怀仁县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怀仁县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么(
)
A .F ′(x 0)=0,x=x 0是F (x )的极大值点
B .F ′(x 0)=0,x=x 0是F (x )的极小值点
C .F ′(x 0)≠0,x=x 0不是F (x )极值点
D .F ′(x 0)≠0,x=x 0是F (x )极值点
2. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )
A .20种
B .24种
C .26种
D .30种
3. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )
A .(﹣∞,﹣1]
B .[﹣1,+∞)
C .(﹣1,+∞)
D .(﹣∞,﹣1)
4. 如图所示,程序执行后的输出结果为(
)
A .﹣1
B .0
C .1
D .2
5. 阅读右图所示的程序框图,若,则输出的的值等于(
)
8,10m n ==S A .28
B .36
C .45
D .120
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
6. 如图,程序框图的运算结果为( )
A .6
B .24
C .20
D .120
7. 与椭圆有公共焦点,且离心率的双曲线方程为( )
A .
B .
C .
D .
8. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是(
)
A .{3}
B .{0,1}
C .{0,1,2}
D .{0,1,2,3}
9. 在ABC ∆中,若60A ∠=o ,45B ∠=o
,BC =,则AC =( )
A .
B . C.
D 10.函数f (x )=tan (2x+
),则(
)
A .函数最小正周期为π,且在(﹣,)是增函数
B .函数最小正周期为
,且在(﹣
,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为
,且在(
,)是增函数
11.计算log 25log 53log 32的值为( )
A .1
B .2
C .4
D .8
12.若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )
A .
B .8
C .20
D .2
二、填空题
13.若函数y=f (x )的定义域是
[,2],则函数y=f (log 2x )的定义域为 .
14.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .
15.已知函数f (x )=x m 过点(2,),则m= .
16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .17.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .
18.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两
()2,0,
{,0x x x f x x lnx x a
+≤=->个零点,则正实数的值为______.a 三、解答题
19.在中,、、是 角、
、
所对的边,是该三角形的面积,且
(1)求的大小;(2)若
,
,求的值。
20.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式(2)当d >1时,记c n =
,求数列{c n }的前n 项和T n .
21.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:AD⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.
22.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).
(1)若函数在区间上是单调减函数,求实数的取值范围;
(2)求函数的极值;
(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.
23.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.
24.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.(1)求证:AD =;
12
2b 2+2c 2-a 2(2)若A =120°,AD =,=,求△ABC 的面积.
192
sin B sin C 35
怀仁县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),
∴F'(x)=f'(x)﹣f′(x0)
∴F'(x0)=0,
又由a<x0<b,得出
当a<x<x0时,f'(x)<f′(x0),F'(x)<0,
当x0<x<b时,f'(x)<f′(x0),F'(x)>0,
∴x=x0是F(x)的极小值点
故选B.
【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.
2.【答案】A
【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;
甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;
甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;
甲班级分配5个名额,有1种不同的分配方案.
故共有10+6+3+1=20种不同的分配方案,
故选:A.
【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.
3.【答案】B
【解析】解:∵M={x|x≥﹣1},N={x|x≤k},
若M∩N≠¢,
则k≥﹣1.
∴k的取值范围是[﹣1,+∞).
故选:B.
【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.
4.【答案】B
【解析】解:执行程序框图,可得
n=5,s=0
满足条件s <15,s=5,n=4满足条件s <15,s=9,n=3满足条件s <15,s=12,n=2满足条件s <15,s=14,n=1满足条件s <15,s=15,n=0
不满足条件s <15,退出循环,输出n 的值为0.故选:B .
【点评】本题主要考查了程序框图和算法,正确判断退出循环时n 的值是解题的关键,属于基础题.
5. 【答案】C
【解析】解析:本题考查程序框图中的循环结构.,当121123m
n
n n n n m S C m
---+=⋅⋅⋅⋅=L 8,10m n ==时,,选C .8
2
101045m
n C C C ===6. 【答案】 B
【解析】解:∵循环体中S=S ×n 可知程序的功能是:计算并输出循环变量n 的累乘值,
∵循环变量n 的初值为1,终值为4,累乘器S 的初值为1,故输出S=1×2×3×4=24,故选:B .
【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.
7. 【答案】 A
【解析】解:由于椭圆的标准方程为:
则c 2=132﹣122=25则c=5
又∵双曲线的离心率∴a=4,b=3
又因为且椭圆的焦点在x 轴上,
∴双曲线的方程为:故选A
【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a ,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx 2+ny 2=1(m >0,n >0,m ≠n ),双曲线方程可设为mx 2﹣ny 2=1(m >0,n >0,m ≠n ),由题目所给条件求出m ,n 即可.
8.【答案】C
【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,
∵全集U=R,M={x|x>2},N={0,1,2,3},
∴∁M={x|x≤2},
∴∁M∩N={0,1,2},
故选:C
【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.
9.【答案】B
【解析】
考点:正弦定理的应用.
10.【答案】D
【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,
在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.
11.【答案】A
【解析】解:log25log53log32==1.
故选:A.
【点评】本题考查对数的运算法则的应用,考查计算能力.
12.【答案】A
【解析】解:画出满足条件的平面区域,如图示:
,
由图象得P(3,0)到平面区域的最短距离d min=,
∴(x﹣3)2+y2的最小值是:.
故选:A.
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
二、填空题
13.【答案】 [,4] .
【解析】解:由题意知≤log 2x≤2,即log2≤log2x≤log24,
∴≤x≤4.
故答案为:[,4].
【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x)的定义域是[,2],得到≤log2x≤2”是关键,考查理解与运算能力,属于中档题.
14.【答案】 .
【解析】解:∵=2,由正弦定理可得:,即c=2a.
b=2a,
∴==.
∴cosB=.
故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.
15.【答案】 ﹣1 .
【解析】解:将(2,)代入函数f(x)得:=2m,
解得:m=﹣1;
故答案为:﹣1.
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.
16.【答案】 .
【解析】解:在△ABC中,∵6a=4b=3c
∴b=,c=2a,
由余弦定理可得cosB===.
故答案为:.
【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题.
17.【答案】 (﹣1,0) .
【解析】解:作出不等式组表示的平面区域,
得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)
△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,
将直线AC绕A点旋转,可得
当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,
当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,
当点C位于C1、C2之间时,△ABC是锐角三角形,
而点C在其它的位置不能构成三角形
综上所述,可得3<2k+5<5,解之得﹣1<k<0
即k的取值范围是(﹣1,0)
故答案为:(﹣1,0)
【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k 的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
18.【答案】e
【解析】考查函数,其余条件均不变,则:
()()
20{x x x f x ax lnx
+≤=-当x ⩽0时,f (x )=x +2x ,单调递增,f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点;则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有有且只有一个实根。
ln x
a x =
令,()()2
ln 1ln ,'x x
g x g x x x
-==当x >e 时,g ′(x )<0,g (x )递减;当0<x <e 时,g ′(x )>0,g (x )递增。
即有x =e 处取得极大值,也为最大值,且为
,1
e
如图g (x )的图象,当直线y =a (a >0)与g (x )的图象
只有一个交点时,则.1a e
=
回归原问题,则原问题中.
a e =
点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.
三、解答题
19.【答案】 【解析】
解:(1)由
得
,即
(2)
20.【答案】
【解析】解:(1)设a1=a,由题意可得,
解得,或,
当时,a n=2n﹣1,b n=2n﹣1;
当时,a n=(2n+79),b n=9•;
(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,
∴c n==,
∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,
∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,
∴T n=2+++++…+﹣(2n﹣1)•=3﹣,
∴T n=6﹣.
21.【答案】
【解析】(Ⅰ)证明:∵AB是圆O的直径,
∴AC⊥BC,
又∵DC⊥平面ABC
∴DC⊥BC,
又AC∩CD=C,
∴BC⊥平面ACD,
又AD⊂平面ACD,
∴AD⊥BC.
(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).
由(Ⅰ)可得,AC⊥平面BCD,
∴平面BCD的一个法向量是=,
设=(x,y,z)为平面ABD的一个法向量,
由条件得,=,=(﹣2,0,a).
∴即,
不妨令x=1,则y=,z=,
∴=.
又二面角A﹣BD﹣C所成角θ的正切值是2,
∴.
∴=cosθ=,
∴==,解得a=2.
∴V ABCDE=V E﹣ADC+V E﹣ABC
=+
=+
=
=8.
∴该几何体ABCDE的体积是8.
【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.
22.【答案】(1)(2)见解析(3)
【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.
试题解析:(1)函数的导函数,
则在区间上恒成立,且等号不恒成立,
又,所以在区间上恒成立,
记,只需,即,解得.
(2)由,得,
①当时,有;,
所以函数在单调递增,单调递减,
所以函数在取得极大值,没有极小值.
②当时,有;,
所以函数在单调递减,单调递增,
所以函数在取得极小值,没有极大值.
综上可知: 当时,函数在取得极大值,没有极小值;
当时,函数在取得极小值,没有极大值.(3)设切点为,
则曲线在点处的切线方程为,
当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为
,
当时,
,
当且仅当,即或时取等号;
当时,
,
当且仅当,即或时取等号.
所以切线在轴上的截距范围是
.
点睛:函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求→求方程
的根→列表检验
在
的根的附近两侧的符号→下结
论.
(3)已知极值求参数.若函数在点
处取得极值,则
,且在该点左、右两侧的导数值符号相
反.
23.【答案】
【解析】解:(Ⅰ)∵g (x )=log a x (a >0,且a ≠1)的图象过点(4,2),∴log a 4=2,a=2,则g (x )=log 2x .…
∵函数y=f (x )的图象与g (X )的图象关于x 轴对称,∴
.…
(Ⅱ)∵f (x ﹣1)>f (5﹣x ),∴
,
即
,解得1<x <3,
所以x 的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
24.【答案】【解析】解:
(1)证明:∵D 是BC 的中点,∴BD =DC =.
a 2
法一:在△ABD 与△ACD 中分别由余弦定理得c 2=AD 2+
-2AD ·
a 24
cos ∠ADB ,①
a 2
b 2=AD 2+-2AD ··cos ∠ADC ,②
a 2
4a 2
①+②得c 2+b 2=2AD 2+,a 22
即4AD 2=2b 2+2c 2-a 2,
∴AD =.12
2b 2+2c 2-a 2法二:在△ABD 中,由余弦定理得
AD 2=c 2+-2c ·cos B
a 24
a 2
=c 2+-ac ·a 2
4a
2+c 2-b 2
2ac =,
2b 2+2c 2-a 24
∴AD =.
12
2b 2+2c 2-a 2(2)∵A =120°,AD =,=,
1219sin B sin C 35
由余弦定理和正弦定理与(1)可得
a 2=
b 2+
c 2+bc ,①2b 2+2c 2-a 2=19,②
=,③b c 35
联立①②③解得b =3,c =5,a =7,
∴△ABC 的面积为S =bc sin A =×3×5×sin 120°=.
1212
153
4即△ABC 的面积为.
154
3。