第7章 弯曲变形

合集下载

材料力学第2版 课后习题答案 第7章 弯曲变形

材料力学第2版 课后习题答案  第7章 弯曲变形

250
−qx l⎞ ⎛ 9l 3 − 24lx 2 + 16 x 3 ) ⎜ 0 ≤ x ≤ ⎟ ( 384 EJ 2⎠ ⎝ − ql ⎛l ⎞ y2 = −l 3 + 17l 2 x − 24lx 2 + 8 x 3 ) ⎜ ≤ x ≤ l ⎟ ( 384 EJ ⎝2 ⎠
y1 =
41ql 4 ( x = 0.25l ) 1536 EJ 5ql 4 ⎛l⎞ y⎜ ⎟ = − 768EJ ⎝2⎠
习 题 7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI为常量。
7-1 (a) M( x) = M 0
∴ EJy '' = M 0 1 EJy ' = M 0 x + C EJy = M 0 x 2 + Cx + D 2 边界条件: x = 0 时 y = 0 ; y' = 0
代入上面方程可求得:C=D=0
(c)
l−x q0 l q0 1 3 ⎛l−x⎞ M ( x) = − q( x) ( l − x ) ⎜ ⎟ = − ( l − x) 2 6l ⎝ 8 ⎠ q 3 ∴ EJy '' = 0 ( l − x ) 6l q 4 EJy ' = − 0 ( l − x ) + C 24l q 5 EJy = 0 ( l − x ) + Cx + D 120l y = 0 ; y' = 0 边界条件: x = 0 时 q( x) =

(c)解:
q0 x l q x2 EJy ''' = 0 + C 2l q0 x3 '' EJy = + Cx + D 6l q x 4 Cx 2 EJy ' = 0 + + Dx + A 24l 2 q0 x5 Cx 3 Dx 2 ' EJy = + + + Ax + B 120l 6 2 ⎧y=0 ⎧y=0 边界条件: x = 0 ⎨ '' x = l ⎨ '' ⎩y = 0 ⎩y = 0 ql D=0 ∴C = − 0 6 7q l 3 A= 0 B=0 360 EJy '''' =

材料力学第七章课后题答案 弯曲变形

材料力学第七章课后题答案 弯曲变形
3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC

材料力学 第7章 弯曲变形

材料力学 第7章 弯曲变形

M
Fx 挠曲轴近似微分方程: w ' ' EI 3 2 Fx Fx w Cx D w' ( x) C 6 EI 2EI
梁的弯矩方程: M ( x ) Fx
2、确定积分常数
FAy
A x
F L
B
X=0, w=0 X=L, w=0
M
Me L C=- ,D=0 6 EI
3、挠度方程、转角方程及B截面的转角
FAy
x
F L
B
M
3、挠度方程、转角方程及B截面的转角
Fx w' (x) 2EI 3 Fx w 6 EI
2
将 x=L 代入转角方程:
FL2 B 2 EI
例2:简支梁AB,弯曲刚 度 EI为常数,受力偶 M=FL作用,求w(x),
FAy
A x
F L
B
θ(x);
解:1、 建立挠曲轴微分方程并积分 A端约束反力 FAy=F
FA A a l
x
F D b
FB
B x
Fb 解:坐标系如图,求出反力。 FA l 分AD、DB两段分析:
y
Fa FB l
b AD段: 0 x a M x F x l b M x F x 则: EIw1 l
积分可得:
b M x F x EIw1 l
= 0
自由端:无位移边界条件。 位移连续与光滑条件 挠曲轴在B点连续且光滑 连续:wB左= wB右 光滑:左 = 右
F A B D
写出梁的挠曲轴方程的边界条件和连续条件。 例:
F A B C E D
思考: 1、 该梁可分几段积分? 2、 各边界和内部分界点有多少位移边界与连续条件? 分4段。 位移边界条件:A端:2个; C端:1个;D端:无。 位移连续条件:E:2个;B:1个;C:2个

材料力学-第7章 弯曲变形

材料力学-第7章 弯曲变形
引言
梁弯曲问题的近似和简化
q( x)
M0
ML
Q0
QL
弯曲问题中,不考虑轴向拉伸。因此,梁内力只有弯矩和剪力 下面,我们分别考虑弯矩和剪力引起的弯曲变形效果
材料力学-第7章 弯曲变形
挠度曲线 垂直于轴线的横截面弯曲后仍为平面,仍 垂直于轴线,只是相互间转动一个角度
M
弯矩引起的弯曲变形
M
剪力引起的弯曲变形
例题
2
已知:简支梁受力如 图所示。FP、EI、l均为已 知。 求:加力点B的挠度和 支承A、C处的转角。
材料力学-第7章 弯曲变形
§7- 3 计算梁位移的积分法
解:1. 确定梁约束力 首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。 解:2. 分段建立梁的弯矩方程 因为B处作用有集中力FP,所以需要分为AB和BC两段 建立弯矩方程。 在图示坐标系中,为确定梁在0~l/4范围内各截面上的 弯矩,只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~ l范围内各截面上的弯矩,则需要考虑左端A处的约束力 3FP/4和荷载FP。
Q
垂直于轴线的横截面弯曲后不垂直于轴线
Q
材料力学中一般考虑细长梁,顾而可以忽略剪力引起的变形,只 考虑弯矩引起的变形。因为所有横截面始终与轴线垂直,所以,梁的 弯曲变形可以仅用轴线来表征。空间的梁简化成一轴线。
材料力学-第7章 弯曲变形
挠度曲线
问题1: 如何表征梁的弯曲变形
-用什么物理量来描述梁的变形
( x)
w
x
x
( x)
w( x)
材料力学-第7章 弯曲变形
挠度曲线
* 弯曲变形的表征
梁在弯曲变形后,横截面的位置将发生改变,这种位置 的改变称为位移 (displacement) 。梁的位移包括三部分:

第七章 弯曲变形

第七章 弯曲变形

材料力学
弯曲变形/挠曲线的近似微分方程
二、挠曲线的近似微分方程
1 M ( x) 力学公式 ( x) EI z d2y 1 dx2 数学公式 3 ( x) dy 2 2 [1 ( ) ] dx 1

,得:
以上两式消去
材料力学
d2y M ( x) dx2 3 EI z dy 2 2 [1 ( ) ] dx
材料力学
x 0, y A 0
x a时,C左 C右 x a时,yC左 yC右
x L, yB lBD
FBy h EA
FBy k
弯曲变形/用积分法求梁的变形
讨论:
(1)凡载荷有突变处(包括中间支座),应作为分段点;
(2)凡截面有变化处,或材料有变化处,应作为分段点; (3)中间铰视为两个梁段间的联系,此种联系体现为两 部分之间的相互作用力,故应作为分段点;
B L x
A
x L时,yB 0.
材料力学
弯曲变形/用积分法求梁的变形 若B支座改为弹簧支撑,则: y A a
L
若B支座改为拉杆支撑,则: D B kx A a
L
F
C
b
F C b
EA
h
x 0, y A 0
B
x a时,C左 C右 x a时,yC左 yC右
x L, y B
弯曲变形/用积分法求梁的变形 AC段 (0 x a) BC段 (a x L) Fb 2 Fb 2 F EI y1 EI 1 x C1 , EI y2 EI 2 x ( x a ) 2 C2 , 2L 2L 2 Fb 3 Fb 3 F EIy 1 x C1 x D1 , EIy 2 x ( x a ) 3 C2 x D2 , 6L 6L 6 3、确定常数 由边界条件:

第七章 弯曲——弯曲位移

第七章 弯曲——弯曲位移
EIy′′ = − M ( x )
EIy = − ∫ [ ∫ M ( x)dx]dx + Cx +D
式中C, D 由梁支座处的已知位移条件 即位移边界条件确定。 弯矩方程分n段时,积分常数个数为 2n 个 由边界条件确定的方程需要2n个 方法的局限性:外力复杂或多跨静定梁时计算量过大
EIy ′ = EI θ = − ∫ M ( x ) dx +C
第七章 弯曲--弯曲位移部分
(Displacements of Bending Beam)
§7-7 梁的位移─挠度及转角
在工程中,对某些受弯构件,除要 求具有足够的强度外,还要求变形不能 过大,即要求构件有足够的刚度,以保 证正常工作。
摇臂钻床的摇臂或车床的主轴变形过大, 就会影响零件的加工精度,甚至会出现废品。
Fb ( l 2 − b 2 ) Fb 3 F ( x − a )3 y2 = − x− x + 6 EIl 6 EIl 6 EI
受任意荷载的简支梁,只 要挠曲线上没有拐点,均 可近似地将梁中点的挠度 作为最大挠度。
F
a A x C D b B
x
y
l
例4:已知梁的抗弯刚度为EI。试求图示简支梁
的转角方程、挠曲线方程,并确定θmax和ymax。
挠曲线近似微分方程
1、挠曲线方程(deflection equation)
曲线 y = f (x) 的曲率为
y′′ κ=± 2 3/ 2 ′ (1 + y )
梁纯弯曲时中性层的曲率:
M ( x) 1 = ρ ( x) EI z
M ( x) 1 = ρ( x) EI z
1 y′′ κ= =± ≈ ± y′′ 2 3/ 2 (1 + y′ ) ρ( x)

梁弯曲变形的计算

梁弯曲变形的计算

yC 2
A MA FA A F C
(a)
Fl 3 24 EI Z
B FB B FB
求得有无顶尖作用时,在刀 尖处变形比为:
yC 7 yC 2 32
结论:可见用顶尖可有效地 减小工件的变形,因而,在 细长轴加工中要设置顶尖, 甚至使用跟刀架。
材料力学
+ A C F B
(b)
F MA A 2a (a)
2
x
d y 2 dx
d y M ( x) 所以 2 dx EI z
2
O
1
2
M (x ) < 0
dy dx 2 < 0
2
x
材料力学
由弯矩的正负号规定可得,弯矩的符号与挠曲 线的二阶导数符号一致,所以挠曲线的近似微分方 程为:
d w M ( x) 2 dx EI z
由上式进行积分,就可以求出梁横截面的转角 和挠度。
1 M ρ EI z

忽略剪力对变形的影响
1 M ( x) ( x) EI z
材料力学
由数学知识可知:
d y 2 1 dx dy 2 3 [1 ( ) ] dx 略去高阶小量,得
2
y M (x ) > 0 M (x ) > 0
dy dx 2 > 0 O
y M (x ) < 0
3
11ql 3 ( ) 48EI
材料力学
wC
例4 已知:悬臂梁受力如图 示,q、l、EI均为已知。求C 截面的挠度wC和转角C 解 1)首先,将梁上的载荷变成 有表可查的情形
为了利用梁全长承受均 布载荷的已知结果,先将均 布载荷延长至梁的全长,为 了不改变原来载荷作用的效 果,在AB 段还需再加上集 度相同、方向相反的均布载 荷。

材料力学教程-7.弯曲变形

材料力学教程-7.弯曲变形
数据处理
根据需要,对数据进行计算、 绘图等处理,以便更好地理解 和分析实验结果。
结果分析
结合实验数据和理论分析,评 估材料的弯曲性能,并探讨影 响材料弯曲性能的因素。
结论总结
总结实验结果,得出结论,并 提出改进和优化材料弯曲性能
的建议。
04
弯曲变形的工程应用实例
桥梁的弯曲变形分析
总结词
桥梁的弯曲变形分析是确保桥梁安全的重要环节,通过分析桥梁在不同载荷下的弯曲变形程度,可以评估桥梁的 承载能力和安全性。
转角
梁在弯曲变形后,其横截 面绕其中性轴旋转的角度 称为转角。转角是衡量梁 横截面旋转程度的量。
弯曲变形的物理关系
弯矩
由于外力作用在梁上,使梁产生弯曲变形的力矩 称为弯矩。弯矩是引起梁弯曲变形的力。
剪力
在梁弯曲变形过程中,垂直于轴线的横向剪切力 称为剪力。剪力使梁产生剪切变形。
扭矩
当外力作用在梁的某一侧时,会使梁产生扭转变 形,这种使梁产生扭转变形的力矩称为扭矩。
详细描述
高层建筑由于其高度和规模,对风载和地震等外部载荷非常敏感。因此,在高层建筑设 计阶段,需要进行详细的弯曲变形分析。这包括对建筑物的整体结构和各个楼层在不同 载荷下的弯曲变形进行模拟和分析,以确保建筑物在各种外部载荷下的安全性和稳定性。
机械零件的弯曲变形分析
要点一
总结词
机械零件的弯曲变形分析是确保机械系统正常运行的关键 环节。通过对机械零件在不同工作载荷下的弯曲变形进行 分析,可以优化零件的设计和加工工艺,提高其工作性能 和寿命。
通过实例分析和习题练习,学生可以加深对弯曲 变形的理解,提高解决实际问题的能力。
弯曲变形的未来研究方向
弯曲变形的非线性行为

7章-3弯曲变形(2010)

7章-3弯曲变形(2010)
第七章
平面弯曲
PLANAR BENDING ----弯曲变形
1
工程中的弯曲变形现象
2
工程中的弯曲变形现象
3
工程中的弯曲变形现象
4
工程中的弯曲变形现象
5
工程中的弯曲变形现象
6
弯曲变形现象
N
7
弯曲问题的分析过程: 弯曲问题的分析过程: 弯曲内力 弯曲应力 弯曲变形
解决刚度问题
8
工程上梁的变形问题
B点 yB+ = yB− = 0, θB+ =θB− :
25
支承条件、连续条件应用举例
弯矩图分三段, 弯矩图分三段,共 6个积分常数 个积分常数 需6个支承条件和 个支承条件和 连续条件
A B A
P
B
铰连接
C
D
C
D
A点 yA = 0, θA = 0 :
C :C左 = yC右 θC左 =θC右 点 y
x M<0
可写成如下形式: 可写成如下形式:
y
y′′(x) > 0
′ EIy′ (x) = −M(x)
13
y
d y M (x) y ′′ = = ± 2 dx EI
M>0
2
则:
x
y′′(x) > 0
y M<0
′ EIy′ (x) = M(x)
y′′(x) < 0
x
14
积分法求梁位移
(Calculate beam deflection using integration method)
28
端的转角θ 例1:若图示梁 端的转角 B=0,则力偶矩 :若图示梁B端的转角 ,则力偶矩m 等于多少? 等于多少?

材料力学 第七章 弯曲变形

材料力学 第七章  弯曲变形


FA
3FP 4
(↑)
3FP
FP
FC
FP 4
(↑)
4
4
明德行远 交通天下
材料力学
(2)分段列梁的弯矩方程
AB段:
M1(x)
3 4
FP x
0x l 4
3
l
BC段:
M 2 ( x)
4
FP x
-
FP (x
-
) 4
l xl 4
(3)积分法求梁的挠曲线
挠曲线近似微分方程
EI
d 2w1 dx2
=
-
M1(x)
-
wC- wC
P
A (b)
图(b): wA 0 A 0
或写成w C

wC右
光滑条件
C- C
或写成 C 左 C 右
明德行远 交通天下
材料力学
讨论: ①适用于小变形、线弹性材料、细长构件的平面弯曲。 ②可求解各种载荷作用下等截面或变截面梁上任意位置处的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、光滑连续条件)确定。 ④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
(2)
EIzw=EIz = -
q(x)dx3
1 2
C1x2
C2
x
C3
(3)
明德行远 交通天下
材料力学
例题7-1如图所示,受集中荷载的简支梁AC。已知EI、l、FP。试写出梁的挠 度方程和转角方程,并求截面A和C处的转角及B截面处的挠度。
明德行远 交通天下
y
FP
A
B
θA wB
l 4
EI
3l 4
C
θC

材料力学第7章

材料力学第7章

积分一次: Fb 2 EIw1 x C1 2l 积分二次: Fb 3 EIw1 x C1 x D1 6l
11
CB段(a x l): 弯矩方程:
Fb M 2 x x F x a l
挠曲线近似微分方程:
Fb EIw2 x F x a l Fb 2 F 2 x x a C2 积分一次: EIw2 2l 2
ቤተ መጻሕፍቲ ባይዱ 1 x 0
Fab l b , B 2 6lEI
Fab l a B = 6lEI
Fl 3 Fl 3 Fl 3 2 EI 6 EI 3EI
7
wmax w x l
例题7.2:图示弯曲刚度为EI的简支梁,受集度为q的均布 荷载作用,试求梁的挠曲线方程和转角方程,并确定其最 大挠度和最大转角。 解:由平衡方程得支座反力 ql FA FB 2 建立坐标系,得梁的弯矩方程为 1 1 2 M x qlx qx 2 2 梁挠曲线近似微分方程
1 3 C ql , D 0 24
9
梁的转角方程
q w (4 x3 6lx 2 l 3 ) 24 EI
梁的挠曲线方程
(5)
qx w ( x3 2lx 2 l 3 ) 24 EI
最大转角
(6)
max
ql 3 A B 24 EI
2
最大挠度
M ( x) F l x
1
挠曲线近似微分方程
EIw M x F l x 2 两次积分,得 1 2 EIw Flx Fx C 2 1 1 3 2 EIw Flx Fx Cx D 2 6

材料力学第七章 弯曲变形

材料力学第七章 弯曲变形

1.叠加原理 各载荷同时作用下梁任一截面的挠度和转角
等于各个 载荷单独作用时同一截面挠度和转角 的代数和。
2.叠加原理的前提 小变形 材料是线弹性材料
例1:求大梁跨度中点的挠度 F
q
A
c
B
l
l
F
2
2
q
A
c
B+ A
c
B
l
l
l
l
2
2
2
2
(wc )F
Fl 3 48 EI
(wc )q
5ql 4 384 EI
dx
o
三、弯曲刚度条件
x
w
w f (x) 挠曲线
| w |max [w], | |max [ ]
§7.2 挠曲线的近似微分方程
| ds | | d | (a)
纯弯曲时挠曲线曲率与弯矩的关系为 1 M (b)
EI
横力弯曲时, 剪力对梁弯曲变形很小,可忽略不计。此时曲率与 弯矩为x的函数 。它们的关系仍满足(b)式。
EI2 EIw2' C2 EIw2 C2 x D2
确定积分常数
边界条件 x 0,1 0 w1 0
连续条件 x a,1 2 w1 w2
求得自由端转角和挠度为
C1 0 C2 ma
D1 0
D2
1 2
ma2
B
2
|xl
ma EI
fB
w2
|xl
ma (l EI
a) 2
§7.4 用叠加法求弯曲变形
由(a)(b)可得 d M (c)
ds EI
y
d
由于挠度很小,挠曲线非常平
坦,ds dx,并考虑到符号(c)可

梁弯曲变形的计算

梁弯曲变形的计算
材料力学
3) 应用叠加法,将简单载荷 作用时的结果求和
5ql 4 ql 4 ql 4 wC wCi 384 EI 48EI 16 EI i 1
3
wC1
11ql 4 ( ) 384 EI
wC2 wC3
ql 3 ql 3 ql 3 B Bi 24 EI 16 EI 3EI i 1
材料力学
积分常数C、D 由梁的位移边界条件和光滑连续 条件确定。 光滑连续条件 位移边界条件
~
~
~
~
A
A
~ ~
~
~
~
~
~
~
~
A A
A
A
~
~
wA 0
wA 0
wA
-弹簧变形
wAL wAR
~
wAL wAR
A 0
AL AR
材料力学

~
A
~
~
A A AA
A
A
A AA
超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统。 2.求解方法: 解除多余约束,建立相当系统——比较变形,列变 形协调条件——由物理关系建立补充方程——利用 静力平衡条件求其他约束反力。
材料力学
材料力学
例5:试分析细长轴车削过程中顶尖的作用,已知:工件的抗弯刚度 为EIZ,切削力为F,且作用在零件的中间位置,零件长度为l。
2
x
d y 2 dx
d y M ( x) 所以 2 dx EI z
2
O
1
2
M (x ) < 0
dy dx 2 < 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分法求梁位移
A =?
FAy FBy Me / l
dw M e 2 x + C (a) dx 2EIl M w e x 3 + Cx + D (b) 6EIl
由条件 (1), (2) 与式 (b) ,得
EI = 常数 建立挠曲轴近似微分方程并积分
M ( x) Me x l 2 d w Me x 2 dx EIl
例题2 图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的
均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其
max 和 wmax
q A l B
q
解: 由对称性可知,梁的 两个支反力为
A x
B
ql RA RB 2
RA
l
RB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
Pab( l + b ) A 1 | x 0 6lEI Pab( l + a ) B 2 | x l 6lEI
当 a > b 时, 右支座处截面的转角绝对值为最大
max
Pab( l + a ) B 6lEI
简支梁的最大挠度应在
w' 0 处
先研究第一段梁,令 w1 0 得
习题
7.1.3
§7 –4 用叠加法求弯曲变形
方法
wA ?
分解载荷 分别计算位移 求位移之和
w A ,F Fl 3 ( ) 3 EI
ql 4 w A ,q ( ) 8 EI 3 Fl ql 4 + w A ,q ( ) 3 EI 8 EI
w A w A ,F
当梁上同时作用几个载荷时,任一横截 面的总位移,等于各载荷单独作用时在 该截面引起的位移的代数和或矢量和
利用边界条件确定积分常数
在 x 0 处,w 0 (1) 在 x l 处,w 0 (2)
Mel D 0, C 6EI
计算转角
Me l dw M e 2 2 (3x l ) A (0) () 6 EI dx 6EIl
绘制依据
M ( x) EI
最大挠度 w 和最大转角
max
max
w
A
F
B x
l
解:
w A
F
B x x
(1) 弯矩方程为
M ( x ) F (l x )
(1)
l
(2) 挠曲线的近似微分方程为
EIw '' M ( x ) Fl + Fx (2)
对挠曲线近似微分方程进行积分
2
Fx EIw ' Flx + + C1 (3) 2 2 3 Flx Fx EIw + + C 1x + C 2 2 6
目录
§7–1 基本概念及工程实例
一. 工程实例(Example problem)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
到的冲击和振动作用.
F 2
F 2
F
二、 弯曲变形特点
挠曲轴(挠曲线)
变弯后的梁的轴线,称为挠曲轴(挠曲线) 挠曲轴是一条连续、光滑曲线 对称弯曲时,挠曲轴为位于纵向对称面的平面曲线 对于细长梁,剪力对弯曲变形影响一般可忽略不计
RA
RB
qx w (2lx 2 x 3 l 3 ) 24 EI
在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
max
ql 3 A B 24 EI
x l 2
在梁跨中点处有最大挠度值 wmax w
5ql 4 384 EI
例题3 图示一抗弯刚度为EI的简支梁, 在D点处受一集中
w2 w1 w1 w2
F
RA
A
1
D
2
RB
B
边界条件 在 x = 0 处, w1 0 在 x = l 处, w2 0
a
b
l
代入方程可解得:
D1 D 2 0
Fb 2 2 (l b ) C1 C 2 6l
1
(0 x a )
Fb 2 2 2 ( 1 w1 l b 3x ) 6lEI Fbx 2 2 [ l b x 2] w1 6lEI
第七章
弯曲变形
§7-1 基本概念及工程实例 §7-2 挠曲线的微分方程 §7-3 用积分法求弯曲变形 §7-4 用叠加法求弯曲变形
§7-5 静不定梁的解法
§7-6 提高弯曲刚度的措施
本章知识要点:
1、明确挠曲线、挠度和转角的概念 2、掌握计算梁变形的积分法和叠加法 3、学会用变形比较法解简单超静定问题
2、结构形式叠加(逐段刚化法)
F q
A
C a a
B
1、 按叠加原理求A点转角和C点挠 度. 解:(1)载荷分解如图
F
A
=
B
(2)由梁的简单载荷变形表, 查简单载荷引起的变形.
q
A B
PA
Fa 2 4 EI
qa 3 EI
3
w PC
Fa 3 6 EI
+
qA
wqC
5qa 4 24 EI
Fx EIw Flx + 2
2
Flx Fx EIw + 2 6
y A
F
B x
wmax
l
max
max 和 wmax都发生在自由端截面处
Fl 2 Fl 2 Fl 2 ( ) max | x l + EI 2 EI 2 EI Pl 3 wmax w | x l ( ) 3 EI
挠曲轴的绘制
满足基本方程
w
满足位移边界 条件与连续条件 绘制方法与步骤 画 M图 由 M 图的正、负、零点或零值区,确定挠曲轴的
凹、凸、拐点或直线区,即确定挠曲轴的形状 由位移边界条件确定挠曲轴的空间位置
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一
集中力 F 作用.试求梁的挠曲线方程和转角方程, 并确定其
1、载荷叠加:多个载荷同时作用于结构而引起的变形
等于每个载荷单独作用于结构而引起的变形的代数和.
( F1 , F2 , , Fn ) 1 ( F1 ) + 2 ( F2 ) + + n ( Fn )
w( F1 , F2 , , Fn ) w1 ( F1 ) + w2 ( F2 ) + + wn ( Fn )
Fb 2 2 (l b 3 x 2) 0 1 w 1' 6lEI
l 2 b2 a (a + 2b ) x1 3 3
当 a > b时, x1 < a 最大挠度确实在第一段梁中
2 Fb Pbl 2 2 3 w | ( l b ) 0.0642 w max x x1 EI 9 3lEI
积分法的原则
对各段梁,都是由坐标原点到所研究截面之间的梁段上
的外力来写弯矩方程的.所以后一段梁的弯矩方程包含 前一段梁的弯矩方程.只增加了(x-a)的项. 对(x-a)的项作积分时,应该将(x-a)项作为积分变量.从 而简化了确定积分常数的工作.
课堂讨论: 积分法求梁的变形条件? 作业布置: P153
F q
A
C a a
B
PA
Fa 4 EI
qa 3 EI
3
2
w PC
Fa 6 EI
3
qA
wqC
F
A
5qa 24 EI
4
=
B
(3)叠加
A PA + qA
q
A B
a2 (3 F + 4qa ) 12 EI
5qa Fa wC ( +Fb l 1 2 2 2 2 [ ( x a ) x + ( l b )] 2 w 2' 2lEI b 3 Fb l 3 3 2 2 [ + ( ( x a ) w2 x l b ) x] 6lEI b
将 x = 0 和 x = l 分别代入转角方程左右两支座处截面的转角
ql 2 q 3 EIw x x + C 4 6
ql 3 q 4 EIw x x + Cx + D 12 24
q
wmax B
边界条件
x l ,时 w 0
A
梁的转角方程和挠曲线方程分 别为
A
x
B
l
q (6lx 2 4 x 3 l 3 ) 24 EI
最大转角和最大挠度分别为
(4)
Fx 2 EIw Flx + + C1 (3) 2 2 3 Flx Fx EIw + + C 1x + C 2 2 6 边界条件 x 0, w 0
x 0,
将边界条件代入(3)
(4)
w 0
(4)两式中,可得
C1 0
2 3
C2 0
梁的转角方程和挠曲线方程分别为
§7–3 挠曲轴微分方程的积分与边界条件
d2w M ( x) 2 dx EI dw M ( x) dx + C dx EI M ( x) w dx + Cx + D EI
相关文档
最新文档