180EAB DBC ∠+∠=︒,故④正确;
故答案为:①②③④.
【点睛】
此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.
2.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.
【答案】6:8:3
【解析】
【分析】
由角平分线性质可知,点P 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 边上的高相等,利用面积公式即可求解.
【详解】
解:过点P 作PD ⊥BC 于D ,PE ⊥CA 于E ,PF ⊥AB 于F
∵P 是三条角平分线的交点
∴PD=PE=PF
∵AB=30,BC=40,CA=15 ∴APB S ∆︰BPC S ∆︰CPA S ∆=30∶40∶15=6∶8∶3
故答案为6∶8∶3.
【点睛】
本题主要考查了角平分线的性质和三角形面积的求法. 角平分线上的点到两边的距离相等. 难度不大,作辅助线是关键.
3.如图,ABE △,BCD 均为等边三角形,点A ,B ,C 在同一条直线上,连接AD ,EC ,AD 与EB 相交于点M ,BD 与EC 相交于点N ,连接OB ,下列结论正确的有_________.
①AD EC =;②BM BN =;③MN AC ;④EM MB =;⑤OB 平分AOC ∠
【答案】①②③⑤.
【解析】
【分析】
由题意根据全等三角形的判定和性质以及等边三角形的性质和角平分线的性质,对题干结论依次进行分析即可.
【详解】
解:∵△ABE ,△BCD 均为等边三角形,
∴AB=BE ,BC=BD ,∠ABE=∠CBD=60°,
∴∠ABD=∠EBC ,
在△ABD 和△EBC 中,
AB BE ABD EBC BD BC ⎧⎪∠∠⎨⎪⎩
=== ∴△ABD ≌△EBC (SAS ),
∴AD=EC ,故①正确;
∴∠DAB=∠BEC ,
又由上可知∠ABE=∠CBD=60°,
∴∠EBD=60°,
在△ABM 和△EBN 中,
MAB NEB AB BE
ABE EBN ∠∠⎧⎪⎨⎪∠∠⎩
=== ∴△ABM ≌△EBN (ASA ),
∴BM=BN ,故②正确;
∴△BMN 为等边三角形,
∴∠NMB=∠ABM=60°,
∴MN ∥AC ,故③正确;
若EM=MB ,则AM 平分∠EAB ,
则∠DAB=30°,而由条件无法得出这一条件,
故④不正确;
如图作,,BG AD BH EC ⊥⊥
∵由上可知△ABD ≌△EBC ,
∴两个三角形对应边的高相等即BG BH =,
∴OB 是AOC ∠的角平分线,即有OB 平分AOC ∠,故⑤正确.
综上可知:①②③⑤正确.
故答案为:①②③⑤.
【点睛】
本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质以及等边三角形的性质和角平分线的性质与平行线的判定是解题的关键.
4.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.
【答案】
658
【解析】
【分析】 过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出
MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.
【详解】
解:∵AC ∥BD ,∠ACB=90°,
∴∠CBD=90°,即∠1+∠2=90°,
又∵BF ⊥AB ,
∴∠ABF=90°,
即∠8+∠2=90°,
∵BE=BD ,
∴∠8=∠1,
在△BHE 和△BGD 中,
8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩
,
∴△BHE ≌△BGD (ASA ),
∴∠EHB=∠DGB
∴∠5=∠6,∠6=∠7,
∵MD ⊥BD
∴∠BDM=90°,
∴BC ∥MD ,
∴∠5=∠MDG ,
∴∠7=∠MDG
∴MG=MD ,
∵BC=7,BG=4,
设MG=x ,在△BDM 中,
BD 2+MD 2=BM 2,
即()2227=4x x ++,
解得x=338
, 在△ABC 和△MBD 中
=8=1BC B ACB MDB D
∠∠∠∠⎧⎪=⎨⎪⎩
, ∴△ABC ≌△MBD (ASA ) AB=BM=BG+MG=4+
338=658. 故答案为:658
.
【点睛】
本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.
5.已知:如图,△ABC 和△DEC 都是等边三角形,D 是BC 延长线上一点,AD 与BE 相交于点P ,AC 、BE 相交于点M ,AD ,CE 相交于点N ,则下列五个结论:①AD =BE ;②AP =BM ;③∠APM =60°;④△CMN 是等边三角形;⑤连接CP ,则CP 平分∠BPD ,其中,正确的是
_____.(填写序号)
【答案】①③④⑤.
【解析】
【分析】
①根据△ACD ≌△BCE (SAS )即可证明AD =BE ;②根据△ACN ≌△BCM (ASA )即可证明AN =BM ,从而判断AP ≠BM ;③根据∠CBE +∠CDA =60°即可求出∠APM =60°;④根据
△ACN ≌△BCM 及∠MCN =60°可知△CMN 为等边三角形;⑤根据角平分线的性质可知.
【详解】
①∵△ABC 和△CDE 都是等边三角形
∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°
∴∠ACE =60°
∴∠ACD =∠BCE =120°
在△ACD 和△BCE 中
CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩
∴△ACD ≌△BCE (SAS )
∴AD =BE ;
②∵△ACD ≌△BCE
∴∠CAD=∠CBE
在△ACN和△BCM中
ACN BCM
CA CB
CAN CBM
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
∴△ACN≌△BCM(ASA)
∴AN=BM;
③∵∠CAD+∠CDA=60°
而∠CAD=∠CBE
∴∠CBE+∠CDA=60°
∴∠BPD=120°
∴∠APM=60°;
④∵△ACN≌△BCM
∴CN=BM
而∠MCN=60°
∴△CMN为等边三角形;
⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图
∵△ACD≌△BCE
∴CQ=CH
∴CP平分∠BPD.
故答案为:①③④⑤.
【点睛】
本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.
6.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以
1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)
【答案】0;4;8;12
【解析】
【分析】
此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.
【详解】
解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=6−2=4,
∴点P的运动时间为4÷1=4(秒);
②当P在线段BC上,AC=BN时,△ACB≌△NBP,
这时BC=PN=6,CP=0,因此时间为0秒;
③当P在BQ上,AC=BP时,△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=2+6=8,
∴点P的运动时间为8÷1=8(秒);
④当P在BQ上,AC=NB时,△ACB≌△NBP,
∵BC=6,
∴BP=6,
∴CP=6+6=12,
点P的运动时间为12÷1=12(秒),
故答案为:0或4或8或12.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
7.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是_____.
【答案】5
【解析】
【分析】
作∠CAO的平分线AD,交BO的延长线于点D,连接CD,由等边对等角得到∠CAB=
∠CBA=50°,再推出∠DAB=
∠DBA,得到AD=BD,然后可证△ACD≌△BCD,最后证
△ACD≌△AOD,即可得AO=AC=5.
【详解】
解:如图,作∠CAO的平分线AD,交BO的延长线于点D,连接CD,
∵AC=BC=5,
∴∠CAB=∠CBA=50°,
∵∠OAB=10°,
∴∠CAD=∠OAD=1(CAB OAB)
2
∠-∠=()
1
5010
2
︒︒
-=20°,
∵∠DAB=∠OAD+∠OAB=20°+10°=30°,
∴∠DAB=30°=∠DBA,
∴AD=BD,∠ADB=120°,
在△ACD与△BCD中
AC BC
AD BD
CD CD
=
⎧
⎪
=
⎨
⎪=
⎩
∴△ACD≌△BCD(SSS)
∴∠CDA=∠CDB,
∴∠CDA=∠CDB=()
1
360ADB
2
︒-∠=()
1
360120
2
︒︒
-=120°,
在△ACD与△AOD中
CDA ADO120
AD AD
CAD OAD
︒
⎧∠=∠=
⎪
=
⎨
⎪∠=∠
⎩
∴△ACD≌△AOD(ASA)
∴AO=AC=5,
故答案为5.
【点睛】
本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.
8.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC 边上的动点,连接DM 、ME、CM、DE, DE与CM相交于点F且∠DME=90°.则下列5个结论: (1)图中共有两对全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;
(4)AD2+BE2=DE2;(5)四边形CDME的面积发生改变.其中正确的结论有( )个.
A.2 B.3 C.4 D.5
【答案】B
【解析】
【分析】
根据等腰三角形的性质,三角形内角和定理,得出:△AMC≌△BMC、△AMD≌△CME、△CMD≌△BME,根据全等三角形的性质得出DM=ME得出△DEM是等腰三角形,及
∠CDM=∠CFE,再逐个判断
222
AD+BE=DE CEM CDM ADM CDM ACM ABC
CDME
1
S=S+S=S+S=S=S
2
△△△△△△
四边形
即可得出结论.
【详解】
解:如图
在Rt△ABC中,∠ACB=90°,M为AB中点,AB=BC
∴AM=CM=BM,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°
∵∠DME=90°.
∴∠1+∠2=∠2+∠3=∠3+∠4=90°
∴∠1=∠3,∠2=∠4
在△AMC 和△BMC 中
AM=BM MC MC AC BC ⎧⎪=⎨⎪=⎩
∴△AMC ≌△BMC
在△AMD 和△CME 中
A=MCE AM=CM 1=3∠∠⎧⎪⎨⎪∠∠⎩
∴△AMD ≌△CME
在△CDM 和△BEM
DCM=B CM=BM 2=4∠∠⎧⎪⎨⎪∠∠⎩
∴△CMD ≌△CME
共有3对全等三角形,故(1)错误
∵△AMD ≌△BME
∴DM=ME
∴△DEM 是等腰三角形,(2)正确
∵∠DME=90°.
∴∠EDM=∠DEM=45°,
∴∠CDM=∠1+∠A=∠1+45°,
∴∠EDM=∠3+∠DEM=∠3+45°,
∴∠CDM=∠CFE,故(3)正确
在Rt △CED 中,222CE CD DE +=
∵CE=AD ,BE=CD
∴222AD +BE =DE 故(4)正确
(5)∵△ADM ≌△CEM
∴ADM CEM S =S △△ ∴CEM CDM ADM CDM ACM ABC CDME 1S =S +S =S +S =S =S 2
△△△△△△四边形 不变,故(5)错误 故正确的有3个
故选:B
【点睛】
本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,通过推理论证每个命题的正误是解决此类题目的关键.
9.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:
①△DEF是等腰直角三角形;
②AE=CF;
③△BDE≌△ADF;
④BE+CF=EF;
⑤S四边形AEDF=
1
4
AD2,
其中正确结论是_____(填序号)
【答案】①②③
【解析】
【分析】
先由ASA证明△AED≌△CFD,得出AE=CF,DE=FD;再由全等三角形的性质得到BE+CF=AB,由勾股定理求得EF与AB的值,通过比较它们的大小来判定④的正误;先得出S四边形AEDF=S△ADC=
1
2
AD2,从而判定⑤的正误.
【详解】
解:∵Rt△ABC中,AB=AC,点D为BC中点,
∴∠C=∠BAD=45°,AD=BD=CD,
∵∠MDN=90°,
∴∠ADE+∠ADF=∠ADF+∠CDF=90°,
∴∠ADE=∠CDF.
在△AED与△CFD中,
EAD C
AD CD
ADE CDF
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
,
∴△AED≌△CFD(ASA),
∴AE=CF,ED=FD.故①②正确;
又∵△ABD≌△ACD,
∴△BDE≌△ADF.故③正确;
∵△AED≌△CFD,
∴AE=CF,ED=FD,
∴BE+CF=BE+AE=AB=2BD,∵EF=2ED,BD>ED,
∴BE+CF>EF.故④错误;
∵△AED≌△CFD,△BDE≌△ADF,
∴S四边形AEDF=S△ADC=1
2
AD2.故⑤错误.
综上所述,正确结论是①②③.
故答案是:①②③.
【点睛】
考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.
10.如图,在△ABC和△ADC中,下列论断:
①AB=AD;②∠ABC=∠ADC=90°;③BC=DC.把其中两个论断作为条件,另一个论断作为结论,可以写出_个真命题.
【答案】2
【解析】
根据题意,可得三种命题,由①②⇒③,根据直角三角形全等的判定HL可证明,是真命题;由①③⇒②,能证明∠ABC=∠ADC,但是不能得出一定是90°,是假命题;由
②③⇒①,根据SAS可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.
故答案为:2.
点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.
二、八年级数学全等三角形选择题(难)
11.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()
A.2对B.3对C.4对D.5对
【答案】C
【解析】
【分析】
先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断
△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.
【详解】
∵AB=AC,BD⊥AC于D,CE⊥AB于E,
∴∠ADB=∠AEC=90°,
∵∠A为公共角,
∴△ADB≌△AEC,(AAS)
∴AE=AD,∠B=∠C
∴BE=CD,
∵AE=AD,OA=OA,∠ADB=∠AEC=90°,
∴△AOE≌△AOD(HL),
∴∠OAC=∠OAB,
∵∠B=∠C,AB=AC,∠OAC=∠OAB,
∴△AOC≌△AOB.(ASA)
∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,
∴△BOE≌△COD(ASA).
综上:共有4对全等三角形,
故选C.
【点睛】
本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.
12.如图所示,在Rt ABC
∆中,E为斜边AB的中点,ED AB
⊥,且
:1:7
CAD BAD
∠∠=,则BAC
∠=( )
A.70B.45C.60D.48
【答案】D
【解析】
根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得
∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可
知∠BAC=∠CDA+∠BAD=6°+42°=48°.
故选:D.
点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.
13.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB与∠BCO的数量关系为()
A.∠OAB+∠BCO=180°B.∠OAB=∠BCO
C.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定
【答案】C
【解析】
根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.
故选C.
14.如图,BD是∠ABC的角平分线,AD⊥AB,AD=3,BC=5,则△BCD的面积为()
A.7.5 B.8 C.10D.15
【答案】A
【解析】
作DE⊥BC于E,根据角平分线的性质,由BD是∠ABC的角平分线,AD⊥AB,DE⊥BC,求出
DE=DA=3,根据三角形面积公式计算S△BCD=1
2
×BC×DE=7.5,
故选:A.
15.如图,∠C=∠D=90°,若添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等,则以下给出的条件适合的是( )
A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD 【答案】A
【解析】
根据题意可知∠C=∠D=90°,AB=AB,
然后由AC=AD,可根据HL判定两直角三角形全等,故符合条件;
而B答案只知道一边一角,不能够判定两三角形全等,故不正确;
C答案符合AAS,证明两三角形全等,故不正确;
D答案是符合AAS,能证明两三角形全等,故不正确.
故选A.
16.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()
A.2B.2
C.2D2-1
【答案】B 【解析】
第一次折叠后,等腰三角形的底边长为12
;
第一次折叠后,等腰三角形的底边长为
2
2
,腰长为
1
2
,所以周长为
112212222
++=+. 故答案为B.
17.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:
①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒,
∴18060120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠, ∴11()1206022
EBC ECB ABC ACB ∠+∠=
∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.
如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴AD 为BAC ∠的平分线,
∴DF DG =,
∴36090260120FDG ∠=︒-︒⨯-︒=︒,
又∵120BDC ∠=︒,
∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.
∴BDF CDG ∠=∠, ∵在BDF 和CDG △中,
90BFD CGD DF DG
BDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩
, ∴BDF ≌()CDG ASA ,
∴DB CD =,
∴1(180120)302
DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,
∵BE 平分ABC ∠,AE 平分BAC ∠,
∴ABE CBE ∠=∠,1302
BAE BAC ∠=
∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,
∴DEB DBE ∠=∠,
∴DB DE =,故②正确.
∵DB DE DC ==,
∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特
别是③的证明.
18.如图,AD是△ABC的外角平分线,下列一定结论正确的是()
A.AD+BC=AB+CD,B.AB+AC=DB+DC,
C.AD+BC<AB+CD,D.AB+AC<DB+DC
【答案】D
【解析】
【分析】
在BA的延长线上取点E,使AE=AC,连接ED,证△ACD≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC
<DB+DC.
【详解】
解: 在BA的延长线上取点E, 使AE=AC,连接ED,
∵AD是△ABC的外角平分线,
∴∠EAD=∠CAD,
在△ACD和△AED中,
AD AD
EAD CAD
AC AE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△ACD≌△AED(SAS)
∴DE=DC,
在△EBD中,BE<BD+DE,
∴AB+AC<DB+DC
故选:D.
【点睛】
本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB、AC、DB、DC的长度为边的三角形是解题的关键,也是解本题的难点.
19.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC 上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=
时,四边形AECB 的周长为10524++;⑤ 当BD=32
B 时,ED=5AB ;其中正确的有( )
A .5个
B .4个
C .3 个
D .2个
【答案】B
【解析】解:
∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;
∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;
∵BD =
2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =
252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;
当BD =32BC 时,CD =12BC ,∴DE =22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
=10BC =5AB .故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
20.如图,AC ⊥BE 于点C ,DF ⊥BE 于点F ,且BC =EF ,如果添上一个条件后,可以直接利用“HL ”来证明△ABC ≌△DEF ,则这个条件应该是( )
A .AC =DE
B .AB =DE
C .∠B =∠E
D .∠D =∠A
【答案】B
【解析】
在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边AB=DE.
故选:B.
21.如图,已知AB
=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()
①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.
A.①②③B.①②④C.①②D.①②③④
【答案】A
【解析】
【分析】
根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】
如图,
∵∠EAF=∠BAC,
∴∠BAF=∠CAE;
在△AFB与△AEC中,
AF AE
BAF CAE
AB AC
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△AFB≌△AEC(SAS),
∴BF=CE;∠ABF=∠ACE,
∴A、F、B、C四点共圆,
∴∠BFC=∠BAC=∠EAF;
故①、②、③正确,④错误.
故选A..
【点睛】
本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.
22.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ;
③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )
A .①②
B .①③④
C .①②③
D .①②④
【答案】D
【解析】
①∵F 是AD 的中点,
∴AF=FD ,
∵在?ABCD 中,AD=2AB ,
∴AF=FD=CD ,
∴∠DFC=∠DCF ,
∵AD ∥BC ,
∴∠DFC=∠FCB ,
∴∠DCF=∠BCF ,
∴∠DCF=12∠BCD ,故此选项正确;
延长EF ,交CD 延长线于M ,
∵四边形ABCD 是平行四边形,
∴AB ∥CD ,
∴∠A=∠MDF ,
∵F 为AD 中点,
∴AF=FD ,
在△AEF 和△DFM 中,
∠A =∠FDMAF =DF ∠AFE =∠DFM ,
∴△AEF ≌△DMF (ASA ),
∴FE=MF ,∠AEF=∠M ,
∵CE ⊥AB ,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF ,
∴FC=FM ,故②正确;
③∵EF=FM ,
∴S △EFC=S △CFM ,
∵MC >BE ,
∴S △BEC <2S △EFC
故S △BEC=2S △CEF 错误;
④设∠FEC=x ,则∠FCE=x ,
∴∠DCF=∠DFC=90°-x ,
∴∠EFC=180°-2x ,
∴∠EFD=90°-x+180°-2x=270°-3x ,
∵∠AEF=90°-x ,
∴∠DFE=3∠AEF ,故此选项正确.
故正确的有:①②④.
故选D.
23.在△ABC 与△DEF 中,下列各组条件,不能判定这两个三角形全等的是( ) A .AB =DE ,∠B =∠E ,∠C =∠F B .AC =DE ,∠B =∠E ,∠A =∠F
C .AC =DF ,BC =DE ,∠C =∠
D D .AB =EF ,∠A =∠
E ,∠B =∠F
【答案】B
【解析】利用全等三角形的判定定理,分析可得:
A 、AB=DE ,∠B=∠E ,∠C=∠F 可利用AAS 证明△ABC 与△DEF 全等;
B 、∠A=∠F ,∠B=∠E ,AC=DE ,对应边不对应,不能证明△AB
C 与△DEF 全等; C 、AC=DF ,BC=DE ,∠C=∠
D 可利用ASA 证明△ABC 与△DEF 全等;
D 、AB=EF ,∠A=∠
E ∠B=∠
F 可利用SAS 证明△ABC 与△DEF 全等;
故选:D .
点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
24.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作 EF∥AD,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连结DE 、 EH 、DH 、FH .下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23
AE AB =,则313DHC EDH S
S =.其中结论正确的有( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
分析:①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;
②由SAS证明△EHF≌△DHC即可;
③根据△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;
④若AE
AB
=
2
3
,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则
∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则
DM=5x,26x,CD=6x,则S△DHC=1
2
×HM×CD=3x2,S△EDH=
1
2
×DH2=13x2.
详解:①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF−GF,DF=CD−FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=1
2
∠GFC=45°=∠HCD,
在△EHF和△DHC中,
EF=CD;∠EFH=∠DCH;FH=CH,
∴△EHF≌△DHC(SAS),故②正确;
③∵△EHF≌△DHC(已证),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;
④∵AE
AB
=
2
3
,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,
EG=DF;∠EGH=∠HFD;GH=FH,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
如图,过H点作HM⊥CD于M,
设HM=x,则DM=5x,DH=26x,CD=6x,
则S△DHC=1
2
×HM×CD=3x2,S△EDH=
1
2
×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确;
故选D.
点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.
25.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;
③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由
∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;
④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;
⑤利用等边三角形的性质,BC ∥DE ,再根据平行线的性质得到∠CBE=∠DEO ,于是
∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;
【详解】
①∵△ABC 和△CDE 为等边三角形
∴AC =BC ,CD =CE ,∠BCA =∠DCB =60°
∴∠ACD =∠BCE
∴△ACD ≌△BCE (SAS )
∴AD =BE ,故①正确;
由(1)中的全等得∠CBE =∠DAC ,且BC =AC ,∠ACB =∠BCQ =60°
∴△CQB ≌△CPA (ASA ),
∴AP =BQ ,故②正确;
∵△CQB ≌△CPA ,
∴PC =PQ ,且∠PCQ =60°
∴△PCQ 为等边三角形,
∴∠PQC =∠DCE =60°,
∴PQ ∥AE ,故③正确,
∵∠QCP =60°,∠DPC =∠BCA +∠PAC >60°,
∴PD ≠CD ,
∴DE ≠DP ,故④DE =DP 错误;
∵BC ∥DE ,
∴∠CBE =∠BED ,
∵∠CBE =∠DAE ,
∴∠AOB =∠OAE +∠AEO =60°,
∴∠AOE =120°,故⑤正确,
故选C .
【点睛】
本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.
26.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )
A .A
B CD =
B .AD B
C = C .//A
D BC D .A C ∠=∠ 【答案】B
【解析】
【分析】
根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.
【详解】
解:A.若添加AB=CD,根据AB∥CD,则∠ABD=∠CDB,依据SAS可得
△ABD≌△CDB,故A选项正确;
B.若添加AD=BC,根据AB∥CD,则∠ADB=∠CBD,不能判定△ABD≌△CDB,故B选项错误;
C.若添加//
AD BC,则四边形ABCD是平行四边形,能判定△ABD≌△CDB,故C选项正确;
D.若添加∠A=∠C,根据AB∥CD,则∠ABD=∠CDB,且BD公用,能判定
△ABD≌△CDB,故D选项正确;
故选:B.
【点睛】
本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
27.下列两个三角形中,一定全等的是( )
A.两个等边三角形
B.有一个角是40︒,腰相等的两个等腰三角形
C.有一条边相等,有一个内角相等的两个等腰三角形
D.有一个角是100︒,底相等的两个等腰三角形
【答案】D
【解析】
【分析】
根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【详解】
解:A、当两个等边三角形的对应边不相等时,这两个等边三角形也不会全等,故本选项错误;
B、当该角不是对应角时,这两个等腰三角形也不会全等,故本选项错误;
C、当两个等腰三角形的对应边与对应角不相等时,这两个等腰三角形也不会全等,故本选项错误;
D、等腰三角形的100°角只能是顶角,则两个底角是40°,它们对应相等,所以由全等三角形的判定定理ASA或AAS证得它们全等,故本选项正确;
故选D.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
28.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;
④AC=3BF,其中正确的结论共有()
A.4个B.3个C.2个D.1个
【答案】A
【解析】
试题解析:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,
在△CDE与△DBF中,{
C CBF
CD BD
EDC BDF
∠=∠
=
∠=∠
,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正
确;
∵AE=2BF,∴AC=3BF,故④正确.
故选A.
考点:1.全等三角形的判定与性质;
2.角平分线的性质;3.相似三角形的判定与性质.
29.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()
A.80°B.70°C.60°D.45°
【答案】B
【解析】
【分析】
连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,
∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.
【详解】
如图所示,连接AE .
∵AB=DE ,AD=BC
∵DE ∥BC ,
∴∠ADE=∠B ,可得AE=DE
∵AB=AC ,∠BAC=20°,
∴∠DAE=∠ADE=∠B=∠ACB=80°,
在△ADE 与△CBA 中,
DAE ACB AD BC
ADE B ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ADE ≌△CBA (ASA ),
∴AE=AC ,∠AED=∠BAC=20°,
∵∠CAE=∠DAE-∠BAC=80°-20°=60°,
∴△ACE 是等边三角形,
∴CE=AC=AE=DE ,∠AEC=∠ACE=60°,
∴△DCE 是等腰三角形,
∴∠CDE=∠DCE ,
∴∠DEC=∠AEC-∠AED=40°,
∴∠DCE=∠CDE=(180-40°)÷2=70°.
故选B .
【点睛】
考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.
30.如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上的一点,当PA =CQ 时,连接PQ 交AC
于点D ,下列结论中不一定正确的是( )
A.PD
=DQ B.DE=1
2
AC C.AE=
1
2
CQ D.PQ⊥AB
【答案】D
【解析】
过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,
∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ
中,
FPD Q
PDE CDQ
PF CQ
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,
∵AE=EF,∴DE=1
2
AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=
1
2
AP=
1
2
CQ,∴C选项
正确,故选D.。