【压轴卷】初二数学下期末试题带答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【压轴卷】初二数学下期末试题带答案(1)
一、选择题 1.若2(5)x -=x ﹣5,则x 的取值范围是( )
A .x <5
B .x ≤5
C .x ≥5
D .x >5
2.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点
的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )
A .①②③
B .仅有①②
C .仅有①③
D .仅有②③ 3.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )
A .7
B .6
C .5
D .4 4.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )
A .m ≠2,n ≠2
B .m =2,n =2
C .m ≠2,n =2
D .m =2,n =0
5.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o ,则AB
的长为( )
A .3
B .4
C .43
D .5
6.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )
A.1.95元B.2.15元C.2.25元D.2.75元
7.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()
A.B.
C.D.
8.若函数y=(m-1)x∣m∣-5是一次函数,则m的值为( )
A.±1B.-1C.1D.2
9.如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()
A.12B.16C.3D.2
10.下列结论中,错误的有()
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;
②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;
A.0个B.1个C.2个D.3个
11.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()
A .10
B .89
C .8
D .41 12.下列运算正确的是( )
A .235+=
B .32﹣2=3
C .236⨯=
D .632÷= 二、填空题
13.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.
14.如图,将边长为的正方形
折叠,使点落在边的中点处,点落在处,折
痕为,则线段的长为____.
15.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .
16.已知实数a 、b 在数轴上的位置如图所示,则化简222()a b b a +--的结果为________
17.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.
18.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数
为正比例函数,则n 的值为_____.
19.若m =+5,则m n =___.
20.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.
三、解答题
21.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .
(1)求证:△ABC ≌△DFE ;
(2)连接AF 、BD ,求证:四边形ABDF 是平行四边形.
22.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .
(1)求证:四边形OCED 是矩形;
(2)若CE=1,DE=2,ABCD 的面积是 .
23.如图,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE CF =.
求证:DE BF =.
24.已知:如图,在▱ABCD 中,设BA u u u r =a r ,BC uuu r =b r .
(1)填空:CA u u u r = (用a r 、b r 的式子表示)
(2)在图中求作a r +b r
.(不要求写出作法,只需写出结论即可)
25.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中m的值为;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
2
a(a≤0),由此性质求得答案即可.
【详解】
()2
-,
5x
∴5-x≤0
∴x≥5.
故选C.
【点睛】
2
a(a≥02a(a≤0).
2.A
解析:A
【解析】
【分析】
【详解】
解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.
∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.
∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.
∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.
∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.
终上所述,①②③结论皆正确.故选A.
3.C
解析:C
【解析】
【分析】
【详解】
∵等腰三角形ABC中,AB=AC,AD是BC上的中线,
∴BD=CD=1
2
BC=3,
AD同时是BC上的高线,
∴AB=22
AD BD
=5.
故它的腰长为5.
故选C.
4.C
解析:C
【解析】
【分析】
根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】
解:∵y=(m﹣2)x n﹣1+n是一次函数,
∴m﹣2≠0,n﹣1=1,
∴m≠2,n=2,
故选C.
【点睛】
本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.
5.B
解析:B
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又
∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】
∵在矩形ABCD中,BD=8,
∴AO=1
2
AC, BO=
1
2
BD=4,AC=BD,
∴AO=BO,
又∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OB=4,
故选B.
【点睛】
本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.
6.C
解析:C
【解析】
【分析】
根据加权平均数的定义列式计算可得.
【详解】
解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25
⨯+⨯+⨯+⨯=
(元),
故选:C.
【点睛】
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
7.D
解析:D
【解析】
【分析】
根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.
【详解】
因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.
【点睛】
本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数
是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
8.B
解析:B
【解析】
根据一次函数的概念,形如y=kx+b (k≠0,k 、b 为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1.
故选B
点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b (k≠0,k 、b 为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.
9.B
解析:B
【解析】
【分析】
首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三
角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.
【详解】
解:如下图所示,
在AC 上截取4CG AB ==,连接OG ,
∵四边形BCEF 是正方形,90BAC ∠=︒,
∴OB OC =,90BAC BOC ∠=∠=︒,
∴点B 、A 、O 、C 四点共圆,
∴ABO ACO ∠=∠,
在△ABO 和△GCO 中,
{BA CG
ABO ACO OB OC
=∠=∠=,
∴△ABO ≌△GCO ,
∴OA OG ==AOB COG ∠=∠,
∵90BOC COG BOG ∠=∠+∠=︒,
∴90AOG AOB BOG ∠=∠+∠=︒,
∴△AOG 是等腰直角三角形,

12AG ==,
∴12416AC =+=.
故选:B .
【点睛】
本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.
10.C
解析:C
【解析】
【分析】
根据勾股定理可得①中第三条边长为57∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确.
【详解】
①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或7.
②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.
③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.
④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.
故选C .
【点睛】
本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.
11.B
解析:B
【解析】
【分析】
当t =5时,点P 到达A 处,根据图象可知AB =5;当s =40时,点P 到达点D 处,根据三角形BCD 的面积可求出BC 的长,再利用勾股定理即可求解.
【详解】
解:当t =5时,点P 到达A 处,根据图象可知AB =5,
过点A 作AE ⊥CD 交CD 于点E ,则四边形ABCE 为矩形,
∵AC=AD,
∴DE=CE=1
2 CD,
当s=40时,点P到达点D处,
则S=1
2
CD•BC=
1
2
(2AB)•BC=5×BC=40,
∴BC=8,
∴AD=AC2222
5889
AB BC
++=
故选B.
【点睛】
本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.
12.C
解析:C
【解析】
【分析】
根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.
【详解】
23
B.3222,故该选项计算错误,
2323
⨯6,故该选项计算正确,
6363
÷2,故该选项计算错误.
故选:C.
【点睛】
本题考查二次根式得运算,熟练掌握运算法则是解题关键.
二、填空题
13.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2
解析:【解析】
【分析】
由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab (a+b),代入可求得答案
【详解】
∵长、宽分别为a、b的矩形,它的周长为14,面积为10,
∴a+b=14
2
=7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=70,
故答案为:70.
【点睛】
本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.
14.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角
△CEN中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN 的长【详解】设CN=x则DN=8-x由折叠的性
解析:
【解析】
【分析】
根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则
DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.
【详解】
设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,
而EC=BC=4,在Rt△ECN中,由勾股定理可知,即
整理得16x=48,所以x=3.
故答案为:3.
【点睛】
本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.
15.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC 的中点∴EF是△ABC的中位线∴BC=2EF=2×3=6∴菱
解析:【解析】
【分析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
【详解】
∵E、F分别是AB、AC的中点,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长=4BC=4×6=24.
故答案为24.
【点睛】
本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
16.0【解析】【分析】根据数轴所示a<0b>0b-a>0依据开方运算的性质即可求解【详解】解:由图可知:a<0b>0b-a>0∴故填:0【点睛】本题主要考查二次根式的性质和化简实数与数轴去绝对值号关键在
解析:0
【解析】
【分析】
根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.
【详解】
解:由图可知:a<0,b>0, b-a>0,
-+--=-+-+=
()0
a b b a a b b a
故填:0
【点睛】
本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.
17.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点
解析:乙
【解析】
【分析】
通过图示波动的幅度即可推出.
【详解】
通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙
【点睛】
考查数据统计的知识点
18.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n=﹣1故答案为:﹣1【点睛】本题考查正比例函数
解析:﹣1
【解析】
【分析】
根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.
【详解】
∵“特征数”是[2,n+1]的一次函数为正比例函数,
∴n+1=0,
解得:n=﹣1,
故答案为:﹣1.
【点睛】
本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx(k≠0),是解题关键.
19.【解析】【分析】直接利用二次根式有意义的条件得出mn的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m=5故mn=25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn的
解析:【解析】
【分析】
直接利用二次根式有意义的条件得出m,n的值进而得出答案.
【详解】
∵m=+5,
∴n=2,则m=5,
故m n=25.
故答案为:25.
【点睛】
此题主要考查了二次根式有意义的条件,正确得出m,n的值是解题关键.
20.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-
3b=0+5=5∴新直线的解析式为y=-3x+5故答案为
解析:y=-3x+5
【解析】
【分析】
平移时k的值不变,只有b发生变化.
【详解】
解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,
b=0+5=5.
∴新直线的解析式为y=-3x+5.
故答案为y=-3x+5.
【点睛】
求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.
三、解答题
21.(1)证明见解析;(2)证明见解析.
【解析】
【分析】
(1)由SSS证明△ABC≌△DFE即可;
(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.
【详解】
详解:证明:,

在和中,,
≌;
解:如图所示:
由知≌,



四边形ABDF是平行四边形.
点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
22.(1)证明见解析;(2)4.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=4,BD=2OD=2,
∴菱形ABCD 的面积为:12AC•BD=12
×4×2=4, 故答案为4. 【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
23.证明见解析.
【解析】
【分析】
由“平行四边形ABCD 的对边平行且相等”的性质推知AB=CD ,AB ∥CD .然后根据图形中相关线段间的和差关系求得BE=FD ,易证四边形EBFD 是平行四边形.
【详解】
证明:∵四边形ABCD 是平行四边形,
∴AB=CD ,AB ∥CD .
∵AE=CF .
∴BE=FD ,BE ∥FD ,
∴四边形EBFD 是平行四边形,
∴DE=BF .
【点睛】
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法. 24.(1) a r -b r ;(2) BD u u u r
【解析】
【分析】
(1)根据三角形法则可知:,CA CB BA =+u u u v u u u v u u u v
延长即可解决问题; (2)连接BD .因为,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v 即可推出.BD a b =+r u u u v r
【详解】
解:(1)∵,CA CB BA =+u u u v u u u v u u u v BA u u u v =a r ,BC uuu v =b r
∴.CA a b =-r u u u v r
故答案为a r -b r

(2)连接BD .
∵,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v ∴.BD a b =+r u u u v r
∴BD u u u v 即为所求;
【点睛】
本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
【解析】
分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;
(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.
解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164
x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.
∵在这组数据中,1.8出现了16次,出现的次数最多,
∴这组数据的众数为1.8.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有
1.5 1.5 1.52
+=, ∴这组数据的中位数为1.5.
(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.
∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.
有25008%200⨯=.
∴这2500只鸡中,质量为2.0kg 的约有200只.
点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。

相关文档
最新文档