高考化学 化学反应与能量变化 推断题综合题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考化学化学反应与能量变化推断题综合题含详细答案
一、化学反应与能量变化练习题(含详细答案解析)
1.部分中学化学常见元素原子结构及性质如表所示:
序号元素结构及性质
A A单质是生活中常见金属,它有两种氯化物,相对分子质量相差35.5
B B原子最外层电子数是内层电子总数的1/5
③C C是常见化肥的主要元素,单质常温下呈气态
④D D单质被誉为“信息革命的催化剂”,是常用的半导体材料
①E 通常情况下,E没有正化合价,A、B、C、D、F都能与E形成化合物
②F F在周期表中可以排在ⅠA族,也有人提出排在ⅦA族
(1)A元素在周期表中的位置为____________________________________________。

(2)B与C形成的化合物的化学式为________,它属于________(填“离子”或“共价”)化合物。

(3)①F与E可以形成原子个数比分别为2∶1、1∶1的两种化合物X和Y,区别X与Y的水溶液的实验方法是____________________
②F与C组成的两种化合物M和N所含的电子数分别与X、Y相等,则M的水溶液显
________性,N的结构式为________。

(4)C与E都是较活泼的非金属元素,用化学方程式表明这两种单质的氧化性强弱____。

(5)有人认为B、D的单质用导线连接后插入氯化钠溶液中可以形成原电池,你认为是否可以,若可以,试写出正极的电极方程式(若认为不行可不写)___________________
【答案】第四周期第Ⅷ族 Mg3N2离子分别取X、Y各少许置于试管中,再各加入少量的MnO2粉末,迅速产生无色气体的是H2O2,无明显现象的是H2O 三角锥形
4NH3+3O22N2+6H2O Si﹣4e﹣+6OH﹣═SiO32﹣+3H2O
【解析】
【分析】
A单质是生活中常见金属,它有两种氯化物,相对分子质量相差35.5,则A为Fe元素;B 元素原子最外层电子数是内层电子总数的,B有3个电子层,最外层电子数为2,则B
为Mg元素;C是常见化肥的主要元素,单质常温下呈气态,C为N元素;D单质被誉为“信息革命的催化剂”,是常用的半导体材料,则D为Si;F在周期表中可以排在ⅠA族,也有人提出排在ⅦA族,其化合价表现+1、﹣1,故F为H元素;通常情况下,E没有最高正化合价,A、B、C、D、F都能与E形成化合物,则E为O元素,据此解答。

【详解】
A单质是生活中常见金属,它有两种氯化物,相对分子质量相差35.5,则A为Fe元素;B 元素原子最外层电子数是内层电子总数的,B有3个电子层,最外层电子数为2,则B
为Mg元素;C是常见化肥的主要元素,单质常温下呈气态,C为N元素;D单质被誉为“信息革命的催化剂”,是常用的半导体材料,则D为Si;F在周期表中可以排在ⅠA族,也有人提出排在ⅦA族,其化合价表现+1、﹣1,故F为H元素;通常情况下,E没有最高正化合价,A、B、C、D、F都能与E形成化合物,则E为O元素;
(1)A为Fe元素,在周期表中的位置为:第四周期第Ⅷ族;
(2)Mg与N元素形成的化合物的化学式为Mg3N2,它属于离子化合物;
(3)①H与O元素可以形成原子个数比分别为2:1、1:1的两种化合物X和Y,则X为
H2O、Y为H2O2,区别X与Y的水溶液的实验方法是:分别取X、Y各少许置于试管中,再各加入少量的MnO2粉末,迅速产生无色气体的是H2O2;无明显现象的是H2O;
②H与N组成的两种化合物M和N所含的电子数分别与H2O、H2O2相等,则M为NH3、N 为N2H4,NH3分子构型为三角锥形,N2H4的结构式为;
(4)利用氧化剂的氧化性处于氧化产物的氧化性,可以说明单质氧化性强弱,表明氮气、氧气的氧化性强弱的方程式为:4NH3+3O22N2+6H2O;
(5)Mg、Si的单质用导线连接后插入NaOH溶液中,Si与氢氧化钠反应生成硅酸钠与氢气,可以形成原电池,Si发生氧化反应,故负极上Si失去电子,碱性条件下生成硅酸根与水,负极电极反应式为:Si﹣4e﹣+6OH﹣═SiO32﹣+3H2O。

2.W、X、Y、Z是四种原子序数依次增大的短周期元素,W、X两种元索可组成W2x和
W2X2两种常见的无色液体化合物, Y2X2为淡黄色固体化合物,Z的原子序数是X的原子序数的两倍。

请回答下列问题:
(1)Z元素的名称是___________ 。

(2)W、X、Y三种元素形成的化合物的电子式_____________
(3)写出Y2X2中所含化学键有:___________。

(4)写出Y2X2和W2X反应的化学方程式:_______________
(5)W2和X2是组成某种燃料电池的两种常见物质,如图所示,通人X2的电极是___(填“正极”或“负极”),写出通人W2的电极的电极反应式:________________
【答案】硫离子键和共价键 2Na2O2 + 2H2O=4NaOH + O2↑正
H2-2e-=2H+
【解析】
【分析】
W、X两种元素可组成W2X和W2X2两种常见的无色液体化合物,故W为H元素;X为O 元素;Y2X2为淡黄色固体化合物,故Y为Na元素;Z的原子序数是X的原子序数的两倍,故Z为S元素,据此进行分析。

【详解】
W、X两种元素可组成W2X和W2X2两种常见的无色液体化合物,故W为H元素;X为O 元素;Y2X2为淡黄色固体化合物,故Y为Na元素;Z的原子序数是X的原子序数的两倍,故Z为S元素;
(1) Z元素的名称是S元素;
(2)W、X、Y三种元素分别为H、O、Na,形成的化合物是NaOH,是离子化合物,其电子式为;
(3) Y2X2为Na2O2,是离子化合物,所含化学键有离子键和共价键;
(4) Y2X2为Na2O2,W2X为H2O,两者反应生成NaOH和O2,反应的化学方程式为2Na2O2 + 2H2O=4NaOH + O2↑;
(5) X2为O2,氢氧燃料电池,负极通氢气,正极通氧气,发生还原反应,故通入O2的电极是正极;W2为H2,通H2的极负极,负极发生氧化反应,故电极反应方程式为H2-2e-
=2H+。

3.有A、B、C、D四种金属片,进行如下实验:①A、B用导线连接后浸入稀H2SO4中,电流由B 导线A;②C、D用导线相连后,同时伸入稀H2SO4 溶液中,C极为负极;③A、C相连后同时浸入稀H2SO4 中,C极产生大量气泡;④B、D相连后同时浸入稀H2SO4 中,D极发生氧化反应;试判断四种金属的活动顺序是( )
A.A>C>D>B B.A>B>C>D C.B>A>C>D D.B>D>C>A
【答案】A
【解析】
【详解】
①A、B用导线连接后浸入稀H2SO4 中,电流由B 导线A,A为负极,B为正极,金属性A>B
②C、D用导线相连后,同时伸入稀H2SO4 溶液中,C极为负极,D极为正极,则金属性
C>D;
③A、C相连后同时浸入稀H2SO4 中,C极产生大量气泡,C为正极,A为负极,则金属性
A>C;
④B、D相连后同时浸入稀H2SO4 中,D极发生氧化反应,D为负极,B为正极,则金属性
D>B;
综上分析:金属性:A>C>D>B;
答案选A。

【点睛】
原电池中活泼的电极做负极,不活泼的做正极,利用电极的活性来判断电极金属性的强弱,判断原电池正负极的方法:1、根据两极材料判断。

一般活泼金属为负极,活泼性较弱的金属或能导电的非金属为正极;2、根据电极现象判断。

一般情况下电极逐渐溶解为负极,电极增重可放出气体的为正极;3、根据电子流动方向来判断。

电子流出的为负极、电子流入的为正极或电流流出的正极、电流流入的负极;4、根据原电池里电解质溶液内离子的定向移动方向判断。

阴离子流向的为负极、阳离子流向的为正极;5、根据原电池两极发生的变化来判断。

失去电子发生氧化的是负极、得到电子发生还原反应是正极;
4.用零价铁(Fe)去除水体中的硝酸盐(NO3-)已成为环境修复研究的热点之一。

Fe还原水体中NO3-的反应原理如图所示。

①作负极的物质是________。

②正极的电极反应式是_________。

【答案】铁 NO3-+8e-+10H+=NH4++3H2O
【解析】
【分析】
【详解】
根据图示可知在反应中Fe单质失去电子变为Fe3O4,NO3-得到电子被还原产生NH4+,所以Fe作负极,正极上NO3-得到电子被还原产生NH4+,正极的电极反应式为:NO3-+8e-
+10H+=NH4++3H2O。

5.乙醇(C2H5OH)燃料电池(DEFC)具有很多优点,引起了人们的研究兴趣。

现有以下三种乙醇燃料电池。

(1)三种乙醇燃料电池中正极反应物均为_________________。

(填化学式)
(2)熔融盐乙醇燃料电池中若选择熔融碳酸钾为介质,电池工作时,CO32-向电极___(填“a”或“b”)移动。

(3)酸性乙醇燃料电池中,若电池消耗标准状况下2.24L O2,则电路中通过了的电子数目为
___________。

【答案】O2 a 0.4N A
【解析】
【分析】
(1)燃料电池中,负极通入燃料,正极通入氧化剂;
(2)根据装置图可知,a为负极,原电池中阴离子由正极向负极移动;
(3)酸性乙醇燃料电池中,电极b上发生的电极反应为:3O2+12H++12e-=6H2O,根据电极反应计算转移的电子的数目。

【详解】
(1)燃料电池中,负极通入燃料,正极通入氧化剂,由装置图可知,三种乙醇燃料电池中正极反应物均为O2;
(2)根据装置图可知,a为负极,原电池中阴离子由正极向负极移动,因此CO32-向电极a移动;
(3)酸性乙醇燃料电池中,电极b上发生的电极反应为:3O2+12H++12e-=6H2O,若电池消耗标准状况下2.24L (即0.1mol)O2时,电子转移0.4mol,转移电子的数目为0.4N A。

6.(1)Li-SOCl2电池可用于心脏起搏器。

该电池的电极材料分锂和碳,电解液是LiAlCl4-SOCl2,电池的总反应可表示为4Li+2SOCl2=4LiCl+S+SO2。

请回答下列问题:
①正极发生的电极反应为___。

②SOCl2易挥发,实验室中常用NaOH溶液吸收SOCl2,有Na2SO3和NaCl生成。

如果把少量水滴到SOCl2中,实验现象是___。

(2)用铂作电极电解某金属的氯化物(XCl2)溶液,当收集到1.12L氯气时(标准状况下),阴极增重3.2g。

①该金属的相对原子质量为___。

②电路中通过___个电子。

【答案】2SOCl2+4e-=S+SO2+4Cl-产生白雾,且生成有刺激性气味的气体 64 0.1N A 【解析】
【分析】
(1)①由总反应可知,Li化合价升高,失去电子,发生氧化反应,S化合价降低,得到电子,发生还原反应,因此电池中Li作负极,碳作正极;
②SOCl2与水反应生成SO2和HCl,有刺激性气味的气体生成,HCl与水蒸气结合生成白雾;
(2)①n(Cl2)=n(X2+),根据M=m
n
计算金属的相对原子质量;
②根据电极反应2Cl--2e-=Cl2↑计算转移电子的物质的量,进一步计算转移电子的数目。

【详解】
(1)①由分析可知碳作正极,正极上SOCl2得到电子生成S单质,电极反应为:2SOCl2+4e-=S+SO2+4Cl-;
②SOCl2与水反应生成SO2和HCl,有刺激性气味的气体生成,HCl与水蒸气结合生成白雾;
(2)①n(X2+)=n(Cl2)=
1.12L
22.4L/mol
=0.05mol,M=
m
n
=
3.2g
0.05mol
=64g/mol,因此该金属的
相对原子质量为64;
②由电极反应2Cl--2e-=Cl2↑可知,电路中转移电子的物质的量为
2×n(Cl2)=2×0.05mol=0.1mol,因此转移电子的数目为0.1N A。

7.A、B、C三个烧杯中分别盛有相同物质的量浓度的稀硫酸。

(1)A中反应的离子方程式为_________________________________。

(2)B中Fe极为_______极,电极反应式为_______________________。

C中Fe极为
_______极,电极反应式为__________________________,电子从_______极流出(填“Zn”或“Fe”)。

(3)比较A、B、C中铁被腐蚀的速率,由快到慢的顺序是___________________。

【答案】Fe+2H+=Fe2+H2↑负极Fe-2e-=Fe2+正极2H++2e-=H2↑Zn B>A>C
【解析】
【分析】
已知金属活动性:Zn>Fe>Sn,则A发生化学腐蚀,铁与硫酸反应生成硫酸亚铁和氢气,B中Fe为负极,Sn为正极,Fe被腐蚀,C中Zn为负极,Fe为正极,Fe被保护,以此解答。

【详解】
(1)铁与硫酸反应的离子方程式为:Fe+2H+=Fe2++H2↑;
(2)Fe比Sn活泼,则B中Fe为负极,Sn为正极,负极发生Fe-2e- = Fe2+;Zn比Fe活泼,则C中Fe为正极,Zn为负极,正极反应式为2H++2e-=H2↑,电子从负极即Zn极流出;
(3)A发生化学腐蚀;B中Fe为负极,Sn为正极,Fe被腐蚀;C中Zn为负极,Fe为正极,Fe被保护,Zn被腐蚀,则A、B、C中铁被腐蚀的速率,由快到慢的顺序是B>A>C,。

8.按要求回答下列问题:
(1)甲烷燃料电池是常见的燃料电池之一,该电池在正极通入氧气,在负极通入甲烷,电解质溶液通常是KOH溶液,请写出该电池的负极反应式___。

(2)常温下,将等浓度的Na2S2O3溶液与硫酸溶液混合,2min后溶液中明显出现浑浊,请写出相关反应的化学方程式:___;若将此混合溶液置于50℃的水浴中,则出现浑浊的时间将___(填“增加”、“减少”或“不变”)。

【答案】CH4-8e-+10OH-=CO32-+7H2O Na2S2O3+H2SO4=Na2SO4+S↓+SO2↓+H2O 减少
【解析】
【分析】
(1)甲烷燃料电池正极通入氧气,负极通入甲烷,电解质溶液是KOH溶液,则发生反应为CH4+2O2=CO2+2H2O,CO2+2KOH=K2CO3+H2O,总反应的化学方程式为:
CH4+2O2+2KOH=K2CO3+H2O,该电池的负极反应为:CH4失电子,转化为CO32-和H2O。

(2)将等浓度的Na2S2O3溶液与硫酸溶液混合,相关反应为:
Na2S2O3+H2SO4→Na2SO4+S↓+SO2↑+H2O;若将此混合溶液置于50℃的水浴中,则温度升高,出现浑浊的时间将减少。

【详解】
(1)甲烷燃料电池正极通入氧气,负极通入甲烷,电解质溶液是KOH溶液,则发生反应为CH4+2O2=CO2+2H2O,CO2+2KOH=K2CO3+H2O,总反应的化学方程式为:
CH4+2O2+2KOH=K2CO3+H2O,该电池的负极反应式为CH4-8e-+10OH-=CO32-+7H2O。

答案为:CH4-8e-+10OH-=CO32-+7H2O;
(2)将等浓度的Na2S2O3溶液与硫酸溶液混合,相关反应的化学方程式为:
Na2S2O3+H2SO4=Na2SO4+S↓+SO2↓+H2O;若将此混合溶液置于50℃的水浴中,则温度升高,出现浑浊的时间将减少。

答案为:Na2S2O3+H2SO4=Na2SO4+S↓+SO2↓+H2O;减少。

【点睛】
燃料电池中,两电极通入的物质相同,电解质不同时,电极反应式可能不同。

在书写电极反应式时需注意,在碱性电解质中,负极CH4的反应产物不是CO2和水,而是K2CO3和水,这是我们解题时的易错点。

9.某些共价键的键能数据如表(单位:kJ•mol-1):
(1)把1mol Cl2分解为气态原子时,需要___(填“吸收”或“放出”)243kJ能量。

(2)由表中所列化学键形成的单质分子中,最稳定的是___;形成的化合物分子中最不稳定的是___。

(3)发射火箭时用气态肼(N2H4)作燃料,二氧化氮作氧化剂,两者反应生成氮气和气态水。

已知32gN2H4(g)完全发生上述反应放出568kJ的热量,热化学方程式是:____。

【答案】吸收 N2 HI 2N2H4(g)+2NO2(g)═3N2(g)+4H2O(g)△H=﹣1136kJ•mol ﹣1
【解析】
【分析】
(1)化学键断裂要吸收能量;
(2)键能越大越稳定,否则越不稳定,结合表中数据分析;
(3)根据n=m
n
计算32g N2H4的物质的量,再根据热化学方程式书写原则书写热化学方程
式。

【详解】
(1)化学键断裂要吸收能量,由表中数据可知把1mol Cl2分解为气态原子时,需要吸收243kJ 的能量;
(2)因键能越大越稳定,单质中最稳定的是H2,最不稳定的是I2,形成的化合物分子中,最稳定的是HCl,最不稳定的是HI;
(3)32g N2H4(g)的物质的量为
32g
32g/mol
=1mol,与二氧化氮反应生成氮气与气态水放出568kJ
的热量,热化学方程式是:2N2H4(g)+2NO2(g)═3N2(g)+4H2O(g) △H=-1136kJ•mol-1。

10.酸性锌锰干电池是一种一次电池,外壳为金属锌,中间是碳棒,其周围是有碳粉,二氧化锰,氯化锌和氯化铵等组成的填充物,该电池在放电过程产生MnOOH,回收处理该废电池可以得到多种化工原料,有关数据下图所示:
溶解度/(g/100 g水)
化合物Zn(OH)2Fe(OH)2Fe(OH)3
K sp近似值10-1710-1710-39
回答下列问题:
(1)该电池的正极反应式为 ________________,电池反应的离子方程式____________
(2)维持电流强度为0.5A,电池工作五分钟,理论消耗Zn______g。

(已知F=96500 C/mol)【答案】MnO2+e-+H+=MnOOH Zn+2MnO2+2H+=Zn2++2MnOOH 0.05
【解析】
【分析】
(1)该电池中,负极锌被氧化生成Zn2+,正极发生还原反应,MnO2被还原生成MnOOH;
(2)电流强度为0.5A,电池工作五分钟,则变化的电量Q=0.5A×300 s=150 C,转移电子的物
质的量n(e-)=Q
F
,以此计算消耗锌的物质的量、质量。

【详解】
(1)酸性锌锰干电池是一种一次电池,外壳为金属锌,锌是负极,电极反应式为Zn-2e-
=Zn2+。

中间是碳棒,碳棒为正极,二氧化锰得到电子生成MnOOH,正极电极反应式为MnO2+e-+H+=MnOOH,故总反应式为Zn+2MnO2+2H+=Zn2++2MnOOH;
(2)维持电流强度为0.5A,电池工作五分钟,则通过的电量是Q=0.5A×300 s=150 C,因此通
过电子的物质的量是n(e-)=Q150?
F96500?/
C
C mol
=1.554×10-3mol,锌在反应中失去2个电
子,则理论消耗Zn的质量m(Zn)=1
2
n(e-)×65 g/mol=
1
2
×1.554×10-3mol×65 g/mol=0.05 g。

【点睛】
本题考查原电池的工作原理以及电子转移的金属质量转化关系的计算,试题有利于知识的巩固和培养学生良好的科学素养。

11.I已知下列热化学方程式:
①H2(g)+1
2
O2(g)═H2O(l);△H=-285.8kJ•mol-1
②H2(g)+1
2
O2(g)═H2O(g);△H=-241.8kJ•mol-1
③CO(g)═C(s)+1
2
O2(g);△H=+110.5kJ•mol-1
④C(s)+O2(g)═CO2(g);△H=-393.5kJ•mol-1
回答下列问题:
(1)上述反应中属于放热反应的是_________________
(2)H2的燃烧热△H=___________________
(3)燃烧10gH2生成液态水,放出的热量为________________
(4)表示CO燃烧热的热化学方程式为.________________
II已知:(1)P4(s,白磷)+5O2(g)==P4O10(s)△H1=-2983.2kJ/mol
(2)P(s,红磷)+ 5
4
O2(g)=
1
4
P4O10(s) △H1=-738.5kJ/mol,则白磷转化为红磷的热化学方程式
_________________。

相同的状况下,能量较低的是_________________;白磷的稳定性比红磷_________________(填“高”或“低”)
【答案】①②④ -285.8kJ•mol-1 1429KJ C(s)+O2(g)═CO2(g);△H=-393.5kJ•mol-1 P4(s,白磷)=4P(s,红磷)△H=-29.2kJ/mol 红磷低
【解析】
【分析】
I (1)根据热化学方程式中△H的符号判断;
(2)燃烧热是1mol可燃物完全燃烧生成稳定氧化物时放出的热量;
(3)根据物质的量之比等于热量比求算;
(4)结合盖斯定律计算得到,燃烧热是1mol可燃物完全燃烧生成稳定氧化物时放出的热量;II根据盖斯定律进行求算;物质的能量越低越稳定。

【详解】
I (1)由已知热化学方程式中△H的符号可知,四个反应的△H①②④均为负值,即都是放热反应;③的为正值,即为吸热反应;
故答案为:①②④;
(2) H2(g)+1
2
O2(g)═H2O(l);△H=-285.8kJ•mol-1,依据燃烧热概念可知H2的燃烧热
△H=-285.8kJ•mol-1;
(3) H2(g)+1
2
O2(g)═H2O(l);△H=-285.8kJ•mol-1,燃烧10g H2的物质的量为
5mol ,则燃烧10g H2生成液态水,放出的热量为285.8 5= 1429.0k J ;
(4) ③CO(g)═C(s)+1
2
O2(g);△H=+110.5kJ•mol-1
④C(s)+O2(g)═CO2(g);△H=-393.5kJ•mol-1
依据盖斯定律④+③得到CO(g)+ 1
2
O2(g)=CO2(g) △H = - 283.0kJ/mol;CO燃烧热的热化学
方程式为CO(g)+ 1
2
O2(g)=CO2(g) △H = - 283.0kJ/mol;
II红磷转化为白磷的化学方程式为:4P(s、红磷)=P4(s、白磷),可以看成是下列两个反应方程式的和:(1)P4O10(s)=P4(s、白磷)+5O2(g);△H=2983.2kJ/mol;
(2)4P(s、红磷)+5O2(g)=P4O10(s);△H=-738.5×4kJ/mol=-2954kJ/mol;
根据盖斯定律,红磷转化为白磷4P(s、红磷)=P4(s、白磷)的△H=2983.2kJ/mol-
2954kJ/mol=+29.2kJ/mol;
故答案为:4P(s、红磷)=P4(s、白磷)△H=+29.2kJ/mol;
相同的状况下,能量较低的是红磷;能量越低越稳定,则白磷的稳定性比红磷低。

12.氢气是一种理想的绿色能源。

在101kP下,1g氢气完全燃烧生成液态水放出142.9kJ 的热量,请回答下列问题:
(1)该反应物的总能量___生成物的总能量(填“大于”“等于”或“小于”)。

(2)氢气的燃烧热为___。

(3)该反应的热化学方程式为___。

(4)氢能的存储是氢能利用的前提,科学家研究出一种储氢合金Mg2Ni,已知:
Mg(s)+H2(g)=MgH2(s) ΔH1=-74.5kJ·mol-1
Mg2Ni(s)+2H2(g)=Mg2NiH4(s) ΔH2
Mg2Ni(s)+2MgH2(s)=2Mg(s)+Mg2NiH4(s) ΔH3=+84.6kJ·mol-1
则ΔH2=___kJ·mol-1
【答案】大于285.8 kJ•mol-1 2H2(g)+O2(g)=2H2O(l)△H=-571.6kJ•mol-1 -64.4
【解析】
【分析】
(2)由①Mg(s)+H2(g)═MgH2(s)△H1=-74.5kJ•mol-1,
②Mg2Ni(s)+2MgH2(s)=2Mg(s)+Mg2NiH4(s)△H3=+84.6kJ•mol-1,结合盖斯定律可知,②+①×2得到Mg2Ni(s)+2H2(g)═Mg2NiH4(s),以此来解答。

【详解】
(1)氢气燃烧是放热反应,则该反应物的总能量大于生成物的总能量;
(2)1g氢气完全燃烧生成液态水放出142.9kJ的热量,则1mol氢气完全燃烧生成液态水放出的热量为142.9kJ×2=285.8kJ,则氢气的燃烧热为285.8 kJ•mol-1;
(3)物质的量与热量成正比,结合焓变及状态可知该反应的热化学方程式为
2H2(g)+O2(g)=2H2O(l)△H=-571.6kJ•mol-1;
(4)由①Mg(s)+H2(g)═MgH2(s)△H1=-74.5kJ•mol-1,
②Mg2Ni(s)+2MgH2(s)=2Mg(s)+Mg2NiH4(s)△H3=+84.6kJ•mol-1,结合盖斯定律可知,②+①×2得到Mg2Ni(s)+2H2(g)═Mg2NiH4(s),△H2=(-74.5kJ•mol-1)×2+(+84.6kJ•mol-1)=-64.4kJ•mol-1。

【点睛】
考查利用盖斯定律计算反应热,熟悉已知反应与目标反应的关系是解答本题的关键。

应用盖斯定律进行简单计算的基本方法是参照新的热化学方程式(目标热化学方程式),结合原热化学方程式(一般2~3个)进行合理“变形”,如热化学方程式颠倒、乘除以某一个数,然后将它们相加、减,得到目标热化学方程式,求出目标热化学方程式的ΔH与原热化学方程式之间ΔH的换算关系。

13.电池的种类很多,在生活中有广泛的用途。

Ⅰ.其中纽扣式微型银锌电池广泛的应用于电子表和电子计算器中,其电极分别为Ag2O 和Zn,电解质为KOH溶液,工作时电池总反应为Ag2O+Zn+H2O===2Ag+Zn(OH)2。

(1)其正极的电极反应式:_________________________________,工作时电池电解质溶液的碱性_______(填“增强”、“减弱”或“不变”)。

Ⅱ.固体氧化物甲烷燃料电池以固体氧化锆-氧化钇为电解质,这种固体电解质在高温下允许氧离子(O2-)在其间通过。

该电池的工作原理如图所示,其中多孔电极a、b均不参与电极反应。

(2) a电极为电源的_______极,固体电解质中的阳离子向_______极移动;
(3) b电极的电极反应式为:_______________________________________;
(4)电池的总反应方程式为:______________________________________;
当电路中有2mol电子转移时,理论上负极消耗的标况下气体体积是______________L。

【答案】Ag2O+2e-+H2O=2Ag+2OH-增强正 a CH4-8e-+4O2-=CO2+2H2O
CH4+2O2=CO2+2H2O 5.6
【解析】
【分析】
Ⅰ.(1)根据总反应中化合价的变化可知Zn被氧化,应为原电池的负极,电极反应为
Zn+2OH-=Zn(OH)2+2e-,则正极为Ag2O,被还原,电极反应为Ag2O+H2O+2e-=2Ag+2OH-,结合电极方程式和总反应解答该题;
Ⅱ.(2) 固体氧化物甲烷燃料电池,根据化合价的变化,判断正负极,电子的流向;
(3) b电极是负极,甲烷在负极上结合氧离子生成二氧化碳和水,根据化合价的变化,写出电极反应;
(4)根据图示可知,电池的总反应方程式为甲烷和氧气反应生成二氧化碳和水;
根据负极的电极反应,确定电子的物质的量和甲烷的物质的量关系,求出甲烷的物质的量,换算成标况下的体积,根据V=nV m。

【详解】
Ⅰ.(1)根据总反应中化合价的变化可知Zn被氧化,应为原电池的负极,电极反应为
Zn+2OH-=Zn(OH)2+2e-,则正极为Ag2O,被还原,电极反应为Ag2O+H2O+2e-=2Ag+2OH-,根据正极的电极反应,导致正极附近氢氧根离子浓度增大,故碱性增强;
Ⅱ.(2) 固体氧化物甲烷燃料电池,根据化合价的变化可知,甲烷中碳的化合价从-4升高到+4,a电极为燃料电池的正极,b电极为燃料电池的负极,固体电解质中的阳离子向正极移动,即向a极移动;
(3)b电极为燃料电池的负极,甲烷失电子结合氧离子生成二氧化碳和水,甲烷的化合价升高了8,失去8e-,故b电极的电极反应式为:CH4-8e-+4O2- = CO2+2H2O;
(4)燃料电池是利用可燃物与氧气反应,生成二氧化碳和水,电池的总反应方程式为:CH4 + 2O2 = CO2 + 2H2O;根据甲烷和电子的物质的量关系:CH4~8e-,b电极的电极反应式为:CH4-8e-+4O2- = CO2+2H2O,2mol电子转移时,消耗0.25mol甲烷,根据
V=nV m=0.25mol×22.4L/mol=5.6L。

14.能源是国民经济发展的重要基础,我国目前使用的能源主要是化石燃料。

(1)熔融盐燃料电池具有高的发电效率,因而受到重视。

可用熔融的碳酸盐作为电解质,向负极充入燃料气CH4,用空气与CO2的混合气作为正极的助燃气,以石墨为电极材料,制得燃料电池。

工作过程中,CO32-移向__(填“正”或“负”)极,已知CH4发生反应的电极反应式为CH4+4CO32--8e-=5CO2+2H2O,则另一极的电极反应式为___。

(2)利用上述燃料电池,按如图1所示装置进行电解,A、B、C、D均为铂电极,回答下列问题。

Ⅰ.甲槽电解的是200mL一定浓度的NaCl与CuSO4的混合溶液,理论上两极所得气体的体积随时间变化的关系如图2所示(气体体积已换算成标准状况下的体积,电解前后溶液的体积变化忽略不计)。

①原混合溶液中NaCl的物质的量浓度为___,CuSO4的物质的量浓度为__。

②t2时所得溶液的pH=__。

Ⅱ.乙槽为200mLCuSO4溶液,乙槽内电解的总离子方程式:___;
①当C极析出0.64g物质时,乙槽溶液中生成的H2SO4为__mol。

电解后,若使乙槽内的溶液完全复原,可向乙槽中加入__(填字母)。

A.Cu(OH)2 B.CuO
C.CuCO3 D.Cu2(OH)2CO3
②若通电一段时间后,向所得的乙槽溶液中加入0.2mol的Cu(OH)2才能恰好恢复到电解前的浓度,则电解过程中转移的电子数为__。

【答案】负 O2+2CO2+4e-=2CO32-或2O2+4CO2+8e-=4CO32-0.1mol•L-10.1mol•L-1 1 2Cu2++2H2O2Cu+O2↑+4H+ 0.01 BC 0.8N A
【解析】
【分析】
(1)根据燃料电池的电极反应式进行分析;
(2)Ⅰ.电解200mL一定浓度的NaCl与CuSO4混合溶液,阳极发生2Cl--2e-=Cl2↑、4OH--
4e-=O2↑+2H2O,阴极发生Cu2++2e-=Cu、2H++2e-=H2↑,结合图可知,Ⅰ为阴极气体体积与时间的关系,Ⅱ为阳极气体体积与时间的关系。

Ⅱ.乙烧杯电解硫酸铜溶液,石墨为阳极,电极反应为4OH--4e-═O2↑+H2O,Cu为阴极,电极反应为Cu2++2e-═Cu,电解的总反应为2CuSO4+2H2O2Cu+O2↑+2H2SO4,结合反应进行分析。

【详解】
(1)甲烷燃料电池中,负极上甲烷被氧化,电极方程式为CH4+4CO32--8e-=5CO2+2H2O,正极发生的反应是氧气得电子的过程,电极反应为:O2+2CO2+4e-=2CO32-,生成的CO32-向负极移动;
答案为负;O2+2CO2+4e-=2CO32-或2O2+4CO2+8e-=4CO32-;
(2)Ⅰ.电解200mL一定浓度的NaCl与CuSO4混合溶液,阳极发生2Cl--2e-=Cl2↑、4OH--
4e-=O2↑+2H2O,阴极发生Cu2++2e-=Cu、2H++2e-=H2↑,结合图可知,Ⅰ为阴极气体体积与时间的关系,Ⅱ为阳极气体体积与时间的关系。

①由图可知,产生氯气为224mL,则由2Cl--2e-=Cl2↑可知,
n(NaCl)=
0.224
22.4/
L
L mol
×2=0.02mol,所以c(NaCl)=
0.02
0.2
mol
L
=0.1mol/L,由t2时生成氧气为
112mL,n(O2)=
0.112
22.4/
L
L mol
=0.005mol,则共转移电子为0.02mol+0.005mol×4=0.04mol,根
据电子守恒及Cu2++2e-=Cu可知,n(CuSO4)=0.04
0.2
mol
L
=0.02mol,所以
c(CuSO4)=0.02
0.2
mol
L
=0.1mol/L;
②由t2时4OH--4e-=O2↑+2H2O~4H+,n(H+)=0.005mol×4=0.02mol,则溶液的
c(H+)=0.02
0.2
mol
L
=0.1mol/L,因此pH=-lg c(H+)=-lg0.1=1;
Ⅱ.乙烧杯电解硫酸铜溶液,石墨为阳极,电极反应为4OH--4e-═O2↑+H2O,Cu为阴极,电极反应为Cu2++2e-═Cu,电解的总反应为2CuSO4+2H2O2Cu+O2↑+2H2SO4,故答案为:
2CuSO4+2H2O2Cu+O2↑+2H2SO4;
①取出Cu电极,洗涤、干燥、称量、电极增重0.64g,则生成Cu的物质的量为
0.64 64/g
g mol
=0.01mol,转移的电子的物质的量为0.01mol×2=0.02mol,阳极反应的氢氧根离子的物质的量为0.2mol,生成的硫酸为0.1mol,根据电极方程式,电解过程中损失的元素有铜和氧,A、多加了H元素,错误;B、能够补充铜和氧元素,正确;C、CuCO3与硫酸反应放出二氧化碳,相当于加入了氧化铜,正确;D.Cu2(OH)2CO3多加了H元素,错误;故选BC;
②加入0.2 mol Cu(OH)2后恰好恢复到电解前的浓度,Cu(OH)2从组成上可看成CuO•H2O,根据“析出什么加入什么”的原则知,析出的物质是氧化铜和水,则阴极上析出氢气和铜,生成0.2mol铜转移电子个数=0.2mol×2 =0.4mol,根据原子守恒知,生成0.2mol水需要
0.2mol氢气,生成0.2mol氢气转移电子的个数=0.2mol×2 =0.4mol,所以电解过程中共转移电子数为0.8mol,数目为0.8N A,故答案为:0.8N A。

【点睛】
本题考查电解原理及其计算,明确发生的电极反应及图图象的对应关系是解答本题的关键。

做题时注意电极的判断和电极反应的书写,注意串联电路中各电极转移的电子数目相等,利用反应的方程式计算。

15.“垃圾是放错了位置的资源”,应该分类回收。

某化学兴趣小组拟采用如下处理方法回收废电池中的资源。

(1)碱性锌锰干电池的电解质为KOH,总反应为Zn+2MnO2+2H2O═2MnOOH+ Zn(OH)2,其正极的电极反应式为_________。

(2)铜帽溶解时加入H2O2的目的是___________________ (用化学方程式表示)。

铜帽溶解完全后,可采用________ 方法除去溶液中过量的H2O2。

(3)填充物中可以回收得到氯化铵,写出氯化铵溶液中各离子浓度的大小顺序______。

(4)铜器在潮湿环境中发生的电化学腐蚀如图所示:
环境中的Cl﹣扩散到孔口,并与正极反应产物和负极产物作用生成多孔粉状锈Cu2(OH)3Cl,其若生成4.29g Cu2(OH)3Cl,则理论上消耗氧气体积为______L(标准状况)。

【答案】MnO2+e-+H2O=MnOOH+OH- Cu+H2O2+H2SO4=CuSO4+2H2O 加热c(Cl-)>c(NH)>c(H +)>c(OH-) 0.448
【解析】
【分析】
在碱性锌锰干电池中,电极为锌和碳棒,电解质为KOH,在负极:Zn-2e- +2OH- =Zn(OH)2,在正极:2MnO2+2e-+2H2O=2MnOOH+2OH-,所以废电池中,电池周围被锌筒包围,中间有碳棒,碳棒上有铜帽,填充物为MnO2、NH4Cl、MnOOH、 Zn(OH)2等。

将它们分离后,铜帽加入足量稀硫酸和30%H2O2,发生反应Cu+H2O2+H2SO4=CuSO4+2H2O,溶解后加入锌筒,发生反应Zn+Cu2+=Zn2++Cu,然后过滤,得到海绵铜和含有Zn2+的滤液。

【详解】
(1)碱性锌锰干电池的电解质为KOH,总反应为Zn+2MnO2+2H2O═2MnOOH+ Zn(OH)2,其正极的电极反应式为MnO2+e-+H2O=MnOOH+OH-。

答案为:MnO2+e-+H2O=MnOOH+OH-;(2)铜帽溶解时加入H2O2的目的,是将Cu氧化并最终转化为CuSO4,发生反应的化学方程式为Cu+H2O2+H2SO4=CuSO4+2H2O。

因为H2O2受热后易分解生成氧气和水,所以铜帽溶解完全后,可采用加热方法除去溶液中过量的H2O2。

答案为:Cu+H2O2+H2SO4=CuSO4+2H2O;加热;
(3)填充物中可以回收得到氯化铵,在氯化铵溶液中发生如下电离与水解:NH4Cl=NH4++Cl-,NH+H 2O NH3·H2O + H+,H2O H++OH-,所以各离子浓度的大小顺序c(Cl-)>c(NH)>c(H +)>c(OH-)。

答案为:c(Cl-)>c(NH)>c(H+)>c(OH-);
(4)铜器在潮湿环境中发生电化学腐蚀,负极2Cu-4e-=2Cu2+,正极O2+4e-+2H2O=4OH-,环境中的Cl﹣扩散到孔口,并与正极反应产物和负极产物作用生成多孔粉状锈Cu2(OH)3Cl,发生反应的离子方程式为2Cu2++3OH-+Cl-= Cu2(OH)3Cl↓,由此可得出关系式:2Cu——O2——
Cu2(OH)3Cl,若生成4.29g Cu2(OH)3Cl,则理论上消耗氧气体积为
4.29g
=0.448L。

答案为:0.448。

22.4L/mol
214.5g/mol
【点睛】
在书写电极反应式时,可从总反应中提取信息:价态变化的元素及对应的物质,由此便可确定正、负极反应的主反应物和主产物,同时关注电解质的性质。

也可利用总反应式减去另一电极反应式。

相关文档
最新文档