弹性力学:04 应力和应变的关系
材料力学中的应力与应变关系
材料力学中的应力与应变关系材料力学是研究材料在受力作用下的力学行为和性能的学科,应力与应变关系是其中的核心内容之一。
本文将讨论材料力学中的应力与应变的概念及其数学表示,以及应力与应变之间的线性关系与非线性关系。
一、应力的概念及表示应力是指材料单位面积上的内部力,常用符号σ表示。
根据受力情况的不同,可以分为正应力、切应力和体积应力。
正应力是指与作用力方向垂直的内部力,常用符号σ表示;切应力是指与作用力方向平行的内部力,常用符号τ表示;体积应力是指作用在体积内的内部力,常用符号p表示。
正应力的数学表示为σ = F/A,其中F为作用力的大小,A为受力面积。
切应力的数学表示为τ = F/A,其中F为切力的大小,A为受力面积。
体积应力的数学表示为p = F/V,其中F为体积力的大小,V为受力体积。
二、应变的概念及表示应变是指材料在受力作用下产生的形变程度,常用符号ε表示。
根据变形方式的不同,可以分为线性应变和体积应变。
线性应变是指在受力作用下,材料产生的长度或角度发生变化,常用符号ε表示;体积应变是指在受力作用下,材料产生的体积发生变化,常用符号η表示。
线性应变的数学表示为ε = ΔL/L0,其中ΔL为长度变化量,L0为原始长度。
体积应变的数学表示为η = ΔV/V0,其中ΔV为体积变化量,V0为原始体积。
三、应力与应变的线性关系在一定范围内,应力与应变之间可以表现为线性关系。
根据胡克定律(Hooke's Law),线性弹性材料的应力与应变之间满足σ = Eε,其中E为弹性模量。
弹性模量是材料刚度的度量,表示材料单位应力产生的单位应变。
常见的弹性模量有杨氏模量、剪切模量和泊松比。
杨氏模量的数学表示为E = σ/ε,其中σ为应力,ε为线性应变。
剪切模量的数学表示为G = τ/γ,其中τ为切应力,γ为切应变。
泊松比的数学表示为ν = -εv/εh,其中εv为垂直方向的线性应变,εh为水平方向的线性应变。
弹性力学基本概念
弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。
本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。
一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。
应力是单位面积上的力,通常用希腊字母σ表示。
应力可以分为正应力和剪应力两种。
正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。
正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。
剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。
剪应力的单位也是帕斯卡(Pa)。
应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指物体在受力下发生的长度变化与原长度之比。
线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。
剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。
剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。
二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。
胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。
杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。
杨氏模量的单位是帕斯卡(Pa)。
胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。
杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。
三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。
泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。
泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。
弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。
工程力学中的应力和应变分析
工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
我所认识的应力与应变的关系
我所认识的应力与应变的关系机械与动力工程学院我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。
首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。
但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。
由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。
对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。
平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。
本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。
本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。
在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。
第四章应力应变关系
4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y yx zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。
由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。
前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。
弹性力学第四章应力应变
当变形较小时,可展开成泰勒级数, 并略去二阶以上的小量。
f1 f1 f1 f1 f1 f1 xy x ( f1 )0 x y z yz xz z 0 x 0 xz 0 y 0 yz 0 xy 0
x C11 x C12 y C13 z C14 yz C15 xz C16 xy y C21 x C22 y C23 z C24 yz C25 xz C26 xy z C31 x C32 y C33 z C34 yz C35 xz C36 xy yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
上式中 cmn(m,n=1,2…6)是弹性系数,共36个,对 于均匀材料它们为常数,称为弹性常数,与坐标无关。
上式即为广义胡克定律,可以看出应 力和应变之间是线性的。 可以证明各弹性常数之间存在关系式 cmn = c nm 。对于最一般的各向异性介质,弹 性常数也只有21个。
§4.2 弹性体变形过程中的功与能
yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
xz C51 x C52 y C53 z C54 yz C55 xz C56 xy
(4-2)
xy C61 x C62 y C63 z C64 yz C65 xz C66 xy
0 0 0
f3 f3 f3 f3 f3 f3 z ( f3 )0 z yz x y xz xy z 0 x 0 xz 0 y 0 yz 0 xy 0
工程力学中的应变与应力分析
工程力学中的应变与应力分析工程力学是研究物体静力学和动力学的一门学科,它在工程设计和结构力学分析中起着重要的作用。
在工程力学中,应变与应力是两个基本概念,也是进行结构分析和材料力学计算的关键参数。
本文将从应变和应力的定义、计算公式、应变与应力的关系等方面进行介绍与分析。
一、应变的概念与计算应变是物体在受到力的作用下,发生形变的程度的度量。
应变可分为线性应变和切变应变两种。
1. 线性应变线性应变是指物体在受力作用下,其形变呈现线性关系。
常见的线性应变有拉伸应变和压缩应变。
拉伸应变是指物体在拉伸力作用下的伸长变化程度,压缩应变是指物体在压缩力作用下的压缩变化程度。
线性应变的计算公式如下:ε = ΔL / L其中,ε表示线性应变,ΔL表示长度变化量,L表示物体的初始长度。
2. 切变应变切变应变是指物体在受到剪切力作用下,产生的剪切变形程度。
切变应变的计算公式如下:γ = θ * r其中,γ表示切变应变,θ表示切变角度,r表示物体上两点间的距离。
二、应力的概念与计算应力是物体内部受力作用下单位面积上的力的大小。
常见的应力有拉应力、压应力和剪应力等。
应力的计算公式如下:1. 拉应力和压应力拉应力是指垂直于物体横截面的拉力作用下,单位面积上的力的大小,压应力是指垂直于物体横截面的压力作用下,单位面积上的力的大小。
拉应力和压应力的计算公式如下:σ = F / A其中,σ表示应力,F表示作用力的大小,A表示物体的横截面积。
2. 剪应力剪应力是指平行于物体横截面的剪切力作用下,单位面积上的力的大小。
剪应力的计算公式如下:τ = F / A其中,τ表示剪应力,F表示作用力的大小,A表示物体的横截面积。
三、应变与应力的关系应变与应力有着密切的关系,可以通过应变与应力的计算公式来解析他们之间的关系。
1. 杨氏模量杨氏模量是一种材料的特性参数,它是应力与应变之间的比值。
杨氏模量的计算公式如下:E = σ / ε其中,E表示杨氏模量,σ表示应力,ε表示应变。
弹性力学 第四章应力和应变的关系
vI t
x
x
t
y
y
t
z
z
t
yz
yz
t
xz
xz
t
xy
xy
t
若固定x,y,z的值,则得在dt时间内vI 的增量为,即在上式两边乘以dt
dvI xd x yd y zd z yzd yz xz d xz xyd xy
由于内能密度 vI 是状态的单值函数,dvI 必须是全微分,因此
所以
v
1 2
(
x
x
y y
zz
xy xy
xz xz
zy zy )
张量表示
v
1 2
ij
ij
弹性体应变能 V v dV V
§4-3 各向异性弹性体
(一)极端各向异性弹性体
理论具有36个弹性常数
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx
的值,根据无初始应力假设,( f1)0为0。均匀材料,函数 f1
对应变的一阶偏导数为常数。这是因为对物体内各点来说,
承受相同的应力,必产生相同的应变;反之,物体内各点
有相同的应变,必承受同样的应力。
经过上面的处理后,小变形情况就可简化为
广义胡克定律
x C11 x C12 y C13 z C14 xy C15 yz C16 xz y C21 x C22 y C23 z C24 xy C25 yz C26 xz z C31 x C32 y C33 z C34 xy C35 yz C36 xz xy C41 x C42 y C43 z C44 xy C45 yz C46 xz yz C51 x C52 y C53 z C54 xy C55 yz C56 xz xz C61 x C62 y C63 z C64 xy C65 yz C66 xz
应力和应变之间的关系
应力和应变的关系曲线
描述
应力和应变的关系曲线是描述应力与应变之间关系的图形表示。
形状
在弹性范围内,曲线呈直线上升;超过弹性极限后,曲线出现弯曲。
应用
通过应力和应变的关系曲线,可以确定材料的弹性模量、屈服点和 极限强度等机械性能参数。
04
应力和应变的应用
弹性力学
弹性力学是研究弹性物体在外力作用下 变形和内力的规律的科学。在弹性力学 中,应力和应变是描述物体变形和受力 状态的基本物理量。
公式
σ=Eεsigma = E varepsilonσ=Eε
解释
σ为应力,E为弹性模量,ε为应变。 当应力增加时,应变也相应增加, 且两者成正比关系。
非线性关系
描述
当材料受到超过其弹性极限的应力时 ,应力与应变之间的关系不再是线性 的,而是呈现非线性关系。
特征
在非线性阶段,应变随应力的增加而 急剧增加,可能导致材料发生屈服或 断裂。
设计优化
优化结构设计
通过对应力和应变的分析,优化结构设计,提高结构的承载能力 和稳定性。
考虑材料特性
在设计过程中,充分考虑材料的力学特性和性能,合理选择和使 用材料,以降低应力和应变对结构的影响。
引入减震和隔震措施
通过引入减震和隔震措施,降低地震等外部载荷对结构产生的应 力和应变,提高结构的抗震性能。
时间
蠕变
在长期恒定应力作用下,材料会发生 缓慢的塑性变形,即蠕变。蠕变会影 响材料的应力和应变关系,特别是在 高温和长期载荷作用下。
时间依赖性
某些材料的力学性能会随时间发生变 化,对应力和应变的关系产生影响。 例如,疲劳和时效等现象会导致材料 性能随时间发生变化。
07
应力和应变在工程实践中的 注意事项
工程弹塑性力学课件:第四章应力与应变的关系(肖)
弹性力学的基本方程
一、平衡方程 应力分量满足平衡方程:
x yx zx X 0
x y z
xy y zy Y 0
(1.67)
x y z
xz yz z Z 0
x y z
ij, j Fi 0
二、几何方程
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
xy
120
1 4
x
+
3 4
y
3 4
xy
x y
190 10-6 130 10-6
xy 577 10-6
1,2
x
y
2
( x - y
2
)2 +( xy
2
)2 =30 10-6
330 10-6
1=360 10-6,2 =-300 10-6
2
0
=
arctan(
xy x -
y
)
61。
0
0
30.5。 120.5。
(1.82)
应变与位移的关系→本构关系
材料力学中: x
E x
x
1 E
x
y
z
1 E
x
广义虎克定律: ①正应力→正应变,与剪应变无关
②剪应力→剪应变,与正应变无关
例:贴三角形应变花。
0 =190 10-6,60 =200 10-6,120 =300 10-6, 材料常数:E=206.8109 N / m2, 0.3。
2 y
z 2
2 z
y2
2 yz
yz
0
2 z
x2
弹性力学第四章本构关系
均成立,所以根据商判则Cijkl是一个四阶张量,称 弹性张量,共有81个分量。 • 弹性张量的Voigt对称性
C ijkl C jikl C ijlkC klij
Chapter 5.1
§4-2 广义胡克定律
ij ji
Cijkl kl Cjikl kl kl
的范围内。
Chapter 5.1
第四章 本构关系
§4-1 本构关系概念 §4-2 广义胡克定律 §4-3 应变能和应变余能
§4-2 广义胡克定律
各向同性本构关系
ij 2Gij kkij
1Eij 1E12kkij
对于各向同性材料,正应力在对应方向上只引
起正应变,剪应力在对应方向上只引起剪应变,
它们是互不耦合的。
§4-1 本构关系概念
∵
E0 ; G 0 ; K 0
G= E 2(1 + ν)
K23G31E2
故要上式成立必要求:
10; 12 0
即 10.5
Chapter 5.1
§4-1 本构关系概念
10.5
若设=0.5,则体积模量K=,称为不可压缩材料,
相应的剪切模量为
GE 3
对实际工程材料的测定值,一般都在 00.5
Chapter 5.1
§4-1 本构关系概念0K ij 2G ij第一式说明弹性体的体积变化是由平均应力0引起
的,相应的弹性常数K称为体积模量。(体积变化)
第二式说明弹性体的形状畸变 ij 是由应力偏量 ij
引起的,相应的弹性常数是剪切模量G的二倍。(形状
变化)
Chapter 5.1
§4-1 本构关系概念
y νx
弹性力学 第04章应力和应变关系
第四章应力与应变关系§4-1 应力和应变的最一般关系式§4-2 弹性体变形过程中的功和能§4-3 各向异性弹性体§4-4 各向同性弹性体§4-5 弹性常数的测定§4-6 各向同性体应变能密度的表达式显然有5225C C =同理可证nmmn C C =这样就证明了极端各向异性体,只有6+30/2=21个独立的弹性常数。
⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ66564636266156554535255146454434244 136353433233 126252423222 16 15 14 13 12 111②具有一个弹性对称面的各向异性弹性体如果物体内的每一点都具有这样一个平面,关于该平面对称的两个方向具有相同的弹性,则该平面称为物体的弹性对称面,而垂直于弹性对称面的方向,称为物体的弹性主方向。
这样,物体的弹性常数从21个变为13个。
若Oyz 为弹性对称面,则(可用坐标变换公式得到)⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ665656554434244 13433233 1242322214 13 1211100000000000000如果互相垂直的3个平面中有2个式弹性对称面,则第3个平面必然也是弹性对称面。
应力和应变关系
第四章应力和应变关系一. 内容介绍前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。
由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。
应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。
分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。
本章的任务就是建立弹性变形阶段的应力应变关系。
二. 重点1. 应变能函数和格林公式;2. 广义胡克定律的一般表达式;3. 具有一个和两个弹性对称面的本构关系;4. 各向同性材料的本构关系;3. 材料的弹性常数。
知识点应变能原理应力应变关系的一般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式广义胡克定理一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系§4.1 弹性体的应变能原理学习思路:弹性体在外力作用下产生变形,因此外力在变形过程中作功。
同时,弹性体内部的能量也要相应的发生变化。
借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。
本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。
根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。
因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。
弹性力学第四章应力应变
弹性力学问题的求解方法
解析法
通过数学手段,将弹性力学问题转化为数学方程,如微分方程或积 分方程,然后求解这些方程得到弹性体的应力和应变。
数值法
对于一些难以解析求解的弹性力学问题,可以采用数值方法进行求 解,如有限元法、有限差分法等。
实验法
通过实验手段测量弹性体的应力和应变,如拉伸、压缩、弯曲等实验。
本构方程描述了物体内部的应力与应变之间的关系,是材料力学性质的表现。
本构方程的数学表达式因材料而异,对于线性弹性材料,本构方程为:$sigma_{ij} = lambda epsilon_{kk} + 2mu epsilon_{ij}$,其中$lambda$和$mu$分别为拉梅 常数。
04
弹性力学问题解法
01
材料性能评估
利用弹性力学理论,可以对材料的性能进行评估,包括材料的弹性模量、
泊松比、剪切模量等参数,为材料的加工和应用提供依据。
02
材料结构设计
通过弹性力学理论,可以对材料进行结构设计,通过调整材料的微观结
构和组分,优化材料的性能,提高材料的承载能力和稳定性。
03
材料失效分析
弹性力学还可以用于材料失效分析,通过分析材料的应力分布和应变状
分类
单位
根据不同的分类标准,应变可以 分为多种类型,如线应变、角应 变、剪应变等。
应变的单位是单位长度上的变形 量,常用的单位有百分数、弧度 等。
应变状态
01
02
03
单轴应变
当物体受到单向拉伸或压 缩时,只在某一方向上发 生形变,其他方向上保持 不变。
多轴应变
当物体受到多方向上的作 用力时,会在多个方向上 发生形变,形变情况比较 复杂。
4应力与应变关系
y
xm
900
t
450
k
D
y
xm
900
t
450
k
D
y
τ max
x
3
k
τ max
1
解: 从圆筒表面 k 点处取出单元体, 其各面上的应力分量如图 b所示
可求得
y 1 max 80MPa x 3 max 80MPa z 0
E
p
t 3 m 0
说明材料体积不变,即材料有不可压缩性。
G E 2(1)
G E E
2(1) 3
例题: 边长 a = 0.1m 的铜立方块, 无间隙地放入体积较
大, 变形可略去不计的钢凹槽中, 如图 a 所示。 已知铜的弹性模量 E=100GPa, 泊松比 =0.34, 当受到 P=300kN 的均布压力作用时, 求该铜块的主应力. 体积 应变以及最大剪应力。
(D)称为弹性矩阵,将应力与应变的关系写成矩阵形式:
D
各向异性效应
{} [D]{} 或 {} [A]{}
式中:{}为应力列阵;{}为应变列阵;[D] 、[A]为弹性矩阵。
c11c12c13c14c15c16
c21c22c23c24c25
c26
[D]
c31c32c33c34c35c36
证明: 设1、2、3轴是弹性体内任一点的应变主轴,则对应的 剪应变为零。
12 23 31 0
由广义虎克定律可以得到:
2 2‘ 3‘
12 C411 C42 2 C433 1’
O
1
1, 2 , 3
3
为该点的主应变。(对应于1、2、3轴)
将坐标系绕2轴转180,得到坐标轴1’,2‘,3’
弹性力学:04 应力和应变的关系
C1133 C2233 C3333 C2333 C3133 C1233 C3233 C1333 C2133
C1123 C2223 C3323 C2323 C3123 C1223 C3223 C1323 C2123
C1131 C2231 C3331 C2331 C3131 C1231 C3231 C1331 C2131
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
ij
0ij
2G ij
2 3
G ij
K
2 3
G
E
31 2
G
=
E 2(1 +
ν)
由于偏量和球量相互独立 ,所以有 (因为偏量的球量等于零,球量的偏量等于零)
0 K ; ij 2Gij
Chapter 5.1
广义胡克定律
0 K ; ij 2Gij
第一式说明弹性体的体积变化是由平均应力0引起
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应力关系:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应y
1 E
y
ν x
z
z
ij
1 2
ui, j u j.i
协调条件:
ij,kl kl,ij ik , jl jl,ik 0
对于一个假定位移场ui ,其相应的协调应变分量ij 可直接由应
变-位移关系得到。显然,这组协调的应变和位移,仅仅是许 多其他可能的应变和位移场中的一组。
几何可能的位移未必是真实的,真实位移在弹性体内部须满足 以位移表示的平衡微分方程。
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
ij
0ij
2G ij
2 3
G ij
K
2 3
G
E
31 2
G
=
E 2(1 +
ν)
由于偏量和球量相互独立 ,所以有 (因为偏量的球量等于零,球量的偏量等于零)
Chapter 5.1
广义胡克定律
弹性关系的常规形式为
x 2G x ; xy G xy y 2G y ; yz G yz x 2G z ; zx G zx
其中 G 和 称为拉梅常数。
Chapter 5.1
广义胡克定律
ij 2Gij kkij
将应力和应变张量分解成球量和偏量,得
第一不变量 表示三个正应力之和,则
x
y
z
1 2
E
x y z
1 2
E
3K
其中
K E
3(1 2 )
称为体积模量。
Chapter 5.1
广义胡克定律
∵ ij
1
E
ij
E
kkij
;
1 2
E
∴
ij
E
1
ij
1
ij
G
=
E 2(1 +
ν)
2G ij
E
1 1
2
ij
令
1
E
1
2
则 ij 2Gij kkij
x
x
E
x是由于y的作用所产生的相对缩短
x
ν
y
E
x是由于z的作用所产生的相对缩短
x
ν
z
E
Chapter 5.1
广义胡克定律
将上述三个应变相加,即得在x、y、z同时作用下
在x轴方向的应变
x
x
E
ν
y
E
νz
E
1 E
x
ν
y z
同理可得到在y轴和z轴方向的应变
y
1 E
y
ν x
z
z
1 E
z
1
1
E
2
E
3
E
1
1 E
1
2
3
广义胡克定律
广义胡克定律的一般形式
z
x
1 E
[
x
( y
z )]
zx zy
xz yz
x
xy
yx
y
y
1 E
[ y
( z
x )]
z
1 E
[
z
( x
y )]
xy
xy
G
yz
yz
G
zx
zx
G
对于各向同性材料,在小变形、线弹性情况下,线应变只与
本构关系的概念
• 静力平衡条件和位移条件都与物体的材料特性无关。
体力和面力
位移
平衡
本构关系
相容
应力
应变
力学问题中各量间关系
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
ji ij
满足上面条件的应力 ij 、体力 Fi 和面力 Ti 就是一个平衡组。
静力可能的应力未必是真实的应力。真实应力还应满足应力表 示的应变协调方程,对应的位移还应满足位移边界条件。
本构关系的概念
一个满足应变和位移协调条件以及位移边界条件的应变场称为 容许场。或者几何可能的位移
几何方程:
正应力有关,与剪应力无关;剪应变只与剪应力有关,与正
应力无关。 弹性力学将导出更一般的本构关系。
广义胡克定律
x
1 E
x
ν
y z
y
1 E
y
ν x
z
z
1 E
z
ν
x y
x
y
z
1 E
x
y
z
2
x y z
1 2 E
x y z
Chapter 5.1
广义胡克定律
如用应变第一不变量 代替三个正应变之和,用应力
本构关系的概念
一个固体力学问题的解答在每一瞬间必须满足下列条件: (1)平衡方程; (2)几何条件或应变与位移的协调性; (3)材料本构定律或应力-应变关系。 在(1)和(2)中包括力和位移必须满足的初始和边界条件。 满足静力学条件的应力场称为静态条件允许的应力。
ji, j Fi 0
Ti ji nj
y ν x
其中 是弹性常数,称为泊松比。
Chapter 5.1
广义胡克定律
线弹性叠加原理
z
先考虑在各正应力作用
z x
下沿 x 轴的相对伸长,它
由三部分组成,即
y
o
y
x x x x
y
x x z
Chapter 5.1
广义胡克定律
x x x x
其中 x 是由于x的作用所产生的相对伸长
1 E
z
ν
x y
xy
xy
G
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
杨氏模量,泊松比和剪切模量之间的关系为
G
=
E 2(1 +
ν)
将弹性本构关系写成指标形式为
ij
1
E
ij
E
kk ij
Chapter 5.1
广义胡克定律
三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
本构关系的概念
在以前章节我们从静力学和几何学观点出发,得到 了连续介质所共同满足的一些方程。显然,仅用这 些方程还不足以解决变形固体的平衡问题,因为在 推导这些方程时,并没有考虑应力和应变的内在联 系,而实际上他们是相辅相成的,对每种材料,他 们之间都有完全确定的关系,这种关系反映了材料 所固有的物理特性。本章就是要建立在弹性阶段的 应力和应变的关系——本构关系。