简单线性规划
简单的线性规划

补充、求z= -2x+y的最大、最小值,使
x 0
y
0
x y 3
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月4日星期五2022/3/42022/3/42022/3/4 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/42022/3/42022/3/43/4/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/42022/3/4March 4, 2022 4、享受阅读快乐,提高生活质量。2022/3/42022/3/42022/3/42022/3/4
谢谢观赏
You made my day!
我们,还在路上……
x y 2
ቤተ መጻሕፍቲ ባይዱ
x
y
1
x , y 0
求目标函数Z=2y-x的最大值
例3、求z=-x-2y的最大、最小值,使
x y 2 0
x
2
y 2
小结
1、在线性规划中,仔细作图是重要而关键的 步骤
2、要仔细考虑当直线上移或下移时,目标函 数值是增加还是减少
3、完成课本P83 练习1,2,3
作业、P86 习题 4
简单的线性规划
请大家准备好直尺和笔 我们一起进入神奇的规 划世界!
基本概念
约束条件与目标函数 可行区域、可行解与最优解 线性规划的目的:在可行区域中找到一个点,
使目标函数最大/最小
例1、已知x,y满足约束条件
4x 5y 5
2
x
3
y
简单线性规划

x 4 y 3
A(1,1)
0
x1
B(5,2)
x
3x 5 y 25
例3 : 若x, y满足下列条件: x - 4y -3 3x 5y 25 x 1
7若 z=ax+y取得最小值的最优解有
无数个; 求实数a的值
y C(1, 22)
∴Z max =5; Z min = 4
线基本性概规念划:问题 线性约束条件
已知x;y满足下面不等式组;
y x
x
y
1
y 1
试求Z=3x+y的最大值和最小值
线性 目标函数
最优解
解得:在点1;1处; Z有最大值5 在点2;1处;Z有最小值4
任何一个满足线性约束条件的解x;y
所有的满足线性约束条件的解x;y的集合
如果C≠0;可取0;0; 如果C=0;可取1;0或0;1
画出下面二元一次不等式组表示的平面区域
y
y x
x
y
1
1
y=x
y 1
1
o
x
y = -1 -1
x + y -1 = 0
yx 例1:已知x;y满足下面不等式组; x y 1
y 1
试求Z = 3x +y 的最大值和最小值
y x Z直的线x几的何y纵意截1义距?
x - 4y -3 其中x, y满足下列条件 : 3x 5y 25
z 2x y y 2x z
平行于l0 : y 2x
x 1
y C(1, 22)
5
x 4 y 3
平移l0
B(5,2)
经过A(1,1)时,zmin 3
A(1,1)
x
0
经过B(5,2)时,zmax 12
§4 4.2 简单线性规划

的交点, 顶点 B 为直线 x + 2y = 4 与直线 x+ 2 = 0的交点, 解方程组
x + 2y = 4, x + 2 = 0. 求出顶点 代入目标函数, 可求出顶点 B 的坐标为 ( −2,3) ,代入目标函数,即可得最小值
zmin = 3×( −2) −3 =−9.
B
y
l0
A
x − y =1
o
B
a
a +b = 4 a +b = 2
由
由
, a −b =−1 3 5 得 D( , ) ; 2 2 a +b = 4,
计算这些顶点的目标函数值: 计算这些顶点的目标函数值:
4a −2b = 0 a −b =−1
b
1 3 zA = 4× −2× =−1 ; 2 2 zB = 4×2−2×0 = 8; zC = 4×3−2×1=10; 3 5 zD = 4× −2× =1. 2 2
o
C
x =−2
x
x + 2y = 4
的交点, 顶点 A 为直线 x + 2y = 4 与直线 x − y =1的交点, 解方程组
x + 2y = 4, x − y =1.
y
B
l0
A
x − y =1
o
C
x =−2
x
x + 2y = 4
得到顶点 代入目标函数,即可得最大 得到顶点 A 的坐标为 ( 2,1) ,代入目标函数,即可得最大值
x ≥−3, y ≥−4, −4x +3y ≤12, 4x +3y ≤ 36.
的最小值与最大值; (1) 求目标函数 z = 2x +3y 的最小值与最大值; ) 的最小值与最大值 最大值; (2) 求目标函数 z =−4x +3y − 24 的最小值与最大值; )
简单线性规划

4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
O1
5
x
y+1=0
B(-1,-1) -1
A(2,-1)
x+y-1=0
15
x-y 0 1.画出x y-1 0区域y
y 1 0
y-x=0
2.画出Z=2x+y对应的
5
方程0=2x+y的图像
3.根据b的正负值判断向上向下 平移时Z的增减性,
1
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
O1
5
x
y+1=0
B(-1,-1) -1
A(2,-1)
Zmin=2x+y=2x(-1)+(-1)=-3
x+y-1=0
20
线性规划
也可以通过比较可行域边界 顶点的目标函数值大小得到。
例1 解下列线性规划问题:
求z=2x+y的最大值和最小值,使式中x、y满足下
数
目标函数
问题: (线性目标函数)
设z=2x+y,式中变量满足y
线性约 束条件
象这样关 于x,y一 次不等式 组的约束 条件称为 线性约束 条件
下列条件:
x=1
3x x45yy235 x 1
C 3x+5y-25=0
B
A
x-4y+3=0
O
x
求z的最大值与最小值。
2
线性规划
线性规划:求线性目标函数在线性约束条件下的最 大值或最小值的问题,统称为线性规划问题.
1
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
高中数学 同步教学 简单的线性规划问题

x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
简单的线性规划问题(二)

3 .在△ ABC 中,三顶点坐标为 A (2,4) , B(-1,2),C(1,0),点P(x,y)在△ABC内部 及边界运动,则z=x-y的最大,最小值分 别是 ( ) A.3,1 B.-1,-3 C.1,-3 D.3,-1
解析:本题运用线性规划问题的图象解 法.只需画出约束条件对应的可行域,即 一个封闭的三角形区域(含边界),再平移直 线x-y=0使之经过可行域,观察图形,找 出动直线纵截距最大时和最小时经过的点, 然后计算可得答案. 答案:C
x-y=-1, 解方程组 x+y=5,
得 A(2,3),
所以 zmin=2×2-3×3=-5. 当直线经过点 B 时, 直线的纵截距最小, 此时 z 最大.
x-y=3, 解方程组 x+y=1,
得 B(2,-1),
所以 zmax=2×2-3×(-1)=7. 所以 2x-3y 的取值范围是[-5,7]
[点评] 对于线性规划中的最优整数解的问 题,当解方程组得到的解不是整数解时, 可用下面的方法求解: ①平移直线法:先在可行域内打网格,再 描整点,平移直线 l ,最先经过或最后经过 的整点坐标是整点最优解. ②检查优值法:当可行域内整点个数较少 时,也可将整点坐标逐一代入目标函数求 值,经比较得出最优解. ③调整优值法:先求非整点最优解及最优 值,再借助不定方程知识调整最优值,最
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
简单的线性规划

300 2x+y=300
解方程组 2x + y = 300 x + 2 y = 250 得点M的坐标 x=350/3 y=200/3 答:应生产甲、 x 乙两种棉纱分别 为116吨、67吨, 能使利润总额达 到最大。
125 M( 350 200 , ) 3 3 x+2y=250 250
O Z=600x+900y 作出可行域,可知直 线Z=600x+900y通过 点M时利润最大。
线性规划的应用
已知:-1≤a+b≤1,1≤a-2b≤3,求a+3b的取值 b 范围。 解法3 约束条件为:
a a a a + b ≥ −1 +b ≤1 − 2b ≥ 1 − 2b ≤ 3
D O A a
P
B
C
目标函数为:z=a+3b 由图形知:-11/3≤z≤1 即 -11/3≤a+3 b≤1
资源 一级子棉(吨) 二级子棉(吨) 利润(元)
产品 甲种棉纱 乙种棉纱 资源限额 (吨)x (吨)y (吨) 2 1 600 1 2 900 300 250
线性规划的实际应用
解:设生产甲、乙两种 棉纱分别为x吨、y吨, 利润总额为z元,则
2 x + y ≤ 300 x + 2 y ≤ 250 x ≥ 0 y ≥ 0
某纺纱厂生产甲、乙两种棉纱, 例 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉 吨需耗一级子棉2吨 二级子棉1吨 纱1吨需耗一级子棉 吨、二级子棉 吨;生产乙种棉 吨需耗一级子棉 纱需耗一级子棉1吨 二级子棉2吨 纱需耗一级子棉 吨、二级子棉 吨,每1吨甲种棉纱 吨甲种棉纱 的利润是600元,每1吨乙种棉纱的利润是 吨乙种棉纱的利润是900元,工 的利润是 元 吨乙种棉纱的利润是 元 厂在生产这两种棉纱的计划中要求消耗一级子棉不超 过300吨、二级子棉不超过 吨 二级子棉不超过250吨.甲、乙两种棉纱应 吨甲 各生产多少(精确到吨 能使利润总额最大? 精确到吨), 各生产多少 精确到吨 ,能使利润总额最大
不等式简单的线性规划

05
特殊情况的线性规划问题
无限制条件的线性规划问题
总结词
无限制条件的线性规划问题是一类经典的线性规划问题,其约束条件仅为等式约 束。
详细描述
在无限制条件的线性规划问题中,决策变量没有任何约束条件,决策变量的取值 范围是整个实数集。求解这类问题的关键是通过有限的资源安排,实现目标函数 的最大化或最小化。
设置求解器参数:根据问题的具体情况设置相 应的参数,例如容差、迭代次数等。
运行求解器:点击“求解”按钮,LP求解器将 输出最优解和
线性规划的应用还包括组合优化问题,例如 旅行商问题和车辆路径问题。
02
不等式的简单线性规划问题
不等式的简单线性规划问题的定义
1
不等式的简单线性规划问题是指在满足一系列 不等式约束条件下,求解线性规划问题。
2
不等式约束可以包括不等式约束和等式约束, 描述了对于决策变量的限制条件。
3
不等式约束条件下,目标函数是最小化或最大 化的线性规划问题,目标是求解最优解。
分支定界法
总结词
精确、高效、复杂
详细描述
分支定界法是一种较为复杂的线性规划求解方法,它是将可行域逐步缩小,并通过对可行域的划分和 边界的确定来寻找最优解。该方法通常适用于较为复杂的问题,如含有整数变量或多个目标函数的线 性规划问题。由于该方法的计算量和复杂度较高,需要借助计算机程序来实现。
04
不等式约束条件下的线性规 划问题
图解法
总结词
直观、简单、易懂
详细描述
图解法是一种常用的线性规划求解方法,它是通过绘制图形来直观地求解问题。在平面直角坐标系上,将目标 函数和约束条件用图线表示出来,然后通过观察图形的交点或边界来确定最优解。该方法适用于小规模问题, 但对于大规模问题,由于计算量较大,不太适用。
3.4.2《简单线性规划》课件(北师大版必修5)

所以 zmin=4+3=7.
x+3y≥12 线性约束条件x+y≤10 3x+y≥12 最小值.
下, z=2x-y 的最大值和 求
• 先画出可行域,利用直线z=2x-y的平移来
寻求最优解,最先或最后通过的可行域顶点 坐标即为最优解,它可以使目标函数取得最 大值或最小值.
[解题过程] 如图作出线性约 x+3y≥12 束条件 x+y≤10 3x+y≥12
2 3 =ax+by(a>0,b>0)的最大值为12,求a+b的最小值.
解析: 不等式组表示的平面区域如图 所示阴影部分. 作直线l:ax+by=0(a>0,b>0)向 上平移直线l,目标函数z=ax+by(a>0, b>0)的值随之增大.由图可知当直线l过 直线x-y+2=0与直线3x-y-6=0的交点A(4,6)时,目标函 数z=ax+by(a>0,b>0)取得最大值为12,
1 1--2
7 2 7 kQA= = = . 1--1 2 4
3 7 故z=2k∈4,2.
1 3--2
y-b [题后感悟] 若目标函数为形如z= ,可考虑(a,b) x-a 与(x,y)两点连线的斜率. 若目标函数为形如z=(x-a)2+(y-b)2,可考虑(x,y)与 (a,b)两点距离的平方.
x-y-2=0, 2y-3=0,
得C
7 3 , 2 2
7 3 ,所以当x= 2 ,y= 2
7 3 29 2 + 2= . 时,目标函数z取最大值,zmax= 2 2 2
3 13 综上,当x=1,y=2时,z的最小值为 4 . 7 3 29 当x=2,y=2时,z的最大值为 2 .
• [题后感悟] 这是一道线性规划的逆向思维
问题.解答此类问题必须明确线性目标函 数的最值一般在可行域的顶点或边界取得, 运用数形结合的思想方法求解.边界直线 斜率与目标函数斜率间的关系往往是解题 的关键.
简单的线性规划

Zmin=2×3+2+50=58 . 此时 此时,10-x-y=5. × 购买甲食物3千克 乙食物2千克 丙食物5千克时 答:购买甲食物 千克 乙食物 千克 丙食物 千克时 付出的金额 购买甲食物 千克,乙食物 千克,丙食物 千克时,付出的金额 最低为58元 最低为 元.
解线性规划问题的一般步骤: 解线性规划问题的一般步骤:
求式子30x+40y的最大值 的最大值. 求式子 的最大值
y 600 C 400
如何求30x+ y 如何求 x+40y x+ 的最大值呢? 的最大值呢?
B x+2y-800=0
O
400 A
800
x
3x+2y-1200=0 30x+40y=0
解方程组
3 x + 2 y = 1200 x + 2 y = 800
解:依题意可列表如下:
产品 生产甲种产品1工时 生产甲种产品 工时 生产乙种产品1工时 生产乙种产品 工时 限额数量 原料A数量 原料b数量 数量(kg) 利润 元) 利润(元 原料 数量(kg) 原料 数量 数量 3 2 1200 1 2 800 30 40
设计划生产甲种产品x工时,生产乙种产品y工 时,则获得利润总额为 f = 30x+40y
y 600 C 400
B x+2y-800=0
O
400 A
800
x
3x+2y-1200=0 30x+10y=0
实例分析: 满足以下条件: 实例分析:设x,y满足以下条件: 满足以下条件
3 x + 2 y ≤ 1200 ① x + 2 y ≤ 800 ② ③ x≥0 y ≥ 0 ④
(完整版)简单的线性规划问题(附答案)

简单的线性规划问题[学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一 线性规划中的基本概念知识点二 线性规划问题 1.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一 求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧ y =2,x -y =1⇒⎩⎪⎨⎪⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求(1)x 2+y 2的最小值; (2)yx的最大值. 解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎪⎨⎪⎧x +2y -4=0,y =2x 的解,即⎝⎛⎭⎫45,85, 又由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0,得C ⎝⎛⎭⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝⎛⎭⎫322=132, 所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v=y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大, 由(1)知C ⎝⎛⎭⎫1,32, 所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案 10解析 画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )之间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 题型三 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元.反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y , 把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎪⎨⎪⎧50x +20y =2 000,y =x ,解得⎩⎨⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎫2007,2007.由⎩⎪⎨⎪⎧50x +20y =2 000,y =1.5x ,解得⎩⎪⎨⎪⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎫25,752. 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752, O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752, 但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z=10x +10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1 D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B 解析 如图,当y =2x 经过且只经过x +y -3=0和x =m 的交点时,m 取到最大值,此时,即(m,2m )在直线x +y -3=0上,则m =1. 2.答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方, 故z min =⎝⎛⎭⎫122=12.课时精练答案一、选择题 1.答案 A解析 画出可行域,如图所示,解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A. 2.答案 D解析 作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C 解析不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C. 5.答案 D解析 由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案 13解析 |x |+|y |≤2可化为 ⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方, ∴x +2y -4>0,则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5, 令P (x ,y )为可行域内一动点,定直线x +2y -4=0, 则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 三、解答题12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时,z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:(1)设只生产书桌x 张,可获得利润z 元, 则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600, 解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单线性规划(一)
学习目标
1、了解线性规划的意义以及有关的基本概念; 2、解决线性目标函数的最值问题; 3、掌握用图解法解决简单的线性规划问题; 4、培养应用数学的意识,提高运用数形结合 的思想方法解决问题的能力.
教学重点:线性规划问题及最优解问题; 教学难点:求最优解.
对于题目:已知实数 x, y满足: 有个同学的解法如下:
转化,数形结合, 作业:导学案评价部分
y
B(-1,2)
A(2,4)
【练习2】
如图1所示,已知△ABC中的三顶点 A(2,4) ,B(-1,2),C(1,0),点P(x,y) 0 C(0,1) 在△ABC内部及边界运动, 请你探究并讨论以下问题: (图1) ① z=x+y 在_____处有最大值___,在____处有最小值____; ② z=x-y 在___处有最大值____,在____处有最小值____; ③ 你能否设计一个目标函数,使得其取最优解的 情况有无穷多个? ④ 请你分别设计目标函数,使得最值点分别 在A处、B处、C处取得? ⑤ (课后思考题)若目标函数是 z=x2+y2 , 你知道其几何意义吗? 你能否借助其几何意义求得
(2 , 4)
(1, 2)
x y 6
(1, 2)
B
x
x
( 图2 )
x y 1
0
C
(1, 0)
x
x 4 y 3 0 解方程组 ,得C点的坐标为(5,2) 3x 5 y 25 0
x 1 解方程组 , 得B点坐标为(1,1) x 4 y 3 0
所以zmax 2 5 2 12,zmin 2 1 1 3.
合作探究
(1)画:画出可行域和“直线”; (2)移:平行移动“直线”,确定使目标函数取得最大值或最小值的点; (3)求:求出取得最大值或最小值的点的坐标(解方程组); (4)答:给出正确答案.
合作探究与展示分享
例2、设 求
z 2 x y ,式中变量 x, y满足条件
z 的最大值和最小值.
x 4 y 3 3 x 5 y 25 x 1
1 x y 2 原不等式可化为: 1 x y 1
两个同向不等式不等式作加法,得 即
0 2 y 3(4)
0 y 1.5
两个同向不等式(3)和(5)作加法,得 0 2 x 从而 2 x y 的取值范围是
y 4.5
[0, 4.5] .
图解
思考:上题的合适解法应该是怎样的呢???
例1、已知 小值.
z 2 x y,其中实数
x, y满足:
1 x y 2 ,求 z 的最大值和最 1 x y 1
精讲点拨
1、简单线性规划的几个相关概念: 目标函数: 约束条件: 线性目标函数: 线性约束条件: 可行解: 可行域: 最优解: 2、解简单线性规划问题的方法: 图解法 3、解简单线性规划问题的步骤: “画、移、求、答”
x y 1 0 例3、设变量 x, y 满足条件 3 x 5 y 37 , x 1
(1)找出
x, y 均为正整数的可行解;
y (2)求目标函数 z 5x 3的最大值;
(3)若 x,
y 均为正整数,求目标函数
z 5x 3 y 的最大值 .
整数解
总结:
x
zmin和zmax
?如果是
y 1 2y 3 z 或z x x 1
呢?
(如图2,①②问参考答案: ① z=x+y 在 在 点A 点C 处有最大值 6 ,在边界BC处有最小值 1 ;②z=x+y 处有最大值 1 ,在 点 B 处有最小值 -3)
y
B
A
(2 , 4)
y x yA 3
1 x y 2
1 x ,求 y 1
2x y 的取值范围。
1 x y 2(1) 解:由已知,得不等式组: 1 x y 1(2)
两个同向不等式相加得: 0 2 x 3(3)