【恒心】(同心圆梦)2015年普通高等学校招生全国统一考试(新课标卷)数学(文科)试题001及参考答案
2015高考数学全国卷(精美word版)

绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°=A .-32B .32C .-12D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若 MF 1→· MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33B .⎝⎛⎭⎫-36,36C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A .14斛 B .22斛 C .36斛 D .66斛7.设D 为△ABC 所在平面内一点BC →=3CD →,则A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎫k π-14,k π+34 (k ∈Z )B .⎝⎛⎭⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎫k -14,k +34 (k ∈Z )D .⎝⎛⎭⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图)11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .812.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是A .⎣⎡⎭⎫-32e ,1B . ⎣⎡⎭⎫-32e ,34C . ⎣⎡⎭⎫32e ,34D . ⎣⎡⎭⎫32e ,12rr正视图俯视图 r2r第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3) ,则 yx的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w 1 =x 1, ,w - =18∑x +1w 1A BC F ED 年宣传费/千元(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx .(Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1,C 2的极坐标方程;(Ⅱ)若直线C 3的极坐标方程为 θ=π4(ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。
【恒心】2015年普通高等学校招生全国统一考试(新课标卷)押题(1)数学(文科)试题及参考答案

俯视图侧视图正视图2421文科数学一、选择题:本大题共12小题在每小题给出的四个选项中,只有一项是符合题目要求的 。
1.=+=+z i iz则,21 A .i 31- B .i 31+ C .i 31-- D .i 31+-2.已知集合2{|2,}A y y x x ==-+∈R ,{|2,}B y y x x ==-+∈R ,则AB =A.(,2]-∞B.{(0,2),(1,1)}C.{1,2}D.(0,2),(1,1) 3.若向量a 、b 满足|a |=|b |=2,a 与b 的夹角为60︒,a ·(a +b )等于(A )4(B )6(C )2+ 3(D )4+2 34.某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )A .13B .34C .58D .455.已知焦点在x 轴上的椭圆方程为222141x y a a +=-,随着a 的增大该椭圆的形状( ) A. 越扁 B.越接近于圆 C.先接近于圆后越扁 D.先越扁后接近于圆6.某几何体的三视图如图所示,其中俯视图为扇形, 则该几何体的体积 A.2π3 B.π3 C.2π9 D.16π97.若[]x 表示不超过x 的最大整数,执行如图所示 的程序框图,则输出S 的值为A.4B.5C.7D.98.现有四个函数:①y x sin x =⋅;②cos y x x =⋅;③|cos |y x x =⋅; ④2xy x =⋅的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是A .④①②③B .①④③②C .①④②③D .③④②①9.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且BC 边上的高为36a ,则cb bc +取得最大值时,内角A 的值为( )A .2πB .6π C .23π D .3π面积的最大值求三角形交于点与的切线分别作抛物线,过,轴两侧分别在是抛物线是两点已知抛物线ABQ Q l l l l B A AB x B A x y ,,,,6)(,,4.1021212==A227B 8C 312D 18 11若函数()sin x f x x =,并且233a b ππ<<<,则下列各结论正确的是( )A .()()()2a b f a f ab f +<<B .()()()2a bf ab f f b +<< C .()()()2a b f ab f f a +<< D .()()()2a bf b f f ab +<<12.已知函数()y f x =是定义域为R 的偶函数.当0x ≥时,5sin() (01)42()1() 1 (1)4x x x f x x π⎧≤≤⎪⎪=⎨⎪+>⎪⎩ 若关于x 的方程[]25()(56)()60f x a f x a -++= (a R ∈),有且仅有6个不同实数根,则实数a 的取值范围是( )A .5014a a <<=或 B .5014a a ≤≤=或 C .5014a a <≤=或 D .514a <≤或0a =二、填空题:本大题共4小题,每小题5分,共20分。
2015年高考全国新课标1卷理科数学试题(含答案)

-共 13 页,当前页是第- 2 -页-
(7)设 D 为 ABC 所在平面内一点 =3 ,则
( A)
=
+
(B)
=
(C)
=
+
(D)
=
【解析】本题考查平面向量,画出图形,
1 1 1 4 AD AC CD AC BC AC ( AC AB) AB AC 3 3 3 3
(11)圆柱被一个平面截去一部分后与半球(半径为 r)组成一个几何体,该几何体三视图中的正视图和俯视 图如图所示。若该几何体的表面积为 16 + 20 ,则 r=
-共 13 页,当前页是第- 4 -页-
(A)1(B)2(C)4(D)8 【解析】本题考查三视图, 由正视图和俯视图知, 该几何体是半球与半个圆柱的组合体, 圆柱的半径与球的半径都为 r, 圆柱的高为 2r, 其表面积为
cos (AE, CF) AE CF 3 = 3 |AE||CF |
所以直线 AE 与直线 CF 所成角的余弦值是
3 . 3
(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x(单位:千元)对年 销售量 y(单位:t)和年利润 z(单位:千元)的影响,对近 8 年的年宣传费 x1 和年销售量 y1(i=1,2, · · · ,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
所以 0 x 4 ,而 AB
因此可得 AB 的范围是 ( 6 2, 6 2) .
-共 13 页,当前页是第- 6 -页-
三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17) (本小题满分 12 分) Sn 为数列{an}的前 n 项和.已知 an>0, (Ⅰ)求{an}的通项公式: (Ⅱ)设
2015年普通高等学校招生全国统一考试理科数学(新课标2)word版

2015年普通高等学校招生全国统一考试理科数学(课标全国Ⅱ)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅱ,理1)已知集合A ={-2,-10,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( ).A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}2.(2015课标全国Ⅱ,理2)若a 为实数,且(2+a i)( a -2i)=-4i ,则a =( ).A .-1B .0C .1D .23.(2015课标全国Ⅱ,理3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .2006年以来我国二氧化硫排放量与年份正相关4.(2015课标全国Ⅱ,理4)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ).A .21B .42C .63D .845.(2015课标全国Ⅱ,理5)函数f (x )= 1+log 2 2−x ,x <12x−1 ,x ≥1则f −2 +f log 212 = A .3 B .6 C .9 D .126.(2015课标全国Ⅱ,理6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A .18B .17C .16D . 157.(2015课标全国Ⅱ,理7)过三点A(1,3),B(4,2),C(1,-7),的圆交y 轴于M ,N 两点,则|MN|=A .2 6B .8C .4 6D .108.(2015课标全国Ⅱ,理8)右边程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”。
2015高考数学全国卷(精美word版)

绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°=A .-32B .32C .-12D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若MF 1→·MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33B .⎝⎛⎭⎫-36,36C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A .14斛B .22斛C .36斛D .66斛7.设D 为△错误!未找到引用源。
2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)文数答案解析(正式版)(原卷版)

高中数学学习材料(灿若寒星 精心整理制作)2015普通高等学校招生全国统一考试II文科数学一、选择题:本大题共12道小题,每小题5分,共60分.1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则AB =( ) A .()1,3- B .()1,0-C .()0,2D .()2,32.若为a 实数,且2i 3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .25. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )A .5B .7C .9D .116. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.57. 已知三点(1,0),(0,3),(2,3)A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 21B.3 25C.3 4D.38. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.149.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( ) A.2 B.1 1C.2 1D.810. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π25611. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭ C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ 二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = . 14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .15. 已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线的标准方程为 . 16.已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin B C∠∠ ;(II )若60BAC ∠=,求B ∠.18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II )根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由);(II )求平面α把该长方体分成的两部分体积的比值.20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> 的离心率为22,点()2,2在C 上. (I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.21. (本小题满分12分)已知()()ln 1f x x a x =+-.(I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点,圆O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF BC ;(II )若AG 等于圆O 半径,且23AE MN == ,求四边形EBCF 的面积.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.24.(本小题满分10分)选修4-5:不等式证明选讲设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,则a b c d +>+; (II )a b c d +>+是a b c d -<-的充要条件.。
2015年普通高等学校招生全国统一考试 全国卷1 数学试卷含答案(理科)

2015年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足=i,则|z|=( )-A.1B.C.D.22.sin20°cos10°-cos160°sin10°=()A.-B.C.-D.3.设命题p:∃n∈N,n2>2n,则¬p为( )A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36D.0.3125.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A.-,B.-,C.-,D.-,6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛7.设D为△ABC所在平面内一点,=3,则( )A.=-+B.=-C.=+D.=-8.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.-,,k∈ZB.-,,k∈ZC.-,,k∈ZD.-,,k∈Z9.执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A.5B.6C.7D.810.(x2+x+y)5的展开式中,x5y2的系数为( )A.10B.20C.30D.6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.812.设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是( )A.-,B.-,C.,D.,第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.若函数f(x)=xln(x+)为偶函数,则a= .14.一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.15.若x,y满足约束条件-,-,-,则的最大值为.16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,+2a n=4S n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和.18.(本小题满分12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2, (8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中,.(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为(-)(-),=-.=(-)20.(本小题满分12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.21.(本小题满分12分)已知函数f(x)=x3+ax+,g(x)=-lnx.(Ⅰ)当a为何值时,x轴为曲线y=f(x)的切线?(Ⅱ)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(Ⅰ)若D为AC的中点,证明:DE是☉O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A由已知-=i,可得z=-=--=--=i,∴|z|=|i|=1,故选A.2.D原式=sin 20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=,故选D.3.C根据特称命题的否定为全称命题,知¬p:∀n∈N,n2≤2n,故选C.4.A该同学通过测试的概率P=×0.62×0.4+0.63=0.432+0.216=0.648,故选A.5.A若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则-解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈-.故选A.6.B设圆锥底面的半径为R尺,由×2πR=8得R=,从而米堆的体积V=×πR2×5=(立方尺),因此堆放的米约有≈22(斛).故选B.7.A=+=++=+=+(-)=-+.故选A.8.D由题图可知=-=1,所以T=2.结合题图可知,在-(f(x)的一个周期)内,函数f(x)的单调递减区间为-.由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为-,k∈Z,故选D.9.C第一次循环:S=1-=,m=,n=1,S>t;第二次循环:S=-=,m=,n=2,S>t;第三次循环:S=-=,m=,n=3,S>t;第四次循环:S=-=,m=,n=4,S>t;第五次循环:S=-=,m=,n=5,S>t;第六次循环:S=-=,m=,n=6,S>t;第七次循环:S=-=,m=,n=7,此时不满足S>t,结束循环,输出n=7,故选C.10.C(x2+x+y)5=[(x2+x)+y]5的展开式中只有(x2+x)3y2中含x5y2,易知x5y2的系数为=30,故选C.11.B由已知可知,该几何体的直观图如图所示,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π,得r=2.故选B.12.D由f(x0)<0,即(2x0-1)-a(x0-1)<0得(2x0-1)<a(x0-1).当x0=1时,得e<0,显然不成立,所以x0≠1.若x0>1,则a>--.令g(x)=--,则g'(x)=--.当x∈时,g'(x)<0,g(x)为减函数,当x∈时,g'(x)>0,g(x)为增函数,要满足题意,则x0=2,此时需满足g(2)<a≤g(3),得3e2<a≤e3,与a<1矛盾,所以x0<1.因为x0<1,所以a<--.易知,当x∈(- ,0)时,g'(x)>0,g(x)为增函数,当x∈(0,1)时,g'(x)<0,g(x)为减函数,要满足题意,则x0=0,此时需满足g(-1)≤a<g(0),得≤a<1(满足a<1).故选D.评析本题主要考查导数的应用及分类讨论思想,分离参变量是解决本题的关键,本题综合性较强,属难题.二、填空题13.答案 1解析由已知得f(-x)=f(x),即-xln(-x)=xln(x+),则ln(x+)+ln(-x)=0,∴ln[()2-x2]=0,得ln a=0,∴a=1.14.答案-+y2=解析由已知得该圆经过椭圆的三个顶点A(4,0)、B(0,2)、C(0,-2).易知线段AB的垂直平分线的方程为2x-y-3=0.令y=0,得x=,所以圆心坐标为,则半径r=4-=.故该圆的标准方程为-+y2=.评析本题考查圆和椭圆的方程,求出圆心坐标是解题关键.15.答案 3解析由约束条件画出可行域,如图.的几何意义是可行域内的点(x,y)与原点O连线的斜率,所以的最大值即为直线OA的斜率,又由--得点A的坐标为(1,3),则=k OA=3.16.答案(-,+)解析 依题意作出四边形ABCD,连结BD.令BD=x,AB=y,∠CDB=α,∠CBD=β.在△BCD 中,由正弦定理得=°.由题意可知,∠ADC=135°,则∠ADB=135°-α.在△ABD 中,由正弦定理得°=°- .所以°- =,即y=°- = °- - ° = - ° =.因为0°<β<75°,α+β+75°=180°,所以30°<α<105°, 当α=90°时,易得y= ; 当α≠90°时,y==,又tan 30°=,tan 105°=tan(60°+45°)= ° °- ° °=-2- , 结合正切函数的性质知,∈( -2, ),且≠0,所以y=∈( - , )∪( , + ). 综上所述:y ∈( - , + ).评析 本题考查了三角函数和解三角形.利用函数的思想方法是求解关键,属偏难题. 三、解答题17.解析 (Ⅰ)由+2a n =4S n +3,可知 +2a n+1=4S n+1+3. 可得 - +2(a n+1-a n )=4a n+1,即 2(a n+1+a n )= - =(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又 +2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分) (Ⅱ)由a n =2n+1可知b n===-.设数列{b n}的前n项和为T n,则T n=b1+b2+…+b n=--…-=.(12分)18.解析(Ⅰ)连结BD.设BD∩AC=G,连结EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=,且EG⊥AC.在Rt△EBG中,可得BE=,故DF=.在Rt△FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(6分)(Ⅱ)如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,||为单位长,建立空间直角坐标系G-xyz.由(Ⅰ)可得A(0,-,0),E(1,0,),F-,C(0,,0),所以=(1,,),=--.(10分)故cos<,>=·=-.所以直线AE与直线CF所成角的余弦值为.(12分)评析本题考查了线面垂直的判定和性质、面面垂直的判定、异面直线所成的角.建立适当的空间直角坐标系,利用空间向量的有关公式是求解的关键.证明“EG⊥平面AFC”是解题的难点.本题属中等难度题.19.解析(Ⅰ)由散点图可以判断,y=c+d 适宜作为年销售量y关于年宣传费x的回归方程类型.(2分)(Ⅱ)令w=,先建立y关于w的线性回归方程.由于=---==68,=-=563-68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68.(6分)(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2-49=66.32.(9分)(ii)根据(Ⅱ)的结果知,年利润z的预报值=0.2(100.6+68)-x=-x+13.6+20.12.所以当==6.8,即x=46.24时,取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.(12分)20.解析(Ⅰ)由题设可得M(2,a),N(-2,a)或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(5分)(Ⅱ)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=-+-=-=.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.(12分)21.解析(Ⅰ)设曲线y=f(x)与x轴相切于点(x 0,0),则f(x0)=0,f '(x0)=0,即解得x0=,a=-.因此,当a=-时,x轴为曲线y=f(x)的切线.(5分)(Ⅱ)当x∈(1,+ )时,g(x)=-ln x<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,故h(x)在(1,+ )无零点.当x=1时,若a≥-,则f(1)=a+≥0,h(1)=min{f(1),g(1)}=g(1)=0,故x=1是h(x)的零点;若a<-,则f(1)<0,h(1)=min{f(1),g(1)}=f(1)<0,故x=1不是h(x)的零点.当x∈(0,1)时,g(x)=-ln x>0,所以只需考虑f(x)在(0,1)的零点个数.(i)若a≤-3或a≥0,则f '(x)=3x2+a在(0,1)无零点,故f(x)在(0,1)单调.而f(0)=,f(1)=a+,所以当a≤-3时, f(x)在(0,1)有一个零点;当a≥0时,f(x)在(0,1)没有零点.(ii)若-3<a<0,则f(x)在-单调递减,在-单调递增,故在(0,1)中,当x=-时,f(x)取得最小值,最小值为f -=-+.①若f ->0,即-<a<0,f(x)在(0,1)无零点;②若f -=0,即a=-,则f(x)在(0,1)有唯一零点;③若f -<0,即-3<a<-,由于f(0)=,f(1)=a+,所以当-<a<-时,f(x)在(0,1)有两个零点;当-3<a≤-时,f(x)在(0,1)有一个零点.(10分)综上,当a>-或a<-时,h(x)有一个零点;当a=-或a=-时,h(x)有两个零点;当-<a<-时,h(x)有三个零点.(12分)22.解析(Ⅰ)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.(5分) (Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=-.由射影定理可得,AE2=CE·BE,所以x2=-,即x4+x2-12=0.可得x=,所以∠ACB=60°.(10分)23.解析(Ⅰ)因为x=ρcosθ,y=ρsinθ,所以C 1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(5分)(Ⅱ)将θ=代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=,故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为.(10分)24.解析(Ⅰ)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0. 当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为.(5分)(Ⅱ)由题设可得,f(x)=------所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A-,B(2a+1,0),C(a,a+1),△ABC的面积为(a+1)2.由题设得(a+1)2>6,故a>2.所以a的取值范围为(2,+ ).(10分)。
2015年普通高等学校招生全国统一考试数学文试题(新课标II卷,含部分解析)

2015年普通高等学校招生全国统一考试数学文试题一、选择题:本大题共12道小题,每小题5分1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。
2. 若为a 实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。
3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A .逐年比较,2008年减少二氧化碳排放量的效果最显著2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年190020002100220023002400250026002700B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。
4. 已知()0,1=-a ,()1,2=-b ,则(2)+⋅=a b a A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由题意可得21=a ,2,⋅=-a b 所以()222220+⋅=+⋅=-=a b a a a b .考点:向量数量积。
【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。
5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===. 考点:等差数列【名师点睛】本题主要考查等差数列性质及前n 项和公式,具有小、巧、活的特点。
2015年普通高等学校招生全国统一考试数学试题及答案(全word可编辑版,全解全析)

2015年普通高等学校招生全国统一考试课标全国Ⅰ理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,理1)设复数z满足1+z=i,则|z|=()A.1B.2C.3D.2答案:A解析:∵1+z=i,∴z=i−1=(i−1)(−i+1)=i,∴|z|=1.2.(2015课标全国Ⅰ,理2)sin 20°cos 10°-cos 160°sin 10°=()A.-32B.32C.-12D.12答案:D解析:sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(10°+20°)=sin30°=12.3.(2015课标全国Ⅰ,理3)设命题p:∃n∈N,n2>2n,则p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案:C解析:∵p:∃n∈N,n2>2n,∴p:∀n∈N,n2≤2n.故选C.4.(2015课标全国Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案:A解析:由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C320.62(1-0.6)+C330.63=0.648.5.(2015课标全国Ⅰ,理5)已知M(x0,y0)是双曲线C:x 22-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是()A. −3,3B. −3,3C. −22,22D. −23,23答案:A解析:由条件知F1(-3,0),F2(3,0),∴MF1=(-3-x0,-y0),MF2=(3-x0,-y0),∴MF1·MF2=x02+y02-3<0.①又∵x022−y02=1,∴x02=2y02+2.代入①得y02<13,∴-3<y0<3. 6.(2015课标全国Ⅰ,理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 答案:B解析:设底面圆半径为R ,米堆高为h.∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π.∴体积V=1×1·πR 2h=1×π× 16 2×5.∵π≈3,∴V ≈3209(尺3). ∴堆放的米约为3209×1.62≈22(斛).7.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,BC =3CD ,则( )A .AD =-1AB +4AC B .AD =1AB −4AC C .AD =43AB +13AC D .AD=43AB −13AC 答案:A解析:如图:∵AD =AB +BD,BC =3CD , ∴AD =AB +43BC =AB +43(AC −AB )=-13AB +43AC. 8.(2015课标全国Ⅰ,理8)函数f (x )=cos(ωx+φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A . kπ−1,kπ+3 ,k ∈Z B . 2kπ−1,2kπ+3 ,k ∈Z C . k −14,k +34 ,k ∈Z D . 2k −1,2k +3 ,k ∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2× 54−14=2,所以2πω=2,解得ω=π. 所以f (x )=cos(πx+φ).由图像可知,当x=12 14+54=34时,f (x )取得最小值,即f 3 =cos3π+φ =-1,解得3π4+φ=2k π+π(k ∈Z ),解得φ=2k π+π4(k ∈Z ).令k=0,得φ=π,所以f (x )=cos πx +π.令2k π≤πx+π≤2k π+π(k ∈Z ),解得2k-14≤x ≤2k+34(k ∈Z ).所以函数f (x )=cos πx +π4的单调递减区间为 2k−14,2k +34(k ∈Z ).结合选项知应选D .9.(2015课标全国Ⅰ,理9)执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .8答案:C解析:∵S=1,n=0,m=1,t=0.01,∴S=S-m=12,m=m 2=14,n=n+1=1,S>0.01,∴S=14,m=18,n=2,S>0.01,∴S=1,m=1,n=3,S>0.01,∴S=1,m=1,n=4,S>0.01,∴S=132,m=164,n=5,S>0.01,∴S=1,m=1,n=6,S>0.01,∴S=1,m=1,n=7,S<0.01,∴n=7.10.(2015课标全国Ⅰ,理10)(x 2+x+y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案:C解析:由于(x 2+x+y )5=[(x 2+x )+y ]5,其展开式的通项为T r+1=C 5r (x 2+x )5-r y r (r=0,1,2,…,5),因此只有当r=2,即T 3=C 52(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i+1=C 3i (x 2)3-i ·x i =C 3i x 6-i(i=0,1,2,3),令6-i=5,得i=1,则(x 2+x )3的展开式中x 5项的系数是C 31=3,故(x 2+x+y )5的展开式中,x 5y 2的系数是C 52·3=10×3=30. 11.(2015课标全国Ⅰ,理11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件知,该几何体是由一个圆柱被过圆柱底面圆直径的平面所截剩下的半个圆柱及一个半球拼接而成,其表面积是一个矩形面积、两个半圆面积、圆柱侧面积的一半、球表面积的一半相加所得,所以表面积为S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,理12)设函数f (x )=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A. −32e ,1B. −32e,34C.32e ,34D.32e,1答案:D解析:设g(x)=e x(2x-1),h(x)=a(x-1),则不等式f(x)<0即为g(x)<h(x).因为g'(x)=e x(2x-1)+2e x=e x(2x+1),当x<-12时,g'(x)<0,函数g(x)单调递减;当x>-12时,g'(x)>0,函数g(x)单调递增.所以g(x)的最小值为g −1.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=e x(2x-1)与h(x)=a(x-1)的大致图像.显然,当a≤0时,满足不等式g(x)<h(x)的整数有无数多个.函数g(x)=e x(2x-1)的图像与y轴的交点为A(0,-1),与x轴的交点为D1,0.取点C −1,−3e.由图可知,不等式g(x)<h(x)只有一个整数解时,须满足k PC≤a<k PA.而k PC=0−−3e=3,k PA=0−(−1)=1,所以32e ≤a<1.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,理13)若函数f(x)=x ln(x+ a+x2)为偶函数,则a=.答案:1解析:∵f(x)是偶函数,∴f(-1)=f(1).又f(-1)=-ln(-1+a+1)=ln a+1+1a,f(1)=ln(1+a+1),因此ln(a+1+1)-ln a=ln(a+1+1),于是ln a=0,∴a=1.14.(2015课标全国Ⅰ,理14)一个圆经过椭圆x 2+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案: x−32+y2=25解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以(a−0)2+(0−2)2=4-a,解得a=32,故圆心为32,0,此时半径r=4-32=52,因此该圆的标准方程是 x−322+y2=254.15.(2015课标全国Ⅰ,理15)若x,y满足约束条件x−1≥0,x−y≤0,x+y−4≤0,则yx的最大值为.答案:3解析:画出约束条件对应的平面区域(如图),点A为(1,3),要使y最大,则y−0最大,即过点(x,y),(0,0)两点的直线斜率最大,由图形知当该直线过点A时,yx max =3−01−0=3.16.(2015课标全国Ⅰ,理16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 答案:( 6− 2, 6+ 2) 解析:如图.作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°. 在△CBE 中,由正弦定理得,EB= − 延长CD 交BA 的延长线于F ,则∠F=30°. 在△BCF 中,由正弦定理得,BF= 6+ 2, 所以AB 的取值范围为( 6− 2, 6+ 2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,理17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a n 2+2a n =4S n +3,可知a n +12+2a n+1=4S n+1+3.可得a n +12−a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n +12−a n 2=(a n+1+a n )(a n+1-a n ). 由于a n >0,可得a n+1-a n =2.又a 12+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1. 6分(2)由a n =2n+1可知b n =1n n +1=1=11−1.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12 13−15 + 15−17 +⋯+12n +1−12n +3=n . 12分18.(本小题满分12分)(2015课标全国Ⅰ,理18)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. 解:(1)连结BD ,设BD ∩AC=G ,连结EG ,FG ,EF.在菱形ABCD 中,不妨设GB=1. 由∠ABC=120°,可得AG=GC=由BE ⊥平面ABCD ,AB=BC ,可知AE=EC. 又AE ⊥EC ,所以EG= 3,且EG ⊥AC. 在Rt △EBG 中,可得BE= 2,故DF= 2. 在Rt △FDG 中,可得FG= 62.在直角梯形BDFE 中,由BD=2,BE= 2,DF= 22,可得EF=3 22. 从而EG 2+FG 2=EF 2,所以EG ⊥FG. 又AC ∩FG=G ,可得EG ⊥平面AFC.因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC. 6分(2)如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴、y 轴正方向,|GB |为单位长,建立空间直角坐标系G-xyz.由(1)可得A (0,- E (1,0, F −1,0,2,C (0, 3,0),所以AE =(1, 3, 2),CF= −1,− 3, 2 . 10分故cos <AE ,CF >=AE ·CF|AE ||CF|=- 33. 所以直线AE 与直线CF 所成角的余弦值为 3.12分19.(本小题满分12分)(2015课标全国Ⅰ,理19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i = x i ,w =18∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i −u )(v i −v )∑i =1n(u i −u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i −w )(y i −y )∑i =18(w i −w )2=108.81.6=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.12分20.(本小题满分12分)(2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线C :y=x 24与直线l :y=kx+a (a>0)交于M ,N两点.(1)当k=0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 解:(1)由题设可得M (2 a ,a ),N (-2 a ,a ),或M (-2 a ,a ),N (2 a ,a ).又y'=x 2,故y=x 24在x=2 a 处的导数值为 a ,C 在点(2 a ,a )处的切线方程为y-a= a (x-2 a ),即 a x-y-a=0. y=x 2在x=-2 a 处的导数值为- a ,C 在点(-2 a ,a )处的切线方程为y-a=- a (x+2 a ),即 a x+y+a=0. 故所求切线方程为 a x-y-a=0和 a x+y+a=0. 5分(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y=kx+a 代入C 的方程得x 2-4kx-4a=0. 故x 1+x 2=4k ,x 1x 2=-4a.从而k 1+k 2=y 1−b x 1+y 2−bx 2=2kx 1x 2+(a−b )(x 1+x 2)x 1x 2=k (a +b )a.当b=-a 时,有k 1+k 2=0,则直线PM 的倾角与直线PN 的倾角互补,故∠OPM=∠OPN ,所以点P (0,-a )符合题意. 12分21.(本小题满分12分)(2015课标全国Ⅰ,理21)已知函数f (x )=x 3+ax+1,g (x )=-ln x.(1)当a 为何值时,x 轴为曲线y=f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x>0),讨论h (x )零点的个数. 解:(1)设曲线y=f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f'(x 0)=0,即 x 03+ax 0+1=0,3x 02+a =0.解得x 0=1,a=-3.因此,当a=-34时,x 轴为曲线y=f (x )的切线. 5分(2)当x ∈(1,+∞)时,g (x )=-ln x<0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)无零点. 当x=1时,若a ≥-54,则f (1)=a+54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x=1是h (x )的零点;若a<-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x=1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x>0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f'(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a+54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a<0,则f (x )在 0, −3单调递减,在 −3,1 单调递增,故在(0,1)中,当x= −3时,f (x )取得最小值,最小值为f −a =2a −a +1. ①若f −a >0,即-3<a<0,f (x )在(0,1)无零点; ②若f −a =0,即a=-3,则f (x )在(0,1)有唯一零点;③若f −3 <0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.10分综上,当a>-3或a<-5时,h (x )有一个零点;当a=-3或a=-5时,h (x )有两个零点;当-5<a<-3时,h (x )有三个零点. 12分请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)(2015课标全国Ⅰ,理22)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(1)若D为AC的中点,证明:DE是☉O的切线;(2)若OA=3CE,求∠ACB的大小.解:(1)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.5分(2)设CE=1,AE=x,由已知得AB=2,BE=2.由射影定理可得,AE2=CE·BE,所以x2=12−x2,即x4+x2-12=0.可得x=3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,理23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.5分(2)将θ=π4代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN|= 2.由于C2的半径为1,所以△C2MN的面积为1.10分24.(本小题满分10分)(2015课标全国Ⅰ,理24)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.解:(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为 x2<x<2.5分(2)由题设可得,f(x)=x−1−2a,x<−1,3x+1−2a,−1≤x≤a,−x+1+2a,x>a.所以函数f(x)的图像与x轴围成的三角形的三个顶点分别为A2a−13,0,B(2a+1,0),C(a,a+1),△ABC的面积为2(a+1)2.由题设得23(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).10分。
2015高考数学全国卷(精美word版)

16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
Sn为数列{an}的前n项和.已知an>0,.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设 ,求数列{bn}的前n项和.
18.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,
DF⊥平面ABCD,BE=2DF,AE⊥EC.
(1)证明:平面AEC⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.
19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设复数z满足,则|z|=
A.1B.C.D.2
2.sin20°cos10°-cos160°sin10°=
A.B.C.D.
3.设命题P:∃n∈N,n2>2n,则¬P为
A.∀n N,n2>2nB.∃n N,n2≤2n
A.B.C.D.
第II卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
13.若函数f(x)=xln(x+)为偶函数,则a=______.
【恒心】2015年普通高等学校招生全国统一考试(新课标卷)押题(1)数学(理科)试题及参考答案

理科数学一、选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的.1.已知随机变量ξ服从正态分布2N(0,)σ,(2)0.023P ξ>=,则(22)P ξ-≤≤= A .0.954 B .0.977 C .0.488 D .0.4772.对任意复数),(R y x yi x z ∈+=,i 为虚数单位,则下列结论正确的是( ) .A y z z 2=- .B 222y x z += .C x z z 2≥- .D y x z +≤ 3.已知映射B A f →:,其中R B A ==,对应法则21||:x y x f =→,若对实数B k ∈,在集合A 中不存在元素x 使得k x f →:,则k 的取值范围是( ) A .0≤k B .0>k C .0≥k D . 0<k4.已知函数()()ϕ+=x sin x f 2错误!未找到引用源。
,其中错误!未找到引用源。
为实数,若()⎪⎭⎫⎝⎛≤6πf x f 错误!未找到引用源。
对错误!未找到引用源。
恒成立, 且 ()ππf f >⎪⎭⎫⎝⎛2错误!未找到引用源。
,则错误!未找到引用源。
的单调递增区间是 A.()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡+-63ππππ错误!未找到引用源。
B .()Z k k ,k ∈⎥⎦⎤⎢⎣⎡+,2πππ错误!未找到引用源。
C .错误!未找到引用源。
()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡++326ππππ D .()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡-πππ2错误!未找到引用源。
5.如图,已知圆22:(3)(3)4M x y -+-=,四边形 ABCD 为圆M 的内接正方形,E F 、分别为边AB AD 、的中点,当正方形ABCD 绕圆心M转动时,ME OF ⋅的取值范围是 ( )yxEF D B CMOAA .[62,62]-B .[6,6]-C .[32,32]-D .[4,4]-6.在区间[1,5]和[2,4]上分别取一个数,记为,a b .则方程22221x y a b+=表示焦点在x 轴上且离心率小于32的椭圆的概率为B A .12B .1532C .1732D .31327、一个四面体的四个顶点在空间直角坐标系xyz O -中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体中以yOz 平面为投影面的正视图的面积为( )A .3B .25 C .2 D .278、阅读程序框图,若输入m =4,n =6,,则输出a ,i 分别是( ) A .12,3a i == B .12,4a i == C .8,3a i == D .8,4a i ==9、设数字1,2,3,4,5,6的一个排列为654321,,,,,a a a a a a , 若对任意的)6,5,4,3,2(=ia i 总有)5,4,3,2,1(=<k i k a k ,满足,1||=-k i a a 则这样的排列共有( )A .36B .32C .28D .2010. 过曲线22122:1(0,0)x y C a b a b-=>>的左焦点1F 作曲线2222:C x y a +=的切线,设切点为M ,延长1FM 交曲线23:2(0)C ypx p =>于点N ,其中13C C 、有一个共同的焦点,若1MF MN=,则曲线1C 的离心率为A.5 B.51- C.51+ D.512+ 11、若实数a ,b ,c ,d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为(B ) A .2 B .9 C .8 D .212.已知函数⎪⎩⎪⎨⎧=≠+=0 ,00 ,1)(x x xx x f ,则关于x 的方程0)()(2=++c x bf x f 有5个不同实数解的充要条件是 ( )A .2-<b 且0>cB .2->b 且0<cC .2-<b 且0=cD .2-≥b 且0=c 二、填空题:本大题共4小题,每小题5分,共20分. 13已知nxi x)(2-的展开式中第三项与第五项的系数之比为143-,其中12-=i ,则展开式中常数项是______________.14.当x ,y 满足时,则t=x ﹣2y 的最小值是15.已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____. 16.如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心、AB 为半径的圆弧上的任意一点,设向量AC =λDE +μAP ,则λ+μ的最小值为___.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤 17.18.如图,在三棱柱错误!未找到引用源。
【手机阅读版,答案】2015新课标Ⅰ理数

n
2n
2n
n
x y w xi x wi w
xi x yi y
wi w yi y
i 1
i 1
i 1
i 1
46.6 563 6.8 289.8 1.6
1469
108.8
1n
表中wi xi , w 8 i1 wi
(1)根据散点图判断, y a bx与y c d x哪一个适宜作
33
4 1 C.AD AB AC
33
A
4 1 D.AD AB AC
33
AD AB BD
4 AB BC
3
4
B
AB ( AC AB)
CD
3
1 4
AB AC
33
8.设函数f x cos x 的部分图像如图所示,则f ( x)
的单调递减区间为( D )
2
5 r 2 4r 2 16 20 ,
2r r 2
俯视图
12.设函数f x ex 2x 1 ax a,其中a 1, 若存在唯一
的整数x0使得f ( x0 ) 0, 则a的取值范围是(
3
A.
2e
,1
3 3
3 3
B.
2e
,
4
C
.
2e
,
4
)
3
D.
2e
,1
设g( x) e x (2x 1), y ax 1.由题知存在唯一的整数x0 ,
则AB的取值范围是 ( 6 2, 6 2)
.
延长BA,CD交于点E, 则可知在△ADE中,DAE 105,
ADE 45,E 30,
1
2
6 2
设AD x, AE x, DE
2015年普通高等学校招生全国统一考试全国卷1(正文)

2015年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z 1-z=i,则|z|=( )A.1B.√2C.√3D.22.sin20°cos10°-cos160°sin10°=( ) A.-√32B.√32C.-12D.123.设命题p:∃n∈N,n 2>2n,则¬p 为( ) A.∀n∈N,n 2>2nB.∃n∈N,n 2≤2nC.∀n∈N,n 2≤2nD.∃n∈N,n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648B.0.432C.0.36D.0.3125.已知M(x 0,y 0)是双曲线C:x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ <0,则y 0的取值范围是( ) A.(-√33,√33) B.(-√36,√36) C.(-2√23,2√23) D.(-2√33,2√33) 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛7.设D 为△ABC 所在平面内一点,BC⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( )A.AD ⃗⃗⃗⃗⃗ =-13AB⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB⃗⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗D.AD⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗⃗ 8.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.(kπ-14,kπ+34),k∈ZB.(2kπ-14,2kπ+34),k∈ZC.(k -14,k +34),k∈ZD.(2k -14,2k +34),k∈Z 9.执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A.5B.6C.7D.810.(x 2+x+y)5的展开式中,x 5y 2的系数为( ) A.10B.20C.30D.6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.812.设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x 0使得f(x 0)<0,则a 的取值范围是( ) A.[-32e,1) B.[-32e ,34)C.[32e ,34) D.[32e,1)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.若函数f(x)=xln(x+√a +x 2)为偶函数,则a= .14.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .15.若x,y 满足约束条件{x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为 .16.在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(Ⅰ)求{a n }的通项公式; (Ⅱ)设b n =1a n a n+1,求数列{b n }的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x y w ∑i=18(x i -x )2∑i=18(w i -w )2∑i=18(x i -x )(y i -y ) ∑i=18(w i -w )(y i -y )46.65636.8289.81.61469 108.8表中w i =√x i ,w =18∑i=18w i .(Ⅰ)根据散点图判断,y=a+bx 与y=c+d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x,y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (i)年宣传费x=49时,年销售量及年利润的预报值是多少? (ii)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i=1n(u i -u )(v i -v )∑i=1n(u i -u )2,α^=v -β^u .20.(本小题满分12分)在直角坐标系xOy 中,曲线C:y=x 24与直线l:y=kx+a(a>0)交于M,N 两点. (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P,使得当k 变动时,总有∠OPM=∠OPN?说明理由.21.(本小题满分12分)已知函数f(x)=x 3+ax+14,g(x)=-lnx.(Ⅰ)当a 为何值时,x 轴为曲线y=f(x)的切线?(Ⅱ)用min{m,n}表示m,n 中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(Ⅰ)若D为AC的中点,证明:DE是☉O的切线;(Ⅱ)若OA=√3CE,求∠ACB的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积. (Ⅱ)若直线C3的极坐标方程为θ=π424.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.。
15年高考真题——理科数学(新课标I卷)

2015年普通高等学校招生全国统一考试新课标I 卷数学(理科)一.选择题:本大题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足11zi z+=-,则||z =( ) (A )1 (B(C(D )2 2.00sin 20cos10cos160sin10-=( ) (A)-BC )12-(D )123.设命题p :n N ∃∈,22n n >,则p ⌝为( ) (A )n N ∀∈,22n n > (B )n N ∃∈,22n n ≤ (C )n N ∀∈,22n n ≤ (D )n N ∃∈,22n n =4.投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知()00,M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( ) (A)() (B)()(C)()- (D)()-6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图),米堆为一个圆锥的四分之一,米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7.设D 为ABC ∆所在平面内一点3BC CD =,则( ) (A )1433AD AB AC =-+ (B )1433AD AB AC =- (C )4133AD AB AC =+ (D )4133AD AB AC =-8.函数()()cos f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )()13,44k k k Z ππ⎛⎫-+∈ ⎪⎝⎭54141yxO(B )()132,244k k k Z ππ⎛⎫-+∈ ⎪⎝⎭ (C )()13,44k k k Z ⎛⎫-+∈ ⎪⎝⎭ (D )()132,244k k k Z ⎛⎫-+∈ ⎪⎝⎭9.执行右面的程序框图,如果输入的0.01t =,则输出的n = ( ) (A )5 (B )6 (C )7 (D )810.()52x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
2015年普通高等学校招生全国统一考试(答案)

2015年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.D 由已知得A={2,5,8,11,14,17,…},又B={6,8,10,12,14},所以A∩B={8,14}.故选D.2.A 根据题意得=(3,1),∴=-=(-4,-3)-(3,1)=(-7,-4).故选A.3.C 由已知得z=+1=2-i,故选C.4.C 从1,2,3,4,5中任取3个不同的数有10种取法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中能构成一组勾股数的有1种:(3,4,5),故所求事件的概率P=,故选C.5.B 抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2.从而椭圆E的半焦距c=2.可设椭圆E的方程为+=1(a>b>0),因为离心率e==,所以a=4,所以b2=a2-c2=12.由题意知|AB|==2×=6.故选B.评析本题考查了椭圆、抛物线的方程和性质,运算失误容易造成失分.6.B 设圆锥底面的半径为R尺,由×2πR=8得R=,从而米堆的体积V=×πR2×5=(立方尺),因此堆放的米约有≈22(斛).故选B.7.B 由S8=4S4得8a1+×1=4×,解得a1=,∴a10=a1+9d=,故选B.评析本题主要考查等差数列的前n项和,计算准确是解题关键,属容易题.8.D 由题图可知=-=1,所以T=2,ω=π,又由题图知f =0,即+φ=+2kπ,k∈Z,得φ=+2kπ,k∈Z,此时f(x)=cos=cos,k∈Z,由2kπ<πx+<2kπ+π,k∈Z,得2k-<x<2k+,k∈Z,所以f(x)的单调递减区间为,k∈Z,故选D.9.C S=1-=,m=,n=1;S=-=,m=,n=2;S=-=,m=,n=3;S=-=,m=,n=4;S=-=,m=,n=5;S=-=,m=,n=6;S=-=,m=,n=7,此时不满足S>t,结束循环,输出n为7,故选C.10.A 当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,不成立,舍去;当a>1时,f(a)=-log2(a+1)=-3,即log2(a+1)=3,得a+1=23=8,∴a=7,此时f(6-a)=f(-1)=2-2-2=-.故选A.评析本题主要考查分段函数,指数与对数的运算,考查分类讨论的思想,属中等难度题.11.B 由已知条件可知,该几何体由圆柱的一半和半球组成,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π得r=2.故选B.12.C 在y=f(x)的图象上任取一点P(x0,y0),则P(x0,y0)关于直线y=-x对称的点为P'(-y0,-x0),所以P'必在y=2x+a的图象上,即-x0=,所以-y0+a=log2(-x0),所以y0=a-log2(-x0),所以f(x)=a-log2(-x),又f(-2)+f(-4)=1,所以2a-log22-log24=1,所以2a-1-2=1,解得a=2,故选C.二、填空题13.答案 6解析由已知得{an}为等比数列,公比q=2,由首项a1=2,S n=126得=126,解得2n+1=128,∴n=6.评析本题主要考查等比数列的定义及前n项和公式,属容易题,注意运算要准确哦!14.答案 1解析由题意可得f '(x)=3ax2+1,∴f '(1)=3a+1,又f(1)=a+2,∴f(x)=ax3+x+1的图象在点(1,f(1))处的切线方程为y-(a+2)=(3a+1)(x-1),又此切线过点(2,7),∴7-(a+2)=(3a+1)(2-1),解得a=1.15.答案 4解析由线性约束条件画出可行域,如图.解方程组得即A点坐标为(1,1).当动直线3x+y-z=0经过点A(1,1)时,z取得最大值,z max=3×1+1=4.16.答案12解析由已知得双曲线的右焦点F(3,0).设双曲线的左焦点为F',则F'(-3,0).由双曲线的定义及已知得|PF|=2a+|PF'|=2+|PF'|.△APF的周长最小,即|PA|+|PF|最小.|PA|+|PF|=|PA|+2+|PF'|≥|AF'|+2=17,即当A、P、F'三点共线时,△APF的周长最小.设P点坐标为(x0,y0),y0>0,由得+6y0-96=0,所以y0=2或y0=-8(舍去).所以当△APF的周长最小时,该三角形的面积S=×6×6-×6×2=12.三、解答题17.解析(Ⅰ)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B==.(6分)(Ⅱ)由(Ⅰ)知b2=2ac.因为B=90°,由勾股定理得a2+c2=b2.故a2+c2=2ac,得c=a=.所以△ABC的面积为1.(12分)评析本题考查了正弦定理、余弦定理;考查了解三角形的基本方法,属容易题.18.解析(Ⅰ)因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(5分)(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=x,GB=GD=.因为AE⊥EC,所以在Rt△AEC中,可得EG=x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=x.由已知得,三棱锥E-ACD的体积V E-ACD=×AC·GD·BE=x3=.故x=2.(9分)从而可得AE=EC=ED=.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为.故三棱锥E-ACD的侧面积为3+2.(12分)19.解析(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2分)(Ⅱ)令w=,先建立y关于w的线性回归方程.由于===68,=-=563-68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68.(6分)(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2-49=66.32.(9分)(ii)根据(Ⅱ)的结果知,年利润z的预报值=0.2(100.6+68)-x=-x+13.6+20.12.所以当==6.8,即x=46.24时,取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.(12分)评析本题主要考查变量间的相关关系及回归分析,正确求出回归直线方程是解题关键,考查学生的运算求解能力,属中等难度题.20.解析(Ⅰ)由题设,可知直线l的方程为y=kx+1.因为l与C交于两点,所以<1.解得<k<.所以k的取值范围为.(5分)(Ⅱ)设M(x1,y1),N(x2,y2).将y=kx+1代入方程(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0.所以x1+x2=,x1x2=.(7分)·=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=+8.由题设可得+8=12,解得k=1,所以l的方程为y=x+1.故圆心C在l上,所以|MN|=2.(12分)21.解析(Ⅰ)f(x)的定义域为(0,+∞), f '(x)=2e2x-(x>0).当a≤0时, f '(x)>0, f '(x)没有零点;当a>0时,因为y=e2x单调递增,y=-单调递增,所以f '(x)在(0,+∞)上单调递增.又f '(a)>0,当b满足0<b<且b<时, f '(b)<0,故当a>0时, f '(x)存在唯一零点. (6分)(Ⅱ)由(Ⅰ),可设f '(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时, f '(x)<0;当x∈(x0,+∞)时, f '(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时, f(x)取得最小值,最小值为f(x0).由于2-=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时, f(x)≥2a+aln.(12分)评析本题主要考查利用导数求函数零点及利用导数研究不等式,考查分类讨论思想,是综合性较强的题,属难题!22.解析(Ⅰ)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.(5分)(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=.由射影定理可得,AE2=CE·BE,所以x2=,即x4+x2-12=0.可得x=,所以∠ACB=60°.(10分)评析本题考查了直线与圆的位置关系;圆的切线问题是本题的难点,利用射影定理建立方程是求解的关键.23.解析(Ⅰ)因为x=ρcos θ,y=ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(5分)(Ⅱ)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为.(10分)评析本题考查了极坐标方程,通过极径求出线段的长是解题关键.24.解析(Ⅰ)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为.(5分)(Ⅱ)由题设可得, f(x)=所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a+1,0),C(a,a+1),△ABC的面积为(a+1)2.由题设得(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).(10分)。
【恒心】2015年普通高等学校招生全国统一考试(新课标卷)数学试题(理科)(适用于16个省份)【模拟题02】

2015 年普通高等学校招生全国统一考试
理科数学
( 适用于河南 河北 山西 贵州 甘肃 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南 广西 辽宁 江西 )
模拟试题 2
命题人:李炳璋
绝密 ★ 启用前
2015 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自 己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试题上无效。 4.考试结束,将本试题和答题卡一并交回。
1 2
(B)
1 3
(D) 3
(9)已知正项数列 {an } 的前 n 项和为 Sn,,若 2Sn an 2014 (A)2014 + 2014 2014 (B)2014 - 2014
1 (n N ) ,则 S2014= an
(C) 2014
(D)2014
(10)定义:如果一个椭圆的长轴和短轴分别是双曲线 C 的虚轴与实轴,则这
都有 f ( x1 ) f ( x2 ) ,则下列结论一定正确的是 (A) a b 1 (B) a b 1 (C ) a b 1 (D) a b 1
1 (12)若函数 f ( x) x 2 a ln x ( a R )有且只有一个零点,e 为自然对数的 2 底,则这个零点所在的区间是
三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17) (本小题满分 12 分) 已知△ ABC 的周长为 4 2 1 ,且 sin B+sin C= 2 sin A. (Ⅰ)求边长 a 的值; (Ⅱ)若 S△ ABC = 3 sin A,求 cos A 的值. (18) (本小题满分 12 分) 户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否 与性别有关,对本单位的 50 名员工进行了问卷调查,得到了如下列联表: 喜欢户外运动 不喜欢户外运动 合计 男性 5 女性 10 合计 50 3 已知在这 50 人中随机抽取 1 人抽到喜欢户外运动的员工的概率是 . 5 ( 参考公式:K 2 =
2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)

2015年高考新课标Ⅰ卷文数试题解析
一、选择题:每小题5分,共60分
1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )
(A ) 5 (B )4 (C )3 (D )2
【答案】D
2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( )
(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)
3、已知复数z 满足(1)1z i i -=+,则z =( )
(A ) 2i -- (B )2i -+ (C )2i - (D )2i +
4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A)
3
10
(B)
1
5
(C)
1
10
(D)
1
20
5、已知椭圆E的中心为坐标原点,离心率为1
2
,E的右焦点与抛物线2
:8
C y x
=的焦点重合,,A B是C
的准线与E的两个交点,则AB= ( )
(A)3(B)6(C)9(D)12
【答案】B
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()。
2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)

7、已知 是公差为1的等差数列, 为 的前 项和,若 ,则 ()
(A) (B) (C) (D)
8、函数 的部分图像如图所示,则 的单调递减区间为()
(A) (B)
(C) (D)
9、执行右面的程序框图,如果输入的 ,则输出的 ()
(A) (B) (C) (D)
【答案】C
【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于 的方程,设出交点坐标,利用根与系数关系,将 用k表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.
【答案】
【解析】设双曲线的左焦点为 ,由双曲线定义知, ,
∴△APF的周长为|PA|+|PF|+|AF|=|PA|+ +|AF|=|PA|+ +|AF|+ ,
由于 是定值,要使△APF的周长最小,则|PA|+ 最小,即P、A、 共线,
∵ , (-3,0),∴直线 的方程为 ,即 代入 整理得 ,解得 或 (舍),所以P点的纵坐标为 ,
22.(本小题满分10分)选修4-1:几何证明选讲
如图AB是 O直径,AC是 O切线,BC交 O与点E.
(I)若D为AC中点,求证:DE是 O切线;
(II)若 ,求 的大小.
【答案】(Ⅰ)见解析(Ⅱ)60°
【解析】
试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE⊥BC,AC⊥AB,由直角三角形中线性质知DE=DC,OE=OB,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE是圆O的切线;(Ⅱ)设CE=1,由 得,AB= ,设AE= ,由勾股定理得 ,由直角三角形射影定理可得 ,列出关于 的方程,解出 ,即可求出∠ACB的大小.
2015年全国统一高考数学试卷(理科)(新课标ⅰ)

选修 4 一 1:几何证明选讲 22.(10 分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点 E. (Ⅰ)若 D 为 AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若 OA= CE,求∠ACB 的大小.
A.14 斛
B.22 斛
C.36 斛
第 1页(共 7页)
D.66 斛
7.(5 分)设 D 为△ABC 所在平面内一点,
A.
B.
,则( )
C.
D.
8.(5 分)函数 f(x)=cos(ωx+φ)的部分图象如图所示,则 f(x)的单调递减 区间为( )
A.(kπ﹣ ,kπ+ ),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程; (Ⅲ)已知这种产品的年利润 z 与 x、y 的关系为 z=0.2y﹣x.根据(Ⅱ)的结果
回答下列问题: (i)年宣传费 x=49 时,年销售量及年利润的预报值是多少? (ii)年宣传费 x 为何值时,年利润的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线 v=α+βu 的斜率和截距
C.0.36
D.0.312
5.(5 分)已知 M(x0,y0)是双曲线 C:
=1 上的一点,F1,F2 是 C 的左、