人教版高一下册物理 机械能守恒定律单元综合测试(Word版 含答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章机械能守恒定律易错题培优(难)
1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为
0.2
μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到
v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()
A.小物块0
到4s内做匀加速直线运动,后做匀减速直线运动直至静止
B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止
C.物块在传送带上留下划痕长度为12m
D.整个过程中小物块和传送带间因摩擦产生的热量为80J
【答案】ACD
【解析】
【分析】
【详解】
物块和传送带的运动过程如图所示。
AB.由于物块的加速度
a1=µg=2m/s2
小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1
2
v
t
a
==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s
物块的位移
x1=
1
2
a1t12=9m
传送带的位移
x2=
1
2
a2t12=18m
两者相对位移为
121
x x x
∆=-=9m
此后传送带减速,但物块仍加速,B错误;
当物块与传送带共速时,由匀变速直线运动规律得
12- a2t2=6+ a1t2
解得t 2
=1s
因此物块匀加速所用的时间为
t 1+ t 2=4s
两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为
v 3=6+ a 1t 2=8 m/s
物块减速至静止所用时间为
3
31
v t a =
=4s 传送带减速至静止所用时间为
3
42
v t a =
=2s 该过程物块的位移为
x 3=
1
2
a 1t 32=16m 传送带的位移为
x 2=
1
2
a 2t 42=8m 两者相对位移为
3x ∆=8m
回滑不会增加划痕长度,所以划痕长为
12x x x ∆=∆+∆=9m+3m=12m
C 正确;
D .全程相对路程为
L =123x x x ∆+∆+∆=9m+3m+8m=20m
Q =µmgL =80J
D 正确; 故选ACD 。
2.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为
210m/s 。
下列说法正确的是( )
A .物块在传送带上运动的时间为2s
B .物块在传送带上运动的时间为4s
C .整个运动过程中由于摩擦产生的热量为16J
D .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】
AB .滑块先向右匀减速,根据牛顿第二定律有
mg ma μ=
解得
22m/s a g μ==
根据运动学公式有
010v at =-
解得
13s t =
匀减速运动的位移
0106
3m 9m 8m 22
v x t L +=
=⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移
2212m 1m 222
v x a ===⨯
用时
22
s 1s 2v t a =
== 向左运动时最后3m 做匀速直线运动,有
233
=
s 1s 3
x t v == 即滑块在传送带上运动的总时间为
1234s t t t t =++=
物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;
C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为
110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()
选项C 错误;
D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为
114m l vt ==
物体向左加速过程,传送带运动距离为
222m l vt ==
即
121[]Q fS mg l x l x μ==++-()()
代入数据解得
28J Q =
选项D 正确。
故选BD 。
3.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )
A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒
B .小环
C 下落到位置S 时,小环C 的机械能一定最大
C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大
D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2
θ
【答案】BD 【解析】 【分析】 【详解】
A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;
B .小环
C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;
C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减
小后增大,选项C错误;
D
.在Q位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有
cos
C
T m g
θ=
对A、B整体,根据平衡条件有
2
A
T m g
=
故
2cos
C A
m mθ
=
在Q点将小环v速度分解
可知
cos
A
v vθ
=
根据动能2
1
2
k
E mv
=可知,物体A与小环C的动能之比为
2
2
1
cos
2
12
2
A
A
A
k
kQ
C
m v
E
E m v
θ
==
选项D正确。
故选BD。
4.如图所示,ABC为一弹性轻绳,一端固定于A点,一端连接质量为m的小球,小球穿在竖直的杆上。
轻杆OB一端固定在墙上,一端为定滑轮。
若绳自然长度等于AB,初始时ABC在一条水平线上,小球从C点由静止释放滑到E点时速度恰好为零。
已知C、E
两点间距离为h,D为CE的中点,小球在C点时弹性绳的拉力为
2
mg
,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。
下列说法正确的是()
A.小球在D点时速度最大
B .若在E 点给小球一个向上的速度v ,小球恰好能回到
C 点,则2v gh = C .小球在C
D 阶段损失的机械能等于小球在D
E 阶段损失的机械能
D .若O 点没有固定,杆OB 在绳的作用下以O 为轴转动,在绳与B 点分离之前,B 的线速度等于小球的速度沿绳方向分量 【答案】AD 【解析】 【详解】
A .设当小球运动到某点P 时,弹性绳的伸长量是BP x ,小球受到如图所示的四个力作用:
其中
T BP F kx =
将T F 正交分解,则
N T sin sin 2
BP BC mg
F F kx kx θθ⋅====
f N 14
F F mg μ==
T F 的竖直分量
T T cos cos y BP CP F F kx kx θθ===
据牛顿第二定律得
f T y m
g F F ma --=
解得
T 33
44y CP F kx a g g m m
=
-=- 即小球的加速度先随下降的距离增大而减小到零,再随下降的距离增大而反向增大,据运动的对称性(竖直方向可以看作单程的弹簧振子模型)可知,小球运动到CE 的中点D 时,加速度为零,速度最大,A 正确;
B .对小球从
C 运动到E 的过程,应用动能定理得
T F 0104mgh W mgh ⎛⎫
-+-=- ⎪⎝⎭
若在E 点给小球一个向上的速度v ,小球恰能从E 点回到C 点,应用动能定理得
T 2F 11()042mgh W mgh mv ⎛⎫
-++-=- ⎪⎝⎭
联立解得
T F 3
4
W mgh =
,v gh = B 错误;
C .除重力之外的合力做功等于小球机械能的变化,小球在C
D 段所受绳子拉力竖直分量较小,则小球在CD 段时摩擦力和弹力做的负功比小球在D
E 段时摩擦力和弹力做的负功少,小球在CD 阶段损失的机械能小于小球在DE 阶段损失的机械能,C 错误; D .绳与B 点分离之前B 点做圆周运动,线速度(始终垂直于杆)大小等于小球的速度沿绳方向的分量,D 正确。
故选AD 。
5.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是
A .弹簧的劲度系数为20 N/m
B .此过程中绳子对物块A 做的功为60J
C .此时物块A 速度的大小为10
m/s 41
D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】
A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:
25m 3m x =-
kx mg =
解得弹簧的劲度系数为:
20N/m k =
故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:
cos37A o C v v =
B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:
2211222
A C mgh mg x mv mv -=
+ 解得:
A 108
m/s 41
v = 所以C 正确。
对于A 物体,由动能定理得:
2122
A W mg x mv -=
解得:
640
(40)41
W J =+
故B 错误。
D .对C 由动能定理得:
21
2
T C mgh W mv -=
解得绳子对C 做的功为:
2110002280
(80)24141
T C W mgh mv J J =-=-=
物块A 动能的增加量:
21640
241
KA A E mv J ∆=
= 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
故D 错误。
6.质量是m 的物体(可视为质点),从高为h ,长为L 的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v ,则( )
A .到斜面底端时重力的瞬时功率为
B.下滑过程中重力的平均功率为
C.下滑过程中合力的平均功率为
D.下滑过程中摩擦力的平均功率为
【答案】AB
【解析】
试题分析:A、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:
P=mgvcosα=mgv.故A正确.B、物体运动的时间为:t==,则重力做功的平均功率为:P===.故B正确.C、物体做匀加速直线运动的加速度为:a=,则合力为:F合=ma=,合力做功为:W合=F合L=,则合力的平均功率为:
.故C错误.D、根据动能定理得:mgh﹣W f=mv2,解得克服摩擦力做功为:W f=mgh﹣mv2,则摩擦力做功的平均功率为:=﹣.故D错
误.
考点:功率、平均功率和瞬时功率.
7.如图所示,轻质弹簧一端固定在水平面上O点的转轴上,另一端与一质量为m、套在粗糙固定直杆A处的小球(可视为质点)相连,直杆的倾角为30°,OA=OC,B为AC的中点,OB等于弹簧原长.小球从A处由静止开始下滑,初始加速度大小为a A,第一次经过B 处的速度为v,运动到C处速度为0,后又以大小为a C的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是
A.小球可以返回到出发点A处
B.弹簧具有的最大弹性势能为
2 2 mv
C.撤去弹簧,小球可以静止在直杆上任意位置D.a A-a C=g
【答案】BD
【解析】
【分析】
【详解】
AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量
为m ,弹簧具有的最大弹性势能为
p E .根据能量守恒定律,对于小球A 到B 的过程有: 21
2
p f mgh E mv W +=+
A 到C 的过程有:
22p f p mgh E W E +=+
解得:
212
f p W mgh E mv ==
, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得:
22p f p E W mgh E =++
该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确. C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由:
f W mgh =
得:
sin 30f s mgs =
解得:
sin 30f mg =
在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压
力大于cos30mg μ,所以:
cos30f mg μ>
可得:
sin 30cos30mg mg μ>
因此撤去弹簧,小球不能在直杆上处于静止.故C 错误. D.根据牛顿第二定律得,在A 点有:
cos30sin 30A F mg f ma +-=
在C 点有:
cos30sin 30C F f mg ma --=
两式相减得:
A C a a g -=
故D 正确.
8.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块
A 和C ,物块C 穿在竖直固定细杆上,OA 竖直,OC 间距3m l =且水平,此时A 、C 间轻绳恰好拉直而无张力作用。
已知物块A 、
B 、
C 质量均为2kg 。
不计一切摩擦,g 取10m/s 2.现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是( )
A .弹簧劲度系数为20N/m
B .此过程中A 、
C 组成的系统机械能总和一直不变 C .此时物块C 的速度大小为10
8
m/s 41
D .此时物块A 的速度大小为10
8m/s 41
【答案】AD 【解析】 【分析】 【详解】
A .初态时,弹簧的压缩量
1mg
x k
=
根据勾股定理可知,C 下降h =4m 时,A 物体上升了2m ,根据题意可知
2kx mg =
122x x +=
整理可得
121m x x ==,20N/m k =
A 正确;
B .物体
C 开始下降时,弹簧处于压缩状态,弹力对物体A 做正功,系统机械能增加,后来弹簧处于伸长状态,弹力对物体A 做负功,系统的机械能减小,B 错误;
CD .由于弹簧的伸长量与压缩量相等,整个过程弹簧对A 物体做功等于零,因此A 、C 组成的系统,初态的机械能与末态的机械能相等
22
A C 1211()22
mgh mv mv mg x x =
+++ 设绳子与竖直方向夹角为θ ,由于A 、C 沿着绳的速度相等
C A cos v v θ=
且
4cos 5
h l θ=
=
整理得
C 1010
m/s 41
v =,A 108m/s 41v =
C 错误,
D 正确。
故选AD 。
9.如图所示,一根劲度系数为k 的轻弹簧竖直固定在水平地面上,轻弹簧上端正上方h 高度处A 点有一个质量为m 的小球。
现让小球由静止开始下落,在B 点接触轻弹簧的上端,在C 点时小球所受的弹力大小等于重力大小,在D 点时小球速度减为零,此后小球向上运动返回到最初点,已知小球在竖直方向上做周期性运动。
若轻弹簧储存的弹性势能与其形变量x 间的关系为2
12
p E kx =,不计空气阻力,重力加速度为g ,则下列说法正确的是( )
A .在D 点时小球的加速度大小大于重力加速度g 的大小
B .小球从B 点到D 点的过程中,其速度和加速度均先增大后减小
C .从A 点到C 点小球重力势能的减少量等于小球动能的增加量
D .小球在D (2)
mg mg mg kh ++
【答案】AD 【解析】 【分析】 【详解】
A .若小球从
B 点由静止释放,则最低点应该在D ′位置且满足B
C =C
D ′,由对称可知,在D ′点的加速度为向上的g ;若小球从A 点释放,则最低点的位置在D 点,则D 点应该在D ′点的下方,则在D 点时小球的加速度大小大于在D ′点的加速度,即大于重力加速度g 的大小,选项A 正确;
B .小球从B 点到D 点的过程中,在B
C 段重力大于弹力,加速度向下且逐渐减小,速度逐渐变大;在C
D 段,重力小于弹力,加速度向上且逐渐变大,速度逐渐减小,即小球从B 点到D 点的过程中,加速度先减小后增加,速度先增加后减小,选项B 错误; C .由能量守恒定律可知,从A 点到C 点小球重力势能的减少量等于小球动能的增加量与
弹簧的弹性势能的增加量之和,选项C 错误; D .由能量关系可知从A 到D 满足
21()2
mg h x kx +=
解得小球在D 点时弹簧的压缩量为
(2)
mg mg mg kh x ++=
(另一值舍掉)选项D 正确。
故选AD 。
10.如图所示,水平转台上有一个质量为m 的物块,用长为L 的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tanθ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则( )
A .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为2sin mgL μθ
B .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为
1
sin 2
mgL μθ C .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为2sin 2os mgL c θ
θ
D .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为34os mgL
c θ
【答案】BC 【解析】 【分析】
此题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N =0,f =0。
【详解】
AB .对物体受力分析知物块离开圆盘前,合力为
2
sin v F f T m r
θ=+= …①
cos N T mg θ+=…②
根据动能定理知
2
12
k W E mv ==
…③ 又
T =0,r =L sin θ…④
由①②③④解得
11
sin sin 22
W fL mgL θμθ=
≤ 至绳中出现拉力时,转台对物块做的功为1
sin 2
mgL μθ,选项A 错误,B 正确; CD .当N =0,f =0,由①②③知
21sin sin tan 22cos mgL W mgL θ
θθθ
==
选项C 正确;D 错误。
故选BC 。
11.如图所示,固定光滑长斜面倾角θ=37°,下端有一固定挡板。
两小物块A 、B 放在斜面上,质量均为m ,用与斜面平行的轻弹簧连接。
一跨过轻小定滑轮的轻绳左端与B 相连,右端与水平地面上的电动玩具小车相连。
系统静止时,滑轮左侧轻绳与斜面平行,右侧轻绳竖直,长度为L 且绳中无弹力。
当小车缓慢向右运动
3
4
L 距离时A 恰好不离开挡板。
已知重力加速度为g ,sin37°=0.6,c os37°=0.8.在小车从图示位置发生位移3
4
L 过程中,下列说法正确的是( )
A .弹簧的劲度系数为245mg
L
B .拉力对B 做功为
3
10
mgL C gL 34
L 时B 2
5gL D gL B 做的功为33
100
mgL 【答案】AD 【解析】 【分析】 【详解】
A .初态,弹簧压缩量
1sin37g k
x m =
︒
A 恰好不离开挡板时,弹簧伸长量
2sin37g k
x m =
︒
,
121
4
x x L L +==
解得
245k mg
L
=
选项A 正确;
B .根据x 1=x 2,弹性势能不变,则小车在3
0~
4
L 位移内拉力对B 做的功 11
·sin 374
W mg L =︒
解得
13
20
W mgL =
选项B 错误;
C .小车位移大小为
3
4
L 时滑轮右侧轻绳与竖直方向的夹角为37°,小车速度沿轻绳方向和与轻绳垂直方向分解,则B 的速率
B v =︒=
选项C 错误; D .小车在3
0~
4
L 位移大小内,拉力对B 做的功设为W 2,根据功能原理有 221331··sin 3742100
B W mv mg L mgL =+︒=
选项D 正确。
故选AD 。
12.如图所示,细线上挂着小球,用水平恒力F 将小球从竖直位置P 拉到位置Q ,小球在Q 点垂直绳方向所受的合力恰好为零,此时细绳与竖直方向的夹角为θ,则( )
A .恒力做功等于小球重力势能的增量
B .小球将静止在Q 点
C .细线对小球做的功为零
D .若在Q 点将外力F 撤去,小球来回摆动的角度将等于θ 【答案】C 【解析】 【分析】
小球在Q 点所受的合力恰好为零,由此可分析恒力F 和重力的关系,再根据动能定理可分析小球的运动情况。
【详解】
A .小球在Q 点垂直绳方向所受的合力恰好为零,由图可知恒力F 和重力G 的关系为
tan F G θ
=
从竖直位置P 拉到位置Q 过程中位移为s ,恒力F 做功
c tan tan os
cos 2
2
F
W Gs G s θ
θ
θθ
重力G 做功的大小
sin
2
G
W Gh Gs θ
90θ<︒所以
2
2
2
tan cos tan 21sin
2
2
tan
1
tan
F G
G W W G s s θ
θθθ
θ
θ
即有
W W
F G
而小球重力势能的增量等于重力G做功的大小,因此恒力做功大于小球重力势能的增量,选项A错误;
W W,根据动能定理可知小球到达Q点时动能不为零,小球具有一定速度,B.因为F G
不会静止在Q点,选项B错误;
C.因为小球的轨迹是圆弧,其速度方向始终与细线垂直,因此细线的拉力始终与速度垂直,对小球做的功为零,选项C正确;
D.因为小球在Q点速度不为零,若在Q点将外力F撤去,小球还会向上运动一段距离,到最高点后再回落。
之后的摆动过程中只有重力做功,机械能守恒,因此小球来回摆动的角度将大于θ,选项D错误。
故选C。
【点睛】
抓住小球在Q点所受的合力恰好为零是分析问题的关键。
13.一物体静止在水平地面上,在竖直向上拉力F作用下开始向上运动,如图甲所示,在物体向上运动过程中,其机械能E与位移x的关系图象如图乙所示,已知曲线上A点的切线斜率最大,不计空气阻力,则下列说法错误的是()
A.在x1处物体所受拉力最大
B.0~x1过程中合外力增大
C.在x1~x2过程中,物体的加速度一直减小
D.在x1~x2过程中,物体的动能先增大后减小
【答案】C
【解析】
【分析】
【详解】
A.由图并根据功能关系可知,1x处物体图象的斜率最大,则说明此时机械能变化最快,由
=
E Fx
可知此时所受的拉力最大,故A正确,不符合题意;
B.在0~x1过程中,图象的斜率逐渐变大,说明拉力越来越大,合外力向上越来越大,故B 正确,不符合题意;
CD.在x1~x2过程中,图象的斜率逐渐变小,说明拉力越来越小;在x2处物体的机械能达到最大,图象的斜率为零,说明此时拉力为零.根据合外力
=-
F F mg
合
可知,在x 1~x 2过程中,拉力F 逐渐减小到mg 的过程中,物体做加速度逐渐减小的加速运动,物体加速度在减小,动能在增大,拉力F=mg 到减小到0的过程中,物体的加速度反向增大,物体做加速度逐渐增大的减速运动,物体的动能在减小;在x 1~x 2过程中,物体的动能先增大后减小,物体的加速度先减小后反向增大,故C 错误,符合题意;D 正确,不符合题意。
故选C 。
14.如图所示,AB 是倾角为37°的斜面,BC 为水平面,一小球以6J 的初动能从A 点水平抛出,第一次落到界面上的动能为12J ,若A 点水平抛出的动能为12J ,则第一次落到界面上的动能为( )
A .18J
B .24J
C .36J
D .42J
【答案】A 【解析】 【分析】 【详解】
当小球以6J 的初动能从A 点水平抛出时,假设小球落在斜面上,设初速度为1v ,在空中运动时间为1t ,由平抛运动规律可得
2
12
h gt =
① 1x v t = ②
tan 37h x
=
③ 从开始抛出到落到斜面过程,由动能定理可得
K K mgh E E =-末初 ④
2
112
K E mv =
初 ⑤ 联立①②③④⑤可得
19.5J 12J K E =≠末
故假设不成立,小球没有落在斜面上
当小球以6J 的初动能从A 点水平抛出时,小球落在水平面上,由动能定理可得
1K K mgh E E =-2⑥
当小球以12J 的初动能从A 点水平抛出时,小球也落在水平面上,由动能定理可得
43K K mgh E E =-⑦
联立⑥⑦可得
418J K E =
故选A
15.如图所示,某同学将三个完全相同的物体从A 点沿三条不同的路径抛出,最终落在与A 点同高度的三个不同位置,三条路径的最高点是等高的,忽略空气阻力,下列说法正确的是( )
A .沿路径1抛出的物体在空中运动的时间最短
B .沿路径3运动的物体落地时重力的瞬时功率最大
C .三个物体落地时的动能相等
D .三个物体在运动过程中的任意相等时间内速度变化量相等 【答案】D 【解析】 【分析】 【详解】
A .它们的最高点是等高的,所以这三个物体在竖直方向的分速度v y 是相等的,所以这三个斜抛运动的物体在空中的运动时间
2y v t g
=
均相同,故A 错误;
B .由上面的分析可以知道,这三个做斜抛运动的物体在落地时竖直方向的分速度也是相等的,落地时重力的瞬时功率
G y P mgv =
一样大,故B 错误;
C .同学对小球做的功即为小球获得的初动能,由于三个小球竖直方向分速度相同,第3个小球水平位移大,则第3个小球水平分速度大,故第3个小球落地时的动能大,故C 错误;
D .小球在空中只受重力作用,即小球所作的运动是匀变速运动,加速度g 恒定,所以在相等的时间内速度变化相等,故D 正确。
故选D 。
【点睛】
斜抛运动可看成水平方向的匀速直线运动和竖直方向的竖直上抛运动。