八年级数学第二学期 第一次质量检测测试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ).
A .1个
B .2个
C .3个
D .4个
2.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )
A .0.8米
B .2米
C .2.2米
D .2.7米 3.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于
点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).
A .36
B .18
C .12
D .9
4.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( )
A .6
B .6
C .42
D .265.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为
( )
A .6
B .27
C .5
D .25
6.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )
A .①②
B .①③
C .①②③
D .②③④
7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )
A .6
B .42
C .8
D .10
8.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )
A .3
B .5
C .4或5
D .3或51
9.如图, 在ABC 中,CE 平分ACB ∠,CF 平分ABC 的外角ACD ∠,且EF //BC 交AC 于M ,若CM 4=,则22CE CF +的值为( )
A .8
B .16
C .32
D .64 10.下列条件中,不能..
判定ABC 为直角三角形的是( ) A .::5:12:13a b c =
B .A B
C ∠+∠=∠ C .::2:3:5A B C ∠∠∠=
D .6a =,12b =,10c =
二、填空题
11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.
12.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.
13.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.
14.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.
15.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________
16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处.蚂蚁爬行的最短路程为_______cm.
17.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为
MN,连接CN.若△CDN的面积与△CMN的面积比为1:3,则
2
2
MN
BM
的值为
______________.
18.四边形ABCD中AB=8,BC=6,∠B=90°,AD=CD=52,四边形ABCD的面积是_______.
19.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则点BD的长为_____.
20.如图,在等腰△ABC中,AB=AC,底边BC上的高AD=6cm,腰AC上的高BE=4m,则△ABC的面积为_____cm2.
三、解答题
21.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,BD⊥AD于点D,E是AB的中点,连接CE交AD于点F,BD=3,求BF的长.
22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.
(1)当2t =秒时,求PQ 的长;
(2)求出发时间为几秒时,PQB ∆是等腰三角形?
(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
23.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-
(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.
(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.
(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.
24.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的
动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .
25.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.
(1)若∠A =35°,则∠CBD 的度数为________;
(2)若AC =8,BC =6,求AD 的长;
(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)
26.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .
(1)求证:CED ADB ∠=∠;
(2)若=8AB ,=6CE . 求BC 的长 .
27.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.
(1)求证: AD=BE.
(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.
(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).
28.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .
(1)求点A 的坐标;
(2)判断DF 与OE 的数量关系,并说明理由;
(3)直接写出ADG ∆的周长.
29.(知识背景)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾
三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
勾为3时,股14(91)2=-,弦15(91)2
=+; 勾为5时,股112(251)2=-,弦113(251)2
=+; 请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24= 弦25=
(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .
(解决问题)
观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:
(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.
30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD
()1如图1,若2BD =,4DC =,求AD 的长;
()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .
①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法
想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.
请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)
②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,分三种情况分析:AP BP =、AB BP =、AB AP =;根据等腰三角形的性质分别对三种情况逐个分析,即可得到答案.
【详解】
根据题意,使得ABP △成为等腰三角形,分AP BP =、AB BP =、AB AP =三种情况分析:
当AP BP =时,点P 位置再分两种情况分析:
第1种:点P 在点O 右侧,AO BC ⊥于点O ∴22172AO AB BC ⎛⎫=-= ⎪⎝⎭
设OP x = ∴2227AP AO OP x =+=+
∵4AB AC ==
∴132
BO BC =
= ∴3BP BO OP x =+=+ ∴27=3x x ++
∴2x =-,不符合题意;
第2种:点P 在点O 左侧,AO BC ⊥于点O
设OP x =
∴2227AP AO OP x =+=+
∴3BP BO OP x =-=-
∴273x x +=-
∴2x =,点P 存在,即1BP =;
当AB BP =时,4BP AB ==,点P 存在;
当AB AP =时,4AP AB ==,即点P 和点C 重合,不符合题意;
∴符合题意的点P 共有:2个
故选:B .
【点睛】
本题考查了等腰三角形、勾股定理、一元一次方程的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元一次方程的性质,从而完成求解.
2.D
解析:D
【分析】
先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.
【详解】
解:如图,由题意可得:
AD 2=0.72+2.42=6.25,
在Rt △ABC 中,
∵∠ABC=90°,BC=1.5米,BC 2+AB 2=AC 2,AD=AC ,
∴AB 2+1.52=6.25,
∴AB=±2,
∵AB >0,
∴AB=2米,
∴小巷的宽度为:0.7+2=2.7(米).
故选:D.
【点睛】
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.
3.D
解析:D
【分析】
利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.
【详解】
∵90BAC ︒∠=,
∴AB ⊥AD,
∵DE BC ⊥,BD 平分ABC ∠,
∴DE=AD ,∠BED=90BAC ︒∠=,
∴∠BDE=∠BDA ,
∴BE=AB=AC ,
∵CDE ∆的周长为6,
∴DE+CD+CE=AC+CE=BC=6,
∵,90︒
=∠=AB AC BAC
∴22236AB AC BC +==,
∴2236AB =, 218AB =,
∴ABC ∆的面积=
211922
AB AC AB ⋅⋅==, 故选:D.
【点睛】
此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 4.C
解析:C
【解析】
【分析】
根据三角形的面积判断出PE+PF 的长等于AC 的长,这样就变成了求AC 的长;在Rt △ACD 和Rt △ABC 中,利用勾股定理表示出AC ,解方程就可以得到AD 的长,再利用勾股定理就可以求出AC 的长,也就是PE+PF 的长.
【详解】
∵△DCB 为等腰三角形,PE ⊥AB ,PF ⊥CD ,AC ⊥BD ,
∴S △BCD =
12BD•PE+12CD•PF=12
BD•AC , ∴PE+PF=AC ,
设AD=x ,BD=CD=3x ,AB=4x ,
∵AC 2=CD 2-AD 2=(3x )2-x 2=8x 2, ∵AC 2=BC 2-AB 2=
()2-(4x )2,
∴x=2,
∴
,
∴
故选C
【点睛】
本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.
5.A
解析:A
【解析】
【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.
【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,
则有∠AD′D=∠D′AD=45︒,
∵∠BAC+∠CAD=∠DAD′+∠CAD ,
即∠BAD=∠CAD′,
在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩
, ∴△BAD ≌△CAD′(SAS ),
∴BD=CD′,
∠DAD′=90°,由勾股定理得
,
∠D′DA+∠ADC=90°,由勾股定理得
CD′=22DC DD +'=
()22422+=6,
故选A.
【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键. 6.C
解析:C
【分析】
根据勾股定理即可求出答案.
【详解】
解:∵∠ACB =90°,
∴在Rt ABC 中,m =AB 22AC BC +13
故①②③正确,
∵m 2=13,9<13<16,
∴3<m <4,
故④错误,
故选:C .
【点睛】
本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型. 7.A
解析:A
【分析】
设CF=x ,则AC=x+2,再由已知条件得到AB=6,BC=6+x ,再由AB 2+AC 2=BC 2得到62+(x+2)2=(x+4)2,解方程即可.
【详解】
设CF=x ,则AC=x+2,
∵正方形ADOF 的边长是2,BD=4,△BDO ≌△BEO ,△CEO ≌△CFO ,
∴BD=BE ,CF=CE ,AD=AF=2,
∴AB=6,BC=6+x ,
∵∠A=90°,
∴AB 2+AC 2=BC 2,
∴62+(x+2)2=(x+4)2,
解得:x=6,
即CF=6,
故选:A .
【点睛】
考查正方形的性质、勾股定理,解题关键是设CF=x ,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.
8.C
解析:C
【分析】
设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.
【详解】
解:∵在△ABC 中,AC =AM =3,
设AB =x ,BC =9-x ,
由三角形两边之和大于第三边得:
3939x x x x +-⎧⎨+-⎩
>>, 解得3<x <6,
①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,
②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,
③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,
∴x =5或x =4;
故选C .
【点睛】
本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.
9.D
解析:D
【分析】
根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理求得CE 2+CF 2=EF 2.
【详解】
∵CE 平分∠ACB ,CF 平分∠ACD ,
∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12
(∠ACB+∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,
∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,
∴CM=EM=MF=4,EF=8,
由勾股定理可知CE 2+CF 2=EF 2=64.
故选:D .
【点睛】
此题考查角平分线的定义,直角三角形的判定,勾股定理的运用,解题关键在于掌握各性质定义.
10.D
解析:D
【分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90︒即可.
【详解】
解:A 、22251213+=,ABC ∆∴是直角三角形,故能判定ABC ∆是直角三角形;
B 、A B
C ∠+∠=∠,90C ∴∠=︒,故能判定ABC ∆是直角三角形; C 、::2:3:5A B C ∠∠∠=,518090235C ∴∠=
⨯︒=︒++,故能判定ABC ∆是直角三角形;
D 、22261012+≠,ABC ∆∴不是直角三角形,故不能判定ABC ∆是直角三角形; 故选:D .
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
二、填空题
11.5
【详解】
解:如图,延长AE 交BC 于点F ,
∵点E 是CD 的中点,
∴DE=CE ,,
∵AB ⊥BC ,AB ⊥AD,
∴AD ∥BC,
∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,
∴△AED ≌△FEC (ASA ),
∴AD=FC=5,AE=EF,
∴BF=BC-FC=5,
∴在Rt △ABF 中,2213AF AB BF =+=, 6.52AF AE == 故答案为:6.5. 12.163.
【分析】
延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==,2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.
【详解】
解:如图,延长CA 、DB 交于点E ,
∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,
∴60C ∠=°,
∴30E ∠=︒,
在Rt ABE ∆中,4AB =,30E ∠=︒,
∴28BE AB ==,
2243AE BE AB ∴=-=.
在Rt DEC ∆中,30E ∠=︒,43CD =,
283CE CD ∴==,
2212DE CE CD ∴=-=,
∴1443832
ABE S ∆=⨯⨯=, 143122432
CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.
故答案为:163.
【点睛】
本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造
直角三角形是解题的关键.
13.75或6或9 4
【分析】
当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.
【详解】
在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,
∴BC=6(cm);
①当AB=BP=7.5cm时,如图1,t=7.5
2
=3.75(秒);
②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);
③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,
所以4t2=4.52+(4.5﹣2t)2,
解得:t=9
4
,
综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=9
4
.
故答案为:3.75或6或9
4
.
【点睛】
此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.
14.10
【分析】
先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=5c=5代入即可求出ab的值.
【详解】
解:∵在Rt△ABC中,直角边的长分别为a,b,斜边长c,
∴a2+b2=c2,
∴(a+b)2﹣2ab=c2,
∵a+b=5c=5,
∴(52﹣2ab=52,
∴ab=10.
故答案为10.
【点睛】
本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.
15.
【解析】
【分析】
延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.
【详解】
如图,延长AD、BC相交于E,
∵∠A=60°,∠B=∠ADC=90°,
∴∠E=30°
∴AE=2AB,CE=2CD
∵AB=3,AD=4,
∴AE=6, DE=2
设CD=x,则CE=2x,DE=x
即x=2
x=
即CD=
故答案为:
【点睛】
本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.
16.100
【解析】
蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:
第一种情况:如图1,把我们所看到的前面和上面组成一个平面,
则这个长方形的长和宽分别是90cm和50cm,
则所走的最短线段AB==10cm;
第二种情况:如图2,把我们看到的左面与上面组成一个长方形,
则这个长方形的长和宽分别是110cm和30cm,
所以走的最短线段AB==10cm;
第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,
则这个长方形的长和宽分别是80cm和60cm,
所以走的最短线段AB==100cm;
三种情况比较而言,第三种情况最短.
故答案为100cm.
点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化
为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨. 17.12
【解析】
如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:
MA=MC ,NA=NC ,∠AMN=∠CMN.
因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.
所以∠AMN=∠ANM,所以AM=AN.
所以AM=AN=CM=CN.
因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.
设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,
由勾股定理可得NG=()22322x x x -=, 所以MN 2=()()22222312x x x x +-=,BM 2=()()222322x x x -=.
所以22
2212MN x BM x
==12. 枚本题应填12.
点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 18.49
【解析】
连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC =22AB BC + =10. 在△ADC 中,∵AD =CD =52,∴AD 2+CD 2=(52)2+(52)2=100.
∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形
ABCD =S △ABC +S △ACD =12AB •BC +12AD •DC =12×8×6+12
×52×52=24+25=49.
点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
19.485
【解析】
试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485
. 20.
【分析】 根据三角形等面积法求出
32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14
BC 2+36,依据这两个式子求出AC 、BC 的值.
【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴
12AC•BE=12
BC•AD, ∵AD=6,BE =4, ∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,
∴BD=DC =
12
BC , ∵AC 2﹣CD 2=AD 2,
∴AC 2=14BC 2+36, ∴22
1364BC BC +=94, 整理得,BC 2=3648
⨯, 解得:BC
=
∴△ABC 的面积为12
×
cm 2
故答案为:
【点睛】
本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题
的关键.
三、解答题
21.BF 的长为
32
【分析】
先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .
【详解】
解:连接BF .
∵CA=CB ,E 为AB 中点
∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°
在Rt △FEB 与Rt △FEA 中, BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩
∴Rt △FEB ≌Rt △FEA
又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°
∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°
又∵BD ⊥AD ,∠D=90°
∴△BFD 为等腰直角三角形,BD=FD=3
∴222232BF BD FD BD =
+==【点睛】
本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.
22.(1)213;(2)83;(3)5.5秒或6秒或6.6秒
【分析】
(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;
(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;
②当CQ BC =时(图2),则12BC CQ +=,易求得t ;
③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .
【详解】
(1)解:(1)224BQ cm =⨯=,
8216BP AB AP cm =-=-⨯=,
90B ∠=︒,
222246213()PQ BQ BP cm =+=+=;
(2)解:根据题意得:BQ BP =,
即28t t =-,
解得:83
t =; 即出发时间为8
3秒时,PQB ∆是等腰三角形;
(3)解:分三种情况:
①当CQ BQ =时,如图1所示:
则C CBQ ∠=∠,
90ABC ∠=︒,
90CBQ ABQ ∴∠+∠=︒,
90A C ∠+∠=︒,
A ABQ ∴∠=∠
BQ AQ ∴=,
5CQ AQ ∴==,
11BC CQ ∴+=,
112 5.5t ∴=÷=秒.
②当CQ BC =时,如图2所示:
则12BC CQ +=
1226t ∴=÷=秒.
③当BC BQ =时,如图3所示:
过B 点作BE AC ⊥于点E , 则68 4.8()10
AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,
27.2CQ CE cm ∴==,
13.2BC CQ cm ∴+=,
13.22 6.6t ∴=÷=秒.
由上可知,当t 为5.5秒或6秒或6.6秒时,
BCQ ∆为等腰三角形.
【点睛】
本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.
23.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73
【分析】
(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;
(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;
(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.
【详解】
(1)已知如图:AO 为BC 上的中线,
在Rt AOC ∆中,
AO 2-OC 2=AC 2
因为81AB AC ∇=
所以AO 2-OC 2=81
所以AC 2=81
所以AC=9.
(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,
在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,
在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,
∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =
12
AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =
222212663AB AE -=-=, ∴DE =AD +AE =12,
在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=
+=
∴BA ∇BC =BD 2﹣CD 2=216;
(3)作BD ⊥CD,
因为24ABC S ∆=,8AC =,
所以BD=26ABC S AC ∆÷=,
因为64AB AC ∇=-,AO 是BC 边上的中线,
所以AO 2-OC 2=-64,
所以OC 2-AO 2=64,
由因为AC 2=82=64,
所以OC 2-AO 2= AC 2
所以∠OAC=90°
所以OA=24228322ABC S AC ∆⨯
÷=⨯÷= 所以OC=22228373AC OA +=+=
所以BC=2OC=273,
在Rt △BCD 中,
CD=()2222276163BC BD -=-=
所以AD=CD-AC=16-8=8
所以AB=22228610AD BD +=+=
【点睛】
考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.
24.作图见解析,
325
【分析】
作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.
【详解】
如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.
连接AN ,
在Rt △ABC 中,AC=4,AB=8,
∴2222AB AC =84=45++ ∵11AB AC=BC AH 22
⋅⋅ ∴8545
∵CA ⊥AB ,A 'M ⊥AB ,
∴CA ∥A 'M
∴∠C=∠A 'NH ,
由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N
在△ACH 和△A'NH 中,
∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,
∴△ACH ≌△A'NH (AAS )
∴A'N=AC=4=AN ,
设NM=x ,
在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x
在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭
x ∴()2
221654=16-+-⎝⎭x x 解得125
x = 此时AN MN +的最小值=A'M=A'N+NM=4+
125=325 【点睛】
本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.
25.(1)∠CBD=20°;(2)AD=16
4
;(3) △BCD 的周长为m+2 【分析】
(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而
得到∠CBD=20°;
(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;
(3)根据三角形ACB的面积可得1
1 2
AC CB m
=+,
进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.
【详解】
(1)
∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴∠1=∠A=35°,
∵∠C=90°,
∴∠ABC=180°-90°-35°=55°,
∴∠2=55°-35°=20°,
即∠CBD=20°;
(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴AD=DB,
设CD=x,则AD=BD=8-x,
在Rt△CDB中,CD2+CB2=BD2,
x2+62=(8-x)2,
解得:x= 7
4
,
AD=8-7
4
=
1
6
4
;
(3)∵△ABC 的面积为m+1,
∴1
2
AC•BC=m+1,
∴AC•BC=2m+2,
∵在Rt△CAB中,CA2+CB2=BA2,
∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,
∵AD=DB,
∴CD+DB+BC=m+2.
即△BCD的周长为m+2.
【点睛】
此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.
26.(1)见解析;(2)27BC =.
【分析】
(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.
(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.
【详解】
(1)证明:∵AB AD =,=60A ∠︒,
∴△ABD 是等边三角形.
∴60ADB ∠=︒.
∵CE ∥AB ,
∴60CED A ∠=∠=︒.
∴CED ADB ∠=∠.
(2)解:连接AC 交BD 于点O ,
∵AB AD =,BC DC =,
∴AC 垂直平分BD .
∴30BAO DAO ∠=∠=︒.
∵△ABD 是等边三角形,8AB =
∴8AD BD AB ===,
∴4BO OD ==.
∵CE ∥AB ,
∴ACE BAO ∠=∠.
∴6AE CE ==, 2DE AD AE =-=.
∵60CED ADB ∠=∠=︒.
∴60EFD ∠=︒.
∴△EDF 是等边三角形.
∴2EF DF DE ===,
∴4CF CE EF =-=,2OF OD DF =-=.
在Rt △COF 中,
∴OC ==.
在Rt △BOC 中,
∴BC =
== 【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
27.(1)见解析;(2)26;(3
)
3a
+ 【分析】
(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;
(2)由等腰直角三角形的性质可得CM=12
DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;
(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出
,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.
【详解】
证明:(1)∵∠ACB=∠DCE
∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE
在△ACD 和△BCE 中,
AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩
∴△ACD ≌△BCE (SAS )
∴AD=BE
(2)∵∠DCE=90°,CD=CE ,
∴△DCE 为等腰直角三角形,
∵CM ⊥DE ,
∴CM 平分DE ,即M 为DE 的中点
∴
CM=12
DE , ∴DE=2CM=14,
∵∠ACB=∠DCE
∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE
在△ACD 和△BCE 中,
AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩
∴△ACD ≌△BCE (SAS )
∴AD=BE=10,∠CAD=∠CBE
∴AE=AD+DE=24
如图,设AE ,BC 交于点H ,
在△ACH 和△BEH 中,
∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,
∴∠BEH=∠ACH=90°,
∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++
(3)由(1)(2)可得△ACD ≌△BCE ,
∴∠DAC=∠EBC ,
∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°
∴∠CAB=∠CBA=∠CDE=∠CED=30°,
∵CM ⊥DE ,
∴∠CMD=90°,DM=EM ,
∴CD=CE=2CM ,3CM
∴33
∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,
∴BE=2EN ,
EN
∵BN=a
∴
=AD ∴
+ 【点睛】
本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.
28.(1)(0
,;(2)DF OE =;(3
)9+
【分析】
(1)由等边三角形的性质得出6OB =,12AB AC BC ===
,由勾股定理得出OA ==A 的坐标;
(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;
(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证
出6090FDO AFD AOD ∠=∠+︒+∠=︒
,由等边三角形的性质得12
DG OF ==即可得出答案.
【详解】
解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,
6OB ∴=,12AB AC BC ===
,OA === ∴点A 的坐标为(0
,;
(2)DF OE =;理由如下:
ADE ∆,AFO ∆均为等边三角形,
AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,
FAD OAE ∴∠=∠,
在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩
,
()FAD OAE SAS ∴∆≅∆,
DF OE ∴=;
(3)60AOF ∠=︒,
30FOB ∴∠=︒,
60ABO ∠=︒,
90AGO ∴∠=︒,
AFO ∆是等边三角形,AO =
·sin 6092
AG OA ∴=︒==, FAD OAE ∆≅∆,
AOE AFD ∴∠=∠,
30DOE AOD AOE ∠=︒=∠+∠,
30AOD AFD ∴∠+∠=︒,
FDO AFD FAO AOD ∠=∠+∠+∠,
60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,
AG OF ⊥,AOF ∆为等边三角形,
G ∴为斜边OF 的中点,
11
22
DG OF ∴==⨯=
ADG ∴∆的周长9AG AD DG =++=+
【点睛】
本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
29.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2
n +;(3)21m -;21m +;(4)10;26; 12;35;
【解析】
【分析】
(1)依据规律可得,如果勾为7,则股24=
1(491)2-, 弦25=1(491)2
+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=
21(1)2n -, 弦=21(1)2
n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;
(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.
【详解】
解:(1)依据规律可得,如果勾为7,则股24=1(491)2
-,
弦25=1(491)2
+; 故答案为:
1(491)2-;1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=
21(1)2n -, 弦=21(1)2
n +; 故答案为:
21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;
故答案为:m 2-1,m 2+1;
(4)依据柏拉图公式,
若m 2-1=24,则m=5,2m=10,m 2+1=26;
若m 2+1=37,则m=6,2m=12,m 2-1=35;
故答案为:10、26;12、35.
【点睛】
此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.
30.(1);(2)证明见解析.
【解析】
【分析】
()1由等边三角形的性质可求6AB BC ==,132
BG BC ==,1DG =,由勾股定理可求AG ,AD 的长;
()2①想法1:过点A 作AM DF ⊥于点M ,作AH DE ⊥,交DE 的延长线于点H ,由角平分线的性质可得AH AM =,由“AAS ”可证Rt AHE ≌Rt AMF ,可得AE AF =; 想法2:延长DE 至N ,使DN DF =,由“SAS ”可证ADN ≌ADF ,可得AN AF =,AFD N ∠=∠,由四边形内角和为360,可得AEN AFD N ∠=∠=∠,可得
AN AE AF ==;
②由想法1可得22ADM AEDF AHDM S S S
x ===四边形四边形. 【详解】 () 1如图,过点A 作AG BC ⊥于点G ,。