老人与海读书笔记摘抄好句

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑水县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1}
2.
+(a ﹣4)0有意义,则a 的取值范围是( )
A .a ≥2
B .2≤a <4或a >4
C .a ≠2
D .a ≠4
3. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖
的人数不能少于2人,那么下列说法中错误的是( )
A .最多可以购买4份一等奖奖品
B .最多可以购买16份二等奖奖品
C .购买奖品至少要花费100元
D .共有20种不同的购买奖品方案 4. 集合{}1,2,3的真子集共有( )
A .个
B .个
C .个
D .个 5. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .
15 B .16 C .314 D .13
6. 复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)
8. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若
1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.
9. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )
A .
B .
C .
D .
10.若函数1,0,
()(2),0,
x x f x f x x +≥⎧=⎨
+<⎩则(3)f -的值为( )
A .5
B .1-
C .7-
D .2 11.已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0
B .1
C .2
D .3
12.定义运算:,,a a b
a b b a b
≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )
A .22⎡-
⎢⎣⎦ B .[]1,1- C .2⎤⎥⎣⎦ D .1,2⎡-⎢⎣
⎦ 二、填空题
13.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .
14.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .
15.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;
③f (x )在区间[﹣

]上是增函数;
④f (x )的图象关于直线x=
对称.
其中正确的结论是 .
16.自圆C :22
(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( )
A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
17.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
18.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.
三、解答题
19.已知函数()x
f x e x a =-+,21
()x g x x a e
=++,a R ∈. (1)求函数()f x 的单调区间;
(2)若存在[]0,2x ∈,使得()()f x g x <成立,求的取值范围; (3)设1x ,2x 是函数()f x 的两个不同零点,求证:12
1x x e +<.
20.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.
(1)若p=,求A ∩B ;
(2)若A ∩B=B ,求实数p 的取值范围.
21.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2
+a >0的解集.
(Ⅰ) 求A ,B ;
(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.
22.(本题满分13分)已知函数x x ax x f ln 22
1)(2
-+=. (1)当0=a 时,求)(x f 的极值;
(2)若)(x f 在区间]2,3
1[上是增函数,求实数a 的取值范围.
【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.
23.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数),
(1)求{a n }的通项公式;
(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .
24.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴
交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.
黑水县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.
2.【答案】B
【解析】解:∵+(a﹣4)0有意义,
∴,
解得2≤a<4或a>4.
故选:B.
3.【答案】D
【解析】【知识点】线性规划
【试题解析】设购买一、二等奖奖品份数分别为x,y,
则根据题意有:,作可行域为:
A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

其中,x最大为4,y最大为16.
最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。

所以A、B、C正确,D错误。

故答案为:D
4.【答案】C
【解析】
考点:真子集的概念.
5.【答案】D
【解析】

点:等差数列. 6. 【答案】C
【解析】解:z=
=
=
=
+
i ,
当1+m >0且1﹣m >0时,有解:﹣1<m <1; 当1+m >0且1﹣m <0时,有解:m >1; 当1+m <0且1﹣m >0时,有解:m <﹣1; 当1+m <0且1﹣m <0时,无解; 故选:C .
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
7. 【答案】C
【解析】解:易知函数f (x )=lnx+2x ﹣6,在定义域R +
上单调递增.
因为当x →0时,f (x )→﹣∞;f (1)=﹣4<0;f (2)=ln2﹣2<0;f (3)=ln3>0;f (4)=ln4+2>0. 可见f (2)•f (3)<0,故函数在(2,3)上有且只有一个零点. 故选C .
8. 【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 9. 【答案】B
【解析】解:由于α是△ABC 的一个内角,tan α=,

=,又sin 2α+cos 2α=1,
解得sin α=,cos α=(负值舍去).
则cos (α+)=cos
cos α﹣sin
sin α=
×(﹣)=

故选B .
【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.
10.【答案】D111] 【解析】
试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 11.【答案】C
【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2
>0”,是真命题; 否命题是“若x 2
≤0,则x ≤0”,是真命题; 逆否命题是“若x ≤0,则x 2
≤0”,是假命题;
综上,以上3个命题中真命题的个数是2. 故选:C
12.【答案】D 【解析】

点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
二、填空题
13.【答案】 (﹣1,﹣1) .
【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).
14.【答案】 3+

【解析】解:本小题考查归纳推理和等差数列求和公式.
前n﹣1行共有正整数1+2+…+(n﹣1)个,
即个,
因此第n行第3个数是全体正整数中第3+个,
即为3+.
故答案为:3+.
15.【答案】③④.
【解析】解:函数f(x)=cosxsinx=sin2x,
对于①,当f(x1)=﹣f(x2)时,sin2x1=﹣sin2x2=sin(﹣2x2)
∴2x1=﹣2x2+2kπ,即x1+x2=kπ,k∈Z,故①错误;
对于②,由函数f(x)=sin2x知最小正周期T=π,故②错误;
对于③,令﹣+2π≤2x≤+2kπ,k∈Z得﹣+kπ≤x≤+kπ,k∈Z
当k=0时,x∈[﹣,],f(x)是增函数,故③正确;
对于④,将x=代入函数f(x)得,f()=﹣为最小值,
故f(x)的图象关于直线x=对称,④正确.
综上,正确的命题是③④.
故答案为:③④.
16.【答案】D
【解析】
17.【答案】
15 (,)
43
18.【答案】 24
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC 中,根据正弦定理得:BC==24
海里,
则这时船与灯塔的距离为24海里.
故答案为:24

三、解答题
19.【答案】(1)()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;(2)1a >或0a <;(3)证明见解析. 【解析】

题解析: (1)'()1x
f x e =-.
令'()0f x >,得0x >,则()f x 的单调递增区间为(0,)+∞;] 令'()0f x <,得0x <,则()f x 的单调递减区间为(,0)-∞.
(2)记()()()F x f x g x =-,则21
()2x
x F x e x a a e
=-
-+-, 1
'()2x x F x e e =+
-. ∵112220x x x x e e e e
+-≥⋅-=,∴'()0F x ≥, ∴函数()F x 为(,)-∞+∞上的增函数, ∴当[]0,2x ∈时,()F x 的最小值为2
(0)F a a =-. ∵存在[]0,2x ∈,使得()()f x g x <成立,
∴()F x 的最小值小于0,即2
0a a -<,解得1a >或0a <.1
(3)由(1)知,0x =是函数()f x 的极小值点,也是最小值点,即最小值为(0)1f a =+, 则只有1a <-时,函数()f x 由两个零点,不妨设12x x <, 易知10x <,20x >,
∴1222()()()()f x f x f x f x -=--22
22()()x
x e x a e x a -=-+-++2222x x e e x -=--,
令()2x
x
h x e e
x -=--(0x ≥),
考点:导数与函数的单调性;转化与化归思想. 20.【答案】
【解析】解:(1)当p=时,B={x|0≤x ≤},
∴A ∩B={x|2<x ≤}; (2)当A ∩B=B 时,B ⊆A ;
令2p ﹣1>p+3,解得p >4,此时B=∅,满足题意;
当p ≤4时,应满足,
解得p 不存在;
综上,实数p 的取值范围p >4.
21.【答案】
【解析】解:(Ⅰ)∵
,化为(x ﹣2)(x+1)>0,解得x >2或x <﹣1,∴函数f (x )=

定义域A=(﹣∞,﹣1)∪(2,+∞);
由不等式x 2﹣(2a+1)x+a 2
+a >0化为(x ﹣a )(x ﹣a ﹣1)>0,又a+1>a ,∴x >a+1或x <a , ∴不等式x 2﹣(2a+1)x+a 2
+a >0的解集B=(﹣∞,a )∪(a+1,+∞);
(Ⅱ)∵A ∪B=B ,∴A ⊆B .

,解得﹣1≤a ≤1.
∴实数a 的取值范围[﹣1,1].
22.【答案】
【解析】(1)函数的定义域为),0(+∞,因为x x ax x f ln 22
1)(2
-+=
,当0=a 时,x x x f ln 2)(-=,则x x f 12)('-=.令012)('=-=x x f ,得2
1
=x .…………2分
所以当2
=
x 时,)(x f 的极小值为2ln 1)21
(+=f ,函数无极大值.………………5分
23.【答案】
【解析】解:(1)a1=S1=1+c,a2=S2﹣S1=3,a3=S3﹣S2=5﹣﹣﹣﹣﹣(2分)
因为等差数列{a n},所以2a2=a1+a3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
∴a1=1,d=2,a n=2n﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)
(2)a2=3,a1+b1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣(8分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)
【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.
24.【答案】
【解析】解:∵方程表示焦点在x 轴上的双曲线,

⇒m >2
若p 为真时:m >2,
∵曲线y=x 2
+(2m ﹣3)x+1与x 轴交于不同的两点,
则△=(2m ﹣3)2
﹣4>0⇒m >或m

若q 真得:或,
由复合命题真值表得:若p ∧q 为假命题,p ∨q 为真命题,p ,q 命题一真一假 若p 真q 假:;
若p 假q 真:
∴实数m 的取值范围为:


【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件.。

相关文档
最新文档