高中数学竞赛专题-函数1
高中数学竞赛资料-数论部分 (1)
![高中数学竞赛资料-数论部分 (1)](https://img.taocdn.com/s3/m/df4c4d57767f5acfa1c7cd71.png)
初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。
1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。
(1894年首届匈牙利 数学竞赛第一题)(2) ①设n Z ∈,证明2131n-是168的倍数。
②具有什么性质的自然数n ,能使123n ++++能整除123n ⋅⋅⋅?(1956年上海首届数学竞赛第一题) (3) 证明:3231122n n n ++-对于任何正整数n 都是整数,且用3除时余2。
(1956年北京、天津市首届数学竞赛第一题)(4) 证明:对任何自然数n ,分数214143n n ++不可约简。
(1956年首届国际数学奥林匹克竞赛第一题)(5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证:[][][][]()()()()22,,,,,,,,,,a b c a b c a b b c c a a b b c c a =⋅⋅(1972年美国首届奥林匹克数学竞赛第一题)这些例子说明历来数论题在命题者心目中首当其冲。
2.再看以下统计数字:(1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。
(2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。
这说明:数论题在命题者心目中总是占有一定的分量。
如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。
3.请看近年来国内外重大竞赛中出现的数论题:(1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( )A 、 0B 、1C 、3D 、无穷多(2007全国初中联赛5)(2)已知,a b 都是正整数,试问关于x 的方程()2102x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。
高中数学竞赛试卷及解答
![高中数学竞赛试卷及解答](https://img.taocdn.com/s3/m/62dbff4851e79b896902267b.png)
高中数学奥林匹克竞赛试题(9月7日上午9:00-11:00) 注意事项:本试卷共18题,满分150分一、选择题(本大题共6个小题,每小题6分,满分36分) 1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则(A)y =f(x)是奇函数 (B)y =f(x)是偶函数(C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数2.二次函数y =ax 2+bx +c 的图象如右图所示。
记N =|a +b +c|+|2a -b|,M =|a -b +c|+|2a +b|,则(A)M >N (B)M =N (C)M <N(D)M 、N 的大小关系不能确定3.在正方体的一个面所在的平面内,任意画一条直线,则与它异面的正方体的棱的条数是(A) 4或5或6或7 (B) 4或6或7或8 (C) 6或7或8 (D) 4或5或6 4.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC,则(A)ΔABC 是等腰三角形但不一定是直角三角形 (B)ΔABC 是直角三角形但不一定是等腰三角形 (C)ΔABC 既不是等腰三角形也不是直角三角形 (D)ΔABC 既是等腰三角形也是直角三角形5.ΔABC 中,∠C =90°。
若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关系中正确的是(A)p =q 21+±且q >21- (B)p =q 21+且q >21-(C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤216.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(A)双曲线 (B)椭圆(C)椭圆的一部分 (D)双曲线的一部分二、填空题(本大题共6个小题,每小题6分,满分36分)7. 满足条件{1,2,3}⊆ X ⊆{1,2,3,4,5,6}的集合X 的个数为____。
1高斯函数
![1高斯函数](https://img.taocdn.com/s3/m/1025b11967ec102de2bd89a3.png)
第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x],即y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n 1]+[x+n 2]+…+[x+nn 1-]=[nx]; 证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa +11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 .3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 .2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+[4y]+ 月份 1 2 3 4 5 6 7 8 9 10 11 12[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字(见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 .2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= .3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+ 第一讲:高斯函数 3[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:对应的m 值 11 12 1 2 3 4 5 6 7 8 9 101.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . ③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = .②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 .2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .4 第一讲:高斯函数②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23] ③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.[练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数).6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 第一讲:高斯函数 5⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= . 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ]. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.8.不等问题:[例8]:(1981年美国数学奥林匹克试题)对正整数n 和一切实数x.求证:[nx]≥1][x +2]2[x +…+nnx ][. [解析]:为方便,记a n =1][x +2]2[x +…+nnx ][.用数学归纳法证明:①当n=1时,a 1=[x],[nx]=[x]⇒原不等式成立;②假设当k<n 时,原不等式均成立,即a 1≤[x],a 2≤[2x],…,a n-1≤[(n-1)x];注意到:a k -a k-1=kkx ][⇒ka k -ka k-1=[kx]⇒na n =a 1+(2a 2-a 1) 6 第一讲:高斯函数+(3a 3-2a 2)+…+[na n -(n-1)a n-1]=a 1+(2a 2-2a 1)+(3a 3-3a 2)+…+(na n -na n-1)+(a 1+a 2+…+a n-1)=[x]+[2x]+[3x]+…+[nx]+(a 1+a 2+…+a n-1)≤n[nx]⇒a n ≤[nx].[练习8]:1.(第10届地中海地区数学奥林匹克试题)设x 为大于1的实数.证明:(][}{x x x +-}{][x x x +)+(}{][x x x +-][}{x x x +)>29.2.(2005年国家集训队训试试题)求所有正整数m 、n,使得不等式[(m+n)α]+[(m+n)β]≥[m α]+[m β]+[n(α+β)]对任意实数α、β都成立.3.(2005年国家集训队选拔考试试题)设n 是任意给定的正整数,x 是正实数.证明:∑++-=nk x kx x k x 1])1)[1(][(≤n.第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x]与y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n1]+[x+n2]+…+[x+nn 1-]=[nx];证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+ n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa+11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .解:因f(x)+f(-x)=(x a +11-21)+(x a -+11-21)=x a +11+xxa a +1-1=0⇒f(-x)=-f(x);设f(x)=k+α,其中,k ∈Z,0≤α<1,①若α=0,则f(x)=k ⇒-f(x)=-k ⇒[f(x)]=k,[f(-x)]=-k ⇒[f(x)]+[f(-x)]=0;②若α≠0,则f(x)=k+α⇒-f(x)=-k-α= -(k+1)+(1-α)⇒[f(x)]=k,[f(-x)]=-(k+1)⇒[f(x)]+[f(-x)]=-1⇒[f(x)]+[f(-x)]的值域是{-1,0}. 2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 . 解:令g(x)=kx+k,由图知g(2)≤1,g(3)>1⇒41<k ≤31. 3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 . 解:令f(k)=[51-k ]-[52-k ],则f(k+5)=[515-+k ]-[525-+k ]=[1+51-k ]-[1+52-k ]=[51-k ]-[52-k ]=f(k),故f(k)是周期为5的函数;计算可知:f(2)=0,f(3)=0,f(4)=0,f(5)=0,f(6)=1;由x k =x k-1+1-5f(k)⇒x k -x k-1=1-5f(k)⇒x 2008=x 1+(x 2- x 1)+(x 3-x 2)+…+(x 2008-x 2007)=x 1+2007-5[f(2)+f(3)+…+f(2008)]=x 1+2007-5[4001(f(2)+f(3)+…+f(6))+f(2)+f(3)]=3;同理可得y 2008=402.所以,2008棵树的种植点为(3,402).2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+ [4y ]+[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字 (见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 . 解:因c=20,y=8,d=18,m=4⇒d+[2.6m-0.2]+y+[4y ]+[4c]-2c=18+[10.2]+8+[2]+[5]-40=3≡3(mod7)⇒2008年6月18日是星期三.2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值. 解:因为0<1<2π,2π<2、3<π,π<4<23π,23π<5、6<2π⇒sin1、sin2、sin3∈(0,1),sin4、sin5∈(-1,0)⇒[sin1]=第一讲:高斯函数 3[sin2]=[sin3]=0,[sin4]=[sin5]=-1⇒[sin1]+[sin2]+[sin3]+[sin4]+[sin5]=-2.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= . 解:因为0<1<2π,2π<2<π,43π<3<π,π<4<23π,23π<5<2π,47π<6<2π⇒sin1∈(0,1),cos2∈(−1,0),tan3∈(−1, 0),sin4∈(−1,0),cos5∈(0,1),tan6∈(−1,0)⇒[sin1]+[cos 2]+[tan 3]+[sin 4]+[cos5]+[tan 6] =0+(-1)+(-1)+(-1) +0+(-1)=-4.3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数. 解:当20052k <1,即k<44时,[20052k ]=0;当1≤20052k <2,即45≤k<63时,[20052k ]=1;当2≤20052k <3,即64≤k<77时,[20052k ]=2; 当3≤20052k <4,即78≤k<89时,[20052k ]=3;当4≤20052k <5,即90≤k<100时,[20052k ]=4;当5≤20052k <6,即100≤k<109时,月份 1 2 3 4 5 6 7 8 9 10 11 12 对应的m 值111212345678910[20052k ]=5;当6≤20052k <7,即110≤k<118时,[20052k ]=6;当7≤20052k <8,即119≤k<126时,[20052k ]=7;…,集合{n|n=[20052k ], 1≤k ≤2004,k ∈N}的元素个数=1503.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . 解:由k<)1(+k k <k+21⇒2)1(+n n <a n <2)1(+n n +21n ⇒n+1<n a n 2<n+2⇒[n a n 2]=n+1. ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . 解:设f(x)=nx 3+2x-n,易知,当n 为正整数时,f(x)为增函数;f(1)=2>0,且当n ≥2时,f(1+n n )=n(1+n n )3+21+n n -n=3)1(+n n (- n 2+n+1)<0⇒x n ∈(1+n n ,1)⇒n<(n+1)x n <n+1⇒a n =[(n+1)x n ]=n ⇒10051(a 2+a 3+…+a 2011)=2013. ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 解:由b n =[5n a ]=[523-n ]⇒b 5k+r =[52)5(3-+r k ]=[3k+523-r ]=3k+[523-r ](r=0,1,2,3,4)⇒b 5k =3k-1,b 5k+1=b 5k+2=3k,b 5k+3=3k+1,b 5k+4=3k+2⇒b 5k-4+b 5k-3+b 5k-2+b 5k-1+b 5k =15k-10⇒b 1+b 2+…+b 2007=(b 1+b 2+…+b 5)+…+(b 401×5-4+b 401×5-3+b 401×5-2+b 401×5-1+b 401×5)+(b 401×5+1+b 401×5+2)=152)4011(401+-10×401+(3×401+3×401)=(15×201-4)401=1207411.3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 4 第一讲:高斯函数2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:1.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .解:当2t ≤k<2t+1时,[log 2k]=t,t=0,1,2,…,且在区间[2t ,2t+1)中的正整数有2t 个.设f(x)=[log 2x],注意到29=512,所以, [log 21]+[log 22]+[log 23]+…+[log 2500]=∑=5001)(k k f =f(1)+∑-=1222)(k k f +∑-=12232)(k k f +∑-=12243)(k k f +∑-=12254)(k k f +∑-=12265)(k k f +∑-=12276)(k k f +∑-=12287)(k k f +∑=50028)(k k f =0+1×21+2×22+3×23+4×24+5×25+6×26+7×27+8(28-11)=3498.②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . 解:因为1≤k ≤9⇒[lgk]=0;10≤k ≤99⇒[lgk]=1;100≤k ≤999⇒[lgk]=2;1000≤k ≤2010⇒[lgk]=3;所以,[lg1]+ [lg2]+[lg3]+…+[lg2010]=60×1+900×2+1011×3=4923.③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.解:由[log 36]=[log 37]=[log 38]=1⇒[log 36]+[log 37]+[log 38]=3;[log 39]=[log 310]=…=[log 326]=2⇒[log 39]+[log 310]+ …+[log 326]=36;[log 327]=[log 328]=…=[log 380]=3⇒[log 327]+[log 328]+…+[log 380]=162;[log 381]=[log 382]=…= [log 3242]=4⇒[log 381]+[log 382]+…+[log 3242]=648;3+36+162+648=849;[log 3243]=[log 3244]=…=[log 3728]=5⇒ [log 3243]+[log 3244]+…+[log 3728]=2430⇒n=474.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .解:当log 2n 为整数时,{log 2n}=[log 2n](n=20,21,…,210);当log 2n 为整数时,{log 2n}=[log 2n]+1;所以,{log 21}+{log 22}+…+{log 21991}=[log 21]+[log 22]+…+[log 21991]+1991-11;由a=2,1024=210<1991<211⇒m=10,由1991-210=967⇒b=967⇒ [log 21]+[log 22]+…+[log 21991]+1991-11=[2×9-2]29+2+10×968+1991-11=19854.2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .解:当k 为整数时,[k ]+[-k ]=0(k=12,22,…,19892),当k 不是整数时,设k =n+α(0<α<1),则[k ]=n,[-k ]=[-n-α]=[-(n+1)+(1-α)]=-(n+1)⇒[k ]+[-k ]=-1⇒[1]+[2]+[3]+…+[19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]=-1989×1990+1989=-19892.②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.解:因为nlg2和nlg5是无理数,那么可以表示nlg2=m+a 其中m=[nlg2],a={nlg2}≠0,而nlg5=n-nlg2=n-m-a=(n-m-1)+(1- a)⇒[nlg5]=n-m-1⇒[nlg2]+[nlg5]=n-1=2012⇒n=2013.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = . 解:由1222012++k k <1⇒2012+2k <2k+1⇒2k>2012⇒k>11⇒当k>11时,[1222012++k k ]=0;当k=0时,[1222012++k k ]=1006;当k=1时,[1222012++k k]=503;当k=2时,[1222012++k k ]=250;当k=3时,[1222012++k k ]=126;当k=4时,[1222012++k k ]=63;当k=5时,[1222012++k k ]=31;当k=6时,[1222012++k k ]=16;当k=7时,[1222012++k k ]=8;当k=8时,[1222012++k k ]=4;当k=9时,[1222012++k k ]=2;当k=10、第一讲:高斯函数 511时,[1222012++k k ]=1⇒∑+=+20121]222012[k k k =1006+503+250+126+63+31+16+8+4+2+1+1=2012.②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.解:设下x=a n ×2n+a n-1×2n-1+…+a 2×22+a 1×21+a 0×20,其中a i ∈{0,1}(i=0,1,2,…,n),则x-2[2x ]=a 0;[2x ]-2[22x]=a 1; [22x ]-2[32x ]=a 2,…,[nx 2]-2[12+n x ]=a n ⇒a 0+a 1+a 2+…+a n =(x-2[2x ])+([2x ]-2[22x ])+([22x ]-2[32x ])+…+([n x2]- 2[12+n x])=x-([2x ]+[22x ]+[32x ]+…+[12+n x ])=x-m=x 的“亏损数”⇒亏损数”为9的最小正整数x=1+2+22+…+28=511. 4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .解:由81<2x <8⇒-3<x<3⇒[x]=-3,-2,-1,0,1,2;①若[x]≤-2,则x 2=2[x]+3<0,没有实数解;②若[x]=-1,则x 2=1⇒x=-1; ③若[x]=0,则x 2=3,没有符合条件的解;④若[x]=1,则x 2=5,没有符合条件的解;⑤若[x]=2,则x 2=7⇒有一个符合条件的解x=7⇒ A ∩B={-1,7}.②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .解:因|x|<2⇒[x]的值可取-2,-1,0,1;当[x]=-2,则x 2=0无解;当[x]=-1,则x 2=1⇒x=-1;当[x]=0,则x 2=2无解;当[x]=1,则x 2=3⇒x=3⇒A ∩B={-1,3}.③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . 解:由0≤2cos 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,cosx=0,tanx 无意义;当[tanx]=1时,cosx=±22, 注意:[tanx]=1⇒x=k π+4π(k ∈Z);当[tanx]=2时,cosx=1⇒sinx=0⇒tanx=0,矛盾. ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 . 解:由0≤2sin 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,sinx=0,tanx=0⇒x=k π;当[tanx]=1时,sinx=±22,注意:[tanx]=1⇒x=2k π+4π(k ∈Z);当[tanx]=2时,sinx=1⇒cosx=0⇒tanx=0无意义.2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .6 第一讲:高斯函数解:由4[x]2-36[x]+45<0⇒23<[x]<215⇒2≤[x]≤7⇒2≤x<8. ②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23]解:因[|x 2-1|]=10⇔10≤|x 2-1|<11⇔-11<x 2-1≤-10,或10≤x 2-1<11⇔x ∈(-23,-11]∪[11,23),选(C).③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 解:显然x>0;①若x ≥3,则[x]≥3⇒x [x]≥27>29;②若0<x<2,则0≤[x]<2⇒x [x]<22=4<29;③若2≤x<3,则[x]=2⇒x 2=29 ⇒x223. 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .解:由x ≥[x]=872+x ⇒1≤x ≤7⇒[x]=1,2,3,4,5,6,7⇒x=1,33,41,7.②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .解:1,2005,2006,2007.③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .解:设2x+1=k,则x=21-k ,3x-465=6389-k =k+6383-k ,于是原方程等价于[k+6383-k ]-k=0⇒[6383-k ]=0⇒0≤6383-k<1⇒338≤k<344⇒k=13,14⇒解是x=6,213. ④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 解:设2x-21=k ∈Z,则x=412+k ,3x+1=k+1+432+k ,于是原方程等价于[432+k ]=-1,即-2<432+k ≤-1⇒-211<k ≤-27⇒k=-5,-4⇒x=-49,-47⇒所有实根之和为-4. 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q ])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.第一讲:高斯函数 7 [练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).解:由x-1<[x]≤x;①当x ≥3时,x 3-3[x]≥x 3-3x=x(x 2-3)≥3(32-3)=18;②当x ≤-3时,x 3-3[x]<x 3-3(x-1)=x(x 2-3)+3≤ -3[(-3)2-3]+3=-15;③当-3<x<3时,[x]=-3,-1,-1,0,1,2;若[x]=-3,则x 3=3[x]+4=-5,不合要求;若[x]=-2,则x 3=3[x]+4= -2⇒x=-32,合要求;若[x]=-1,则x 3=3[x]+4=-1,不合要求;若[x]=0,则x 3=3[x]+4=4,不合要求;若[x]=1,则x 3=3[x]+4= 7⇒x=37,合要求;若[x]=2,则x 3=3[x]+4=10⇒x=310,合要求⇒(-32)3+(37)3+(310)3=15.2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .解:由[x 3]+[x 2]+[x]∈Z ⇒{x}−1∈Z ⇒{x}=0⇒x ∈Z ⇒x 3+x 2+x=-1⇒(x+1)(x 2+1)=0⇒x=-1.②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. 解:设[x]=n,x-[x]=α(0≤α<1),则x 2−2x=(n+α)2-2(n+α)=n 2-2n+α2+2(n-1)α,所以原方程等价于[n 2-2n+α2+2(n-1)α]=n 2-2n ⇔[α2+2(n-1)α]=0⇔0≤α2+2(n-1)α<1;当α=0时,不等式成立,此时,x=n;当α≠0时,由0≤α2+2(n-1)α<1⇔0<α<1)1(2+-n -(n-1)⇔0<x-n<1)1(2+-n -(n-1)⇔x ∈(n,1)1(2+-n +1)(n=1,2,…). ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 解:由[x]+[!x 3]+[!x 5]+[!x 7]=1993⇒[x]<1993⇒x<1994⇒[!x 7]=0⇒[x]+[!x 3]+[!x5]=1993⇒x>5!;设x=5!n+r(0≤r<5!=120)⇒(120n+r)+(20n+[6r ])+n=1993⇒141n+r+[6r ]=1993=14×141+19⇒n=14,r+[6r]=19⇒r=17⇒x=1697. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.解:因为当3k≤n<3k+1时,[log 3n]=k(k=0,1,2,…),且区间[3k,3k+1)内的正整数个数=3k+1-3k=2×3k,所以,S k =[log 31]+[log 32]+ [log 33]+[log 34]+…+[log 3(3k+1-1)]=2(0×30+1×31+2×32+…+k ×3k)=(23k-43)3k +43;令(23k-43)3k+43≤2007⇒(2k- 1)3k≤2675⇒k ≤5;S 5=1391,2007-1391=6×101⇒n=36+100=829. ②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数). 解:{5,6}.6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 ⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= .解:若a 为负整数,则a 2>0,2b(a+b)<0,不可能,故a ≥0;于是a 2=2b(a +b)<2(a+1)⇒a 2-2a-2<0⇒0≤a<1+3⇒a=0,1,8 第一讲:高斯函数2;a=0时,b=0;a=1时,2b 2+2b-1=0⇒b=213-;a=2时,b 2+2b-2=0⇒b=3-1. 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .解:由[x]2+[y]2=50⇒[x]=±1,[y]=±7;[x]=±5,[y]=±5;[x]=±7,[y]=±1.每组解有4种情况,每种情况下的面积为1⇒图形的面积是12.②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.解:设[x]=a,[y]=b,即所有这样的点(x,y)组成的图形就是a ≤x<a+1,b ≤y<b+1界定的区域,它的面积为1,又2011是质数,所以满足[x][y]=2011的点(x,y)组成的图形是4个面积为1的区域,即[x]=1,[y]=2011;[x]=2011,[y]=1;[x]=−1,[y] =−2011;[x]=−2011,[y]=−1.这些图形的总面积是4.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .解:由[x][y]=2013=1×2013=3×671=11×183=33×61,共有16种情况,每种情形下的面积为1,所以,所有点(x,y)组成的图形面积为16.3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7解:设a n =(3+8)2n +(3-8)2n =(17+122)n +(17-122)n ,则a 1=34,a 2=342-2=1154,a n+2=34a n+1-a n ⇒a 1≡2(m0d8),a 2≡2(m0d8),a 3≡34×2-2≡2(m0d8)⇒a n ≡2(m0d8);又因0<(3-8)2n <1⇒[(3+8)2n ]=a n -1⇒[(3+8)2n]≡1(m0d8).选(A).②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .解:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<(0.008)300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?解:设[x ]=n,由[x ]≤x <[x ]+1⇒n ≤x <n+1⇒n 2≤x <(n+1)2⇒n 2≤[x ]<(n+1)2⇒n ≤][x <n+1⇒n ≤[][x ]<n+1⇒[][x ]=n ⇒[][x ]=[x ]成立.②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ].第一讲:高斯函数 9解:因(n +1+n )2=2n+1+2)1(+n n <2n+1+[n+(n+1)]=4n+2⇒n +1+n <24+n ⇒[n +1+n ]≤[24+n ];若存在某个正整数n,使得[n +1+n ]≠[24+n ],则[n +1+n ]<[24+n ];设[24+n ]=k,则n +1+n <k ≤24+n⇒2n+1+2)1(+n n <k 2≤4n+2⇒2)1(+n n <k 2-(2n+1)≤2n+1⇒4n(n+1)<[k 2-(2n+1)]2≤4n(n+1)+1(因4n(n+1)与4n(n+1)+1是连续整数)⇒[k 2-(2n+1)]2=4n(n+1)+1⇒k 2=4n+2,但任意整数的平方被4除不余2,矛盾. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. 解:设[r]=n,r=n+α(0≤α<1),则[r+100i ]=[n+α+100i ]=n(当0<α+100i <1时),或n+1(当1≤α+100i<2时),设其中有 73-k 个n,k 个n+1,则(73-k)n+k(n+1)=546⇒n=7+7335k -⇒k=35,n=7⇒α+10056<1,α+10057≥1⇒10043≤α<10044⇒7+10043≤r<7+10044⇒743≤100r<744⇒[100r]=743. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 解:设f(x)=[x]+[2x]+[4x]+[8x]+[16x]+[32x],则f(x)单调不减;由f(x)≤[(1+2+4+8+16+32)x]=[63x]≤63x ⇒x ≥6312345>195;f(196)=63×196=12348⇒x<196⇒x ∈(195,196);令t=x-195,则t ∈(0,1),且f(x)=[195+t]+[2(195+t)]+ [4(195+t)]+[8(195+t)]+[16(195+t)]+[32(195+t)]=63×195+[t]+[2t]+[4t]+[8t]+[16t]+[32t]<12285+0+1+3+7+15+31 =12342⇒方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解.3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.解:由a n+1-a n =b([c n ++1]-[c n +]),由题知,a n+1-a n =0,或2⇒b([c n ++1]-[c n +])=0,或2;由c n ++1-c n +=cn c n ++++11≤1⇒c n +<c n ++1≤c n ++1⇒[c n +]<[c n ++1]≤[c n +]+1⇒[c n ++1]-[c n +]=0,或1;显然b ≠0,当b([c n ++1]-[c n +])=2时,b=2,[c n ++1]-[c n +]=1;由a 1=2[c +1]+d=1⇒c ≥-1,d=1-2[c +1];注意到2k a =2k-1⇒2[c k +2]+d=2k-1⇒2[c k +2]+1-2[c +1]=2k-1⇒[c k +2]-[c +1]=k-1对任意的k ∈N +恒。
高中数学竞赛题:函数迭代含详解
![高中数学竞赛题:函数迭代含详解](https://img.taocdn.com/s3/m/fc1fdad07d1cfad6195f312b3169a4517623e54f.png)
高中数学竞赛专题训练:函数迭代一、单选题1.设1()f x =对任意自然数n ,定义11()(())n n f x f f x +=.则1993()f x 的解析式为()AB C D 2.函数()f x 是定义在R 上的奇函数,且()02=f ,对任意x R ∈,都有()()()42f x f x f +=+成立.则()1998=f .()A .3996B .1998C .1997D .03.已知函数()f x 在(0,)+∞上有定义且为增函数,并满足1()(())1f x f f x x⋅+=.则(1)f =()A .1B .0C .12+D .124.已知()11xf x x+-=,记()()1f x f x =,()()()()11,2,k k f x f f x k +== ,则()2007f x =()A .11x x+-B .11x x -+C .xD .1x-5.已知对每一对实数x 、y ,函数f 满足()()()1f x f y f x y xy +=+--.若()11f =,则满足()()f n n n Z =∈的个数是().A .1个B .2个C .3个D .无数多个6.函数()f x 是定义在R 上的奇函数,且对任意x R ∈都有()()()10 5 f x f x f x +=+-.若()50f =,则()2005f 的值为().A .2000B .2005C .2008D .07.设函数()f x 的定义域是(,)∞+∞对于下列四个命题:(1)若()f x 为奇函数,则()()f f x 也为奇函数;(2)若()f x 为周期函数,则()()f f x 也为周期函数;(3)若()f x 为单调递减函数,则()()f f x 为单调递增函数;(4)若方程()()f f x x =有实根,则方程()f x x =也有实根,其中,正确的命题共有个()A .1B .2C .3D .48.设()1211x f x x -=+,对2n ≥,定义()()()11n n f x f f x -=.若()2912x f x x +=-,则()2009 f x =______.9.设()()211xf x eg x ln x -=,=(+).则不等式()()()()1f g x g f x -的解集为_______.10.已知()[]12,0,1f x x x =-∈,那么方程()()()12f f f x x =的解的个数是_________.11.已知函数()f x 满足()()()3,1000;=+5,<1000.x x f x f f x x -≥⎧⎪⎨⎪⎩则()84f =________.12.设函数()f x 定义在R 上,对任意x R ∈,()110062f x +=+()310054f -=.则()2013f =___________.13.设定义在整数集上的函数f ,满足()()14,2000,n 19,2000.n n f f f n n -≥⎧⎪=⎨⎡⎤+<⎪⎣⎦⎩则()1989f =_____.14.设函数()f n 定义在正整数集上,对于任一正整数n ,有()()43f f n n =+,且对任意非负整数k ,有()1221k k f +=+.则()2303f =__________.15.设f(x)为定义在整数集上的函数,满足条件(1)()11f =,()20f =;(2)对任意的x 、y 均有()()()()()11f x y f x f y f x f y +=-+-则()2015f =______.三、解答题16.已知二次函数()()20f x ax bx c a =++≠.若方程()f x x =无实根,求证:方程()()f f x x =也无实根.17.已知()f x 是定义在实数集R 上的函数,()02f =,对任意x R ∈,有()()5254f x f x +=--,①()()3256f x f x -=-②,求()2012f 的值.18.对任意正整数m ,n ,定义函数(,)f m n 满足如下三个条件:①(1,1)1f =;②(1,)(,)2()f m n f m n m n +=++;③(,1)(,)2(1)f m n f m n m n +=++-.(1)求(3,1)f 和(1,3)f 的值;(2)求(,)f m n 的解析式.参考答案:1.C【详解】n=1时,()1f x =假设n k =时,()k f x =则1n k =+时,()1k f x +==所以()1993f x 故答案为C2.D【详解】令2x =-,则有()()()224f f f =-+,即()()()224.f f f +=()()()()42204f f f x f x ∴==⇒+=,即()f x 是以4为周期的函数.()()()199********.f f f ∴=⨯+==3.D【详解】设()1f a =,1x =.由已知函数等式得()()()1111f f f +=,()11af a +=,()11f a a+=.设1x a =+,有()()11111f a f f a a ⎛⎫+++= ⎪+⎝⎭,11111f a a a ⎛⎫+= ⎪+⎝⎭,()11 11f a f a a ⎛⎫+== ⎪+⎝⎭.由()f x 是增函数,则有1111a a+=+,解得a=当()112f =时,有()()11111a f f a a <=<+=<矛盾,所以()112f =.选D.4.B【详解】()111x f x x +=-,()()1223121111, 111f f x f x f x f x f x ++-==-==--+,()34311f f x x f +==-据此,()4111n xf x x++=-,()()424311, 1n n x f x f x x x ++-=-=+,()4n f x x=因2007为4n+3型,故选B.5.B【详解】令1y =得()()()111f x f f x x +=+--,即()()12f x f x x +=++.令0x =得()()102f f =+.由()11f =知()01f =-.当n N +∈时,()()()()()()()113101012nnk k n n f n f k f k f k f ==+⎡⎤=--+=++=-⎣⎦∑∑.同理,()()312n n f n -+-=--.所以,()()312n n f n +=-,n Z ∈.令()f n n =,解得2n =-或1n =.6.D【详解】由题意得()()()()5105fx f x f x -+=-+,所以,()()()101515f x f x f x +=-=--从而,()()()2550f x f x f x =--=-故()f x 是以50为周期的周期函数.因此,()()()20055040550f f f =⨯+==.7.C【详解】若()f x )为奇函数,则()()()()()()f f x f f x f f x -=-=-.故()()f f x 也为奇函数.因此,命题(1)正确.若()f x 为周期函数,设T 为()f x 的一个周期,则()()()()f f x T f f x +=.故()()f f x 也为周期函数,因此,命题(2)正确.若()f x 为单调递减函数,则对任何x y <,由:()()()()()()f x f y f f x f f y >=<.故()()f f x 为单调递增函数,因此,命题(3)正确.但命题(4)不正确例如,取:()2,011,0;0, 1.x x f x x x ⎧=≠⎪==⎨⎪=⎩或;则()()4,010,0;1, 1.x x f f x x x ⎧+≠⎪==⎨⎪=⎩或;.故方程()()f f x x =有01、两个实根,但0x ≠或1时,()2f x x x =+>,而()()01,10f f ==,知方程()f x x =没有实根.8.12xx+-【详解】因为()3012x x f x f x +⎛⎫== ⎪-⎝⎭,所以,()()311f x f x =.而2009306629=⨯+,于是,()()20092912xf x f x x+==-.故答案为12xx +-9.(]1,1-【详解】注意到()()()()2f g x g f x x -=.故()()()()2f g x g f x x -=.又定义域为()1,-+∞,从而,不等式的解集为(]1,1-.10.8【详解】∵()12f x x =-112,0,2121,,12x x x x ⎧⎡⎤-∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-∈⎢⎥⎪⎣⎦⎩即()f x 有关于x 的两个一次表达式.同理,()()f f x 有关于()f x 的两个一次表达式,而每个()f x 有关于x 的两个表达式,以所()()f f x 有关于x 的四个一次表达式.同理,()()()f f f x 有关于x 的八个不同的一次表达式,因此,所求方程解的个数是8.11.997【详解】记()()()()()n n f x f f f x个.则()()()()()1848489999f f f f === ()()()()()()18518418310041001998f ff===()()()()()()18418318210031000997f f f===()()()()()()18318218310029991004f f f ===()()()()()()18218118210019981003f ff===()()()18110001000997f f ==== .因此,()84997f =.12.12+【详解】由题意知()112f =+12=+()13100724f ==,()()1120131007100622f f =+==.13.()19891990f =【详解】(1989)[(2008)](1994)[(2013)](1999)[(2018)](2004)1990f f f f f f f f f f =======14.4607【详解】注意到23432303343434342=+⨯+⨯+⨯+⨯.而()()()()()4343f n f f f n f n +==+,则()()2332303343434342f f =++⨯+⨯+⨯=…()()()234323444433434343423434343421230342124607f =+⨯+⨯+⨯+=+⨯+⨯+⨯++=++-=15.1±【详解】在条件(2)中令0x =,则()()()()()011f y f f y f f y =-+,由()11f =,知()()010f f y -=.在上式中令0y =,则()()()01000f f f =⇒=.在条件(2)分别令1,1,2x =-得()()()()()1110f y f f y f f y +=-+()1f y =-,()()()()()1112f y f f y f f y -=--+()()()()1111f f y f f y =--=-+,()()()()()2211f y f f y f f y +=-+-()()1f f y =-,由()()()111f y f f y -=-+()()()12f y f f y =-+()()()21f y f f y ⇒=-()11f ⇒-=±.若()11f -=,则()()2f y f y +=,由条件(1)知()1,0,x f x x ⎧=⎨⎩为奇数为偶数,经检验,f 满足条件故()20151f =.若()11f -=-,则()()2f y f y +=-()()()01x 141,14x f x mod x mod ⎧⎪=≡⎨⎪-≡-⎩,为偶数,,经检验,f 满足条件故()20151f =-.综上,()20151f =±.16.见解析【详解】将函数式()()20f x ax bx c a =++≠代入方程()f x x =,移项后,得()210ax b x c +-+=()0a ≠.已知这个方程无实根,所以它的判别式为负,即()21140b ac ∆=--<.进而,由()()()()()2f f x a f x bf x c =++,将()f x 的表达式代入方程()()f f x x =,得()()222a ax bx cb ax bxc c x++++++=()0a ≠.变形,得()()222220a ax bx c x ax b ax bx c x bx c x ⎡⎤⎡⎤++-++++-++-=⎣⎦⎣⎦,提公因式,得()()22110ax b x c a ax bx c x b ⎡⎤⎡⎤+-++++++=⎣⎦⎣⎦,即()()()22110f x x a x a b x ac b ⎡⎤⎡⎤-+++++=⎣⎦⎣⎦.由条件知方程()0f x x -=无实根,所以,上面这个四次方程()()22110a x a b x ac b +++++=与有相同的实根.所得辅助二次方程的判别式是()()()2222221411444a b a ac b a b b ac ⎡⎤∆=+-++=+---⎣⎦()()()22221144440a b ac a a ⎡⎤=---=∆-<⋅-<⎣⎦,所以,这个辅助二次方程无实根,进而推出原四次方程()()f f x x =无实根.17.2【详解】在式①中取()1322x y y R =-∈,得()()212f y f y +=-.在式②中取()1233x y y R =+∈,得()()12f y f y =-,于是,()()2f y f y +=,即()f x 是一个周期为2的函数,故()()()201221006002f f f =⨯+==.18.(1)(3,1)11f =,(1,3)7f =(2)22(,)231f m n m mn n m n =++--+【分析】(1)由已知关系式直接推得即可;(2)由(1,1),(1,2),,f f 依次推出(1,)f n ,再由(1,),(2,)f n f n ,L ,依次推出(,)f m n 即可.【详解】解:(1)因(1,)(,)2()f m n f m n m n +=++,令1m n ==代入得:(2,1)(1,1)2(11)145f f =++=+=,令2m =,1n =代入得:(3,1)(2,1)2(21)5611f f =++=+=,又(,1)(,)2(1)f m n f m n m n +=++-,令1m n ==代入得:(1,2)(1,1)2(111)123f f =++-=+=.令1m =,2n =代入得:(1,3)(1,2)2(121)347f f =++-=+=.(2)由条件②可得(2,1)(1,1)2(11)22f f -=⨯+=⨯,(3,1)(2,1)2(21)23f f -=⨯+=⨯,……(,1)(1,1)2(11)2f m f m m m --=⨯-+=⨯.将上述1m -个等式相加得:2(,1)2(23)(1,1)1f m m f m m =++⋅⋅⋅++=+-.由条件③可得:(,2)(,1)2(11)2f m f m m m -=+-=,(,3)(,2)2(21)2(1)f m f m m m -=+-=+,……(,)(,1)2(11)2(2)f m n f m n m n m n --=⨯+--=⨯+-.将上述n 1-个等式相加得:2(,)2[(1)(2)(2)]1f m n m m m m n m m =+++++⋅⋅⋅++-++-22231m m n n m n =++--+.【点睛】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.。
高中数学竞赛系列讲座:指数函数与对数函数
![高中数学竞赛系列讲座:指数函数与对数函数](https://img.taocdn.com/s3/m/54461940fad6195f302ba608.png)
高中数学竞赛系列讲座:指数函数与对数函数指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。
无论在高考及数学竞赛中,都具有重要地位。
熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。
一、指数概念与对数概念:指数的概念是由乘方概念推广而来的。
相同因数相乘a·a……a(n个)=a n导出乘方,这里的n为正整数。
从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。
欧拉指出:“对数源出于指数”。
一般地,如果a(a>0,a≠1)的b次幂等于N,就是a b=N,那么数b叫做以a为底N的对数,记作:logaN=b其中a叫做对数的底数,N叫做真数。
a b=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。
当给出b求N时,是指数运算,当给出N求b时,是对数运算。
指数运算与对数运算互逆的运算。
二、指数运算与对数运算的性质1.指数运算性质主要有3条:a x·a y=a x+y,(a x)y=a xy,(ab)x=a x·b x(a>0,a≠1,b>0,b≠1)2.对数运算法则(性质)也有3条:(1)loga(MN)=logaM+logaN(2)logaM/N=logaM-logaN(3)logaM n=nloga M(n∈R)(a>0,a≠1,M>0,N>0)3.指数运算与对数运算的关系:X=a logax;m logan=n logam4.负数和零没有对数;1的对数是零,即loga1=0;底的对数是1,即logaa=15.对数换底公式及其推论:换底公式:logaN=logbN/logba推论1:loga m N n=(n/m)logaN推论2:三、指数函数与对数函数函数y=a x(a>0,且a≠1)叫做指数函数。
最新的高中数学竞赛函数练习题
![最新的高中数学竞赛函数练习题](https://img.taocdn.com/s3/m/c7bbd5cefbb069dc5022aaea998fcc22bdd14358.png)
最新的高中数学竞赛函数练习题高中数学竞赛函数练题(幂函数、指数函数、对数函数)一、选择题1.定义在R上的任意函数f(x)都可以表示为一个奇函数g(x)和一个偶函数h(x)之和,若f(x)=lg(10x+1),则答案:C解析:将XXX(10x+1)拆分为XXX(10x)和XXX(1+1/10x),前者是x的一次函数,后者是x的负一次函数,即为奇函数和偶函数之和。
所以,g(x)=x。
h(x)=lg(10x+1)-x。
2.若(log23)x-(log53)x≥(log23)-y-(log53)-y,则答案:C解析:将不等式化简,得到x/y≥(log23-log5)/(log25),即x/y≥2/(log25)。
因为x>y>0,所以x/y>1,即2/(log25)>1,所以(log23)-y<(log53)-y,即y<(log53)/(log25)-(log23)/(log25),即y<(log25)/(log5)-(log23)/(log5),即y<(log23)/(log5)-1.3.已知f(x)=ax2-c满足-4≤f(1)≤-1,-1≤f(2)≤5,那么f(3)应该是答案:B解析:由题意,得到以下不等式组:a-c≥-4,a-c≤-1,4a-c≤5,a-c≤1.将这些不等式组合起来,可得-4≤a-c≤1,即-3≤a≤2.因为f(x)是一个开口向上的抛物线,所以f(3)一定在f(1)和f(2)之间,即-1≤f(3)≤5.因此,B选项正确。
4.已知f(n)=logn(n+1) (n N*且n≥2),设∑p n=2logf(n)=100 (p,q N*且(p,q)=1),则p+q=答案:D解析:根据对数的性质,有logn(n+1)=logn+log(n+1),所以f(n)=logn+log(n+1)。
因此,∑p n=2 logf(n)=∑p n=2logn+log(n+1)=∑p n=2 (logn+log(n+1))=plog2+∑p n=2 log(n+1)。
高中数学第二章函数-函数及其性质(竞赛精讲)
![高中数学第二章函数-函数及其性质(竞赛精讲)](https://img.taocdn.com/s3/m/9b51ff0c0722192e4536f677.png)
第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性(1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
(3) 若函数满足()(2)f x f ax =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。
(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)ay x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为Ta的周期函数。
(3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
各省高中数学竞赛试题汇编——函数小题目
![各省高中数学竞赛试题汇编——函数小题目](https://img.taocdn.com/s3/m/f923b6470c22590102029da2.png)
各省数学竞赛试题汇编——函数小题目1.【2018年湖南预赛】函数的定义城为_________.【答案】【解析】由得,所以函数的定义城为.故答案为2.【2018年湖南预赛】已知函数对任意的实数满足:,且当时,,当时,,则象与的图象的交点个数为___________。
【答案】10【解析】由题意知,f(x)=且周期是6,,且此函数是偶函数,在同一个直角坐标系中画出两个函数的图象如下图所示:由图可得,两个函数图象的交点个数是10个.3.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 4.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 5.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 6.【2018年贵州预赛】若方程有两个不等实根,则实数的取值范围是_____________. 【答案】【解析】由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.7.【2018年安徽预赛】设点P、Q分别在函数的图象上,则的最小值=_________. 【答案】【解析】设P(),Q()使最小.由互为反函数,知点P、Q处的切线斜率都是1,直线PQ的斜率都是-1.故.故答案为:8.【2018年广东预赛】函数的值域为_____________.【答案】当时,的值域为();当时,的值域为().【解析】,因为,所以当时,的值域为();当时,的值域为().故答案为:当时,的值域为();当时,的值域为().9.【2018年广东预赛】已知方程在区间(-2,2)内恰有两个实根,则k的取值范围是__________. 【答案】【解析】记,令,得.当时,在()上为增函数.当时,在()上为减函数.所以在点处取得最大值,当且仅当时,在区间(-2,2)内恰有两个实根,故k的取值范围是.故答案为:10.【2018年贵州预赛】方程组的实数解为___________.【答案】【解析】因为,所以,即,代入,得.由.11.【2018年湖北预赛】设是定义在上的单调函数,若对任意的,都有,则不等式的解集为______.【答案】【解析】由题设,存在正常数,使得,且对任意的,有.当时,有,由单调性知此方程只有唯一解.所以.不等式,即,解得.故不等式的解集为.12.【2018年甘肃预赛】关于的方程有唯一实数解,则实数的取值范围是______.【答案】【解析】解法一原方程化为.(1).(2)时,的两根分别为1、3,不符合题意.(3)时,的两根分别为2,.因此,符合题意要求.(4),即时,若,不符合要求;若,因此,符合要求.解法二,因为,所以.上单调递增,在上单调递减.又,所以的取值范围是.13.【2018年吉林预赛】函数的定义域为__________.【答案】(1,2)(4,5)【解析】由题得,解之得x∈(1,2)(4,5).故答案为:(1,2)(4,5)14.【2018年山东预赛】对任意的实数的最小值为______.【答案】【解析】设,则①+②+③得.解得.又当时,有解.故当时,取到最小值.15.【2018年山东预赛】已知,且为方程的一个根,则的最大可能值为______.【答案】9【解析】由题设,则.因为,则必为完全平方数.设,则.所以.解得,8,,0.所以的最大可能值为9.16.【2018年山东预赛】设为最接近的整数,则______.【答案】【解析】设,则,即.而,因此满足个.注意到,从而或7.由于,所以.因此.17.【2018年天津预赛】已知函数的定义域都是,它们的图象围成的区域面积是_____________【答案】【解析】将的图象补充为完整的圆,则由中心对称性易知答案是圆面积的一半,为.故答案为:18.【2018年天津预赛】若为正实数,且是奇函数,则不等式的解集是_____________【答案】【解析】由可得即也即,所以.由于在(0,+)上递增,所以在(0,+)上是增函数,结合是奇函数可知在R上是增函数.解不等式,只需找到的解.方程等价于也即两边平方,解得.因此,不等式的解集是.故答案为:19.【2018年河南预赛】已知函数,若的定义域为,值域为,则的值为______.【答案】0【解析】因为,所以有,得,故上是增函数,进而.解得(舍)或.故填0.20.【2018年河北预赛】若,且满足那么. 【答案】1【解析】把已知条件变形为函数上为增函数且是奇函数,另,故,所以.21.【2018年四川预赛】设函数上的最大值为,最小值为,那么的值为______. 【答案】4【解析】因为上单调递减,在上单调递增,所以的最小值为.又的最大值为故故答案为:422.【2018年四川预赛】的值为______.【答案】1【解析】令,则从而,化简为.所以,原式故答案为:123.【2018年浙江预赛】已知a为正实数,且是奇函数,则的值域为________.【答案】【解析】由为奇函数可知,解得a= 2,即,由此得的值域为.24.【2018年浙江预赛】设,则有________个不同的解. 【答案】3【解析】因为由得到,或.由,得一个解;由得两个解,共3个解.25.【2018年浙江预赛】设满足,则x的取值范围为________. 【答案】【解析】由.令,,所以.26.【2018年江西预赛】函数的值域是区间______.【答案】【解析】显然函数定义域为,在此区间内,由于,即,故有角使得.于是,因为,则.在此范围内,则有.因此.(当时,;当时,)故答案为:27.【2018年山西预赛】函数的值域为________.【答案】【解析】由条件知.令.则,,,因为,所以,.28.【2018年湖南预赛】如图,A与P分别是单位圆O上的定点与动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数,则=__________.【答案】【解析】对角度x进行简单的分类,然后根据三角函数的定义得到利用函数的周期性得到.故答案为:29.【2018年湖南预赛】如图放置的边长为1的正方形ABCD沿x轴正向滚动,即先以A为中心顺时针旋转,当B落在x轴上时,再以B为中心顺时针旋转,如此继续,设顶点C滚动时的轨迹方程为,则上的表达式为__________.【答案】【解析】①由于是以4为周期的周期函数,所以当时此时由周期性及①式的结果得到故答案为:30.【2018年湖南预赛】设,函数(其中表示对于,当时表达式的最大值),则的最小值为_____.【答案】【解析】对于每一个,函数是线性函数.因此,在任意有限闭区间上,函数的最大值与最小值均在区间端点处达到,从而有由于函数图像交点的横坐标c满足,得到其图像为两条折线组成,且故答案为:31.【2018年福建预赛】已知定义在上的奇函数,它的图象关于直线对称.当时,,则______.【答案】2【解析】由为奇函数,且其图象关于直线对称,知,且,所以.是以8为周期的周期函数.又,所以.32.【2018年福建预赛】已知整系数多项式,若,则______.【答案】24【解析】设,则,于是.所以.所以是多项式的一个根.又不可能是三次整系数多项式、二次整系数多项式的零点.所以整除.故为整数.所以.由,得.所以.33.【2018年福建预赛】已知函数满足:对任意实数,都有成立,且,则______.【答案】【解析】在中,令,得.令,得.又,所以,即.又,,所以.故.34.【2016年上海预赛】若x∈(-1,1)时,恒为正值,则实数a的取值范围是____________。
高中数学竞赛与强基计划试题专题:三角函数
![高中数学竞赛与强基计划试题专题:三角函数](https://img.taocdn.com/s3/m/858e2f6666ec102de2bd960590c69ec3d4bbdb74.png)
高中数学竞赛与强基计划试题专题:三角函数一、单选题1.(2021·北京·高三强基计划)已知O 为ABC 的外心,,AB AC 与OBC △的外接圆分别交于点D ,E .若DE OA =,则OBC ∠=()A .30︒B .45︒C .60︒D .以上答案都不对2.(2020·北京·高三强基计划)设等边ABC 的边长为1,过点C 作以AB 为直径的圆的切线交AB 的延长线于点D ,AD BD >,则BCD △的面积为()ABCD .前三个答案都不对3.(2020·北京·高三强基计划)()AB.CD .前三个答案都不对4.(2020·北京·高三校考强基计划)使得sin115cos1n >+成立的最小正整数n 的值为()A .3B .4C .5D .65.(2020·北京·高三校考强基计划)在ABC中,90,1,A AB AC ∠=︒==点P 满足0||||||PA PB PCPA PB PC ++=,则()A .120APC ∠=︒B .120APB ∠=︒C .||2||PB PA =D .||2||PC PB = 6.(2020·北京·高三校考强基计划)设,αβ为锐角,且sin cos()sin ααββ+=,则tan α的最大值为()本号资*料全部来源于微信公众号:数学第六感A.4BC .1D7.(2020·北京·高三校考强基计划)212lim arctan nn k k →∞==∑()A .3π4B .πC .5π4D .3π28.(2020·北京·高三校考强基计划)sin arctan1⎛+= ⎝⎭()A .1BCD .22二、多选题9.(2020·北京·高三校考强基计划)设ABC 的三边长a ,b ,c 都是整数,面积是有理数,则a 的值可以为()A .1B .2C .3D .410.(2022·贵州·高二统考竞赛)如图,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复上述操作(其中123∠∠∠==),得到四个小正方形,,,A B C D ,记它们的面积分别为,,,A B C D S S S S ,则以下结论正确的是()A .A DBC S S S S +=+B .AD B C S S S S ⋅=⋅C .2A D B S S S + D .2D A CS S S +<11.(2020·湖北武汉·高三统考强基计划)设ABC 的内角,,A B C 的对边分别为,,a b c .若{3cos (sin 1)0a cb Cc b C +=+-=),则()A .3B π=B .4B π=C .ABC 3316D .ABC 332三、填空题12.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.13.(2022·江苏南京·高三强基计划)设0,2x π⎛⎫∈ ⎪⎝⎭,则函数2sin cos y x x =的最大值为___________.14.(2022·江苏南京·高三强基计划)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知2cos cos sin sin sin a C b A a A B c A -=-,则tan A 的值为___________.15.(2022·江苏南京·高三强基计划)函数4153y x x =--___________.16.(2021·全国·高三竞赛)设02πθ<<,且333cos sin 1(cos sin 1)m θθθθ++=++,则实数m 的取值范围是___________.17.(2020·浙江·高三竞赛)已知,,0,2παβγ⎡⎤∈⎢⎥⎣⎦,则cos 2cos cos cos()2cos()αβγαγβγ++-+-+的最大值为___________.18.(2021·全国·高三竞赛)函数sin 1tan tan 2x y x x ⎛⎫=+⋅ ⎪⎝⎭的最小正周期为____________.19.(2021·全国·高三竞赛)已知ABC 满足2sin sin 2sin A B C +=,则59sin sin A C+的最小值是_______.20.(2021·全国·高三竞赛)在ABC 中,1155,tantantan222AC A C B =+-=,则+BC AB 的值为__________.21.(2021·浙江·高三竞赛)若π3,π44x ⎛⎫∈- ⎪⎝⎭,则函数4sin cos 3sin cos x x y x x +=+的最小值为______.22.(2022·福建·高二统考竞赛)已知α,β,()0,γπ∈,且,则cos cos sin 2αβγ++的最大值为___________.23.(2022·浙江·高二竞赛)已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2b aC a-=,则角A 的取值范围是______.24.(2022·北京·高三校考强基计划)在ABC 中,()2ABC cS a b =- ,其外接圆半径2R =,且())224sin sin sin A B b B -=-,则sinsin 22A B C-+=___________.25.(2022·北京·高三校考强基计划)在梯形ABCD 中,,AD BC M ∥在边CD 上,有ABM CBD BCD ∠∠∠==,则AMBM取值范围为___________.26.(2022·北京·高三校考强基计划)若ABC 三边长为等差数列,则cos cos cos A B C ++的取值范围是___________.27.(2021·全国·高三竞赛)在ABC 中,2cos 3cos 6cos A B C +=,则cos C 的最大值为_______________.四、解答题28.(2021·全国·高三竞赛)求证:对任意的n +∈N ,都有21111arctan arctan arctan arctan 37114n n n π++++=+++ .29.(2022·新疆·高二竞赛)直角三角形DEF 的三个顶点分别在等边三角形ABC 的边,,AB BC CA 上,且=90,=30DEF EDF ∠∠︒︒,求DEFABCS S 的最小值.30.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .高中数学竞赛与强基计划试题专题:三角函数答案一、单选题1.(2021·北京·高三强基计划)已知O 为ABC 的外心,,AB AC 与OBC △的外接圆分别交于点D ,E .若DE OA =,则OBC ∠=()A .30︒B .45︒C .60︒D .以上答案都不对【答案】B【分析】利用圆周角和圆心角的关系可求OBC ∠的大小.【详解】如图,连结BE .由于DE OA OB OC ===,于是弧BO 分别与弧DE 、弧OC 相等,进而可得弧BD 与弧OE 相等、弧OD 与弧CE 相等,进而190902EBC OBD AOB ECB ∠=∠=︒-∠=︒-∠,从而90BEC ∠=︒,因此BC 是OBC △外接圆的直径,进而45OBC ∠=︒.2.(2020·北京·高三强基计划)设等边ABC 的边长为1,过点C 作以AB 为直径的圆的切线交AB 的延长线于点D ,AD BD >,则BCD △的面积为()A .16-B .16-C .16D .前三个答案都不对【答案】C【分析】利用射影定理可求4OD =,故可求BCD △的面积.【详解】如图,设题中圆的圆心为O ,CD 与圆O 切于点T ,连结,CO TO ,则12OC OT ==,于是OD =,从而1112242216BCD S BD OC ⎛⎫=⋅⋅=⨯-⨯= ⎪⎝⎭△.3.(2020·北京·高三强基计划)222323cos cos 523cos cos 4sin θθθθθ++-++()A 23B .223C 223D .前三个答案都不对【答案】D【分析】利用基本不等式可求代数式的最大值.【详解】题中代数式为223cos 123cos 10(3cos 1)10(3cos 1)33θθθ+++-++-++111033≤+21023+=210(3cos 1)103cos 3cos 123θθθ-+=⇒+103.4.(2020·北京·高三校考强基计划)使得sin115cos1n >+成立的最小正整数n 的值为()A .3B .4C .5D .6【答案】C【分析】先证明3,1s π02in 6x x x x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝-⎭>成立,再结合2()1f x x x =+-21151sin1sin 1+-n 的值.【详解】根据题意,有21151sin1sin 1n >+-记2()1f x x x =+-,则函数()f x 在(1,)+∞上是单调递增函数.设()31sin 6g x x x x =-+,则:()2222sin 2sin sin 11cos 12222222g x x x xx x x x x ⎛⎫⎛⎫=-=-+ ⎪⎪⎝⎭+⎝=-⎭',当0,2x π⎛⎫∈ ⎪⎝⎭时,有sin 22x x >,故()0g x '>,故()g x 为0,2π⎛⎫⎪⎝⎭上的增函数,故()()30100sin 6g x g x x x >=⇔->+.接下来利用当0,2x π⎛⎫∈ ⎪⎝⎭时,31sin 6x x x >-以及正弦函数的单调性估计sin1.511sin1sin 663π=-<<<有16661045sin15553f f f ⎛⎫⎛⎫<=<<=++< ⎪ ⎪⎝⎭⎝⎭,因此使得不等式成立的最小正整数n 的值为5.5.(2020·北京·高三校考强基计划)在ABC 中,90,1,A AB AC ∠=︒==点P 满足0||||||PA PB PCPA PB PC ++=,则()A .120APC ∠=︒B .120APB ∠=︒C .||2||PB PA =D .||2||PC PB = 【答案】ABCD【分析】根据题设条件可得P 为ABC 的费马点,如图,以,AB BC 为边作等边三角形,ABE BCD ,可证,PAB BAD △∽△PBC BEC △∽△,故可判断各项的正误.【详解】根据题意,,,PA PB PC方向上的单位向量之和为零向量,因此120APB BPC CPA ∠=∠=∠=︒,进而P 为ABC 的费马点.如图,以,AB BC 为边作等边三角形,ABE BCD ,则60BPD BCD ∠=∠=︒,故,,,B P C D 四点共圆,故PBC PDC ∠=∠,故D PBA A B ∠=∠,故12PA BA PAB BAD PB BD ⇒==△∽△,同理,12PB BE PBC BEC PC BC ⇒==△∽△,因此所有选项均正确.6.(2020·北京·高三校考强基计划)设,αβ为锐角,且sin cos()sin ααββ+=,则tan α的最大值为()A .4B C .1D 【答案】A【分析】利用基本不等式可求最大值.【详解】解法一:由sin cos()sin ααββ+=得2cos cos sin sin sin sin αββαβα-=,所以2cos sin tan sin tan ββαβα-=.因为,αβ均为锐角,所以22cos sin tan 1tan 11sin 12tan 42tan tan βββαββββ===≤+++,当且仅当tan β=tan α的最大值是4.解法二:由sin cos()sin ααββ+=得:1cos()sin sin [sin(2)sin ]sin 2αββααβαα+=⇒+-=,于是11sin sin(2)33ααβ=+≤,等号当111arcsin ,arccos 323αβ==时取得,因此tan α的最大值为1tan arcsin 34=.7.(2020·北京·高三校考强基计划)212lim arctan nn k k →∞==∑()A .3π4B .πC .5π4D .3π2【答案】A【分析】利用裂项相消法可求数列的和,再根据基本极限可求题设中数列的极限.【详解】根据题意,有22(1)(1)arctanarctan arctan(1)arctan(1)1(1)(1)k k k k k k k +--==+--++-,于是211]2lim arctan lim arctan(1)arctan(1)nnn n k k k k k →∞→∞===+--∑∑()()lim arctan 1arctan arctan1arctan 0n n n ∞→=++--3π4=.8.(2020·北京·高三校考强基计划)sin arctan1arcsin arccos 510⎛++= ⎝⎭()A .1B.10C.5D.2【答案】A【分析】利用复数的乘法可求3个角的和的正弦值.【详解】arctan1,arcsin510分别是复数1i,2i,3i +++的辐角,于是题中代数式为复数(1i)(2i)(3i)10i z =+++=的辐角的正弦值,为1.二、多选题9.(2020·北京·高三校考强基计划)设ABC 的三边长a ,b ,c 都是整数,面积是有理数,则a 的值可以为()A .1B .2C .3D .4【答案】CD【分析】由特例可得a 的值可以取3,4,再利用整数的性质可判断a 的值不可能为1,2,故可得正确的选项.【详解】取三边为3,4,5的三角形,其面积为6,此时a 的值可以取3,4.当1a =时,有||||a b c a b c b -<<+⇒=,此时ABC 2413(mod 4)b -≡,不为完全平方数,因此ABC 的面积不可能是有理数.当2a =时,不妨设2b c ≤≤,有||||a b c a b c b -<<+⇒=或1c b =+.情形一若c b =,则ABCp q=,其中p ,q 为互质的正整数,则()2221q b p -=,于是21b -为完全平方数,而正整数的完全平方数的最小间隔为22213-=,因此该情形不成立.情形二若1c b =+,则2222(1)23cos 44b b b C b b+-+-+==,于是面积为有理数,等价于sin C =2121293(mod 4)b b +-≡,因此ABC 的面积不可能是有理数.综上所述,a 的值不可能为1,2,可能为3,4.故选:CD.10.(2022·贵州·高二统考竞赛)如图,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复上述操作(其中123∠∠∠==),得到四个小正方形,,,A B C D ,记它们的面积分别为,,,A B C D S S S S ,则以下结论正确的是()A .A DBC S S S S +=+B .AD B C S S S S ⋅=⋅C .2A D B S S S + D .2D A CS S S +<【答案】BC【详解】设123α∠=∠=∠=,最大正方形的边长为1,小正方形,,,A B C D 的边长分别为a b c d ,,,.∵2cos ,sin cos a b ααα==,2sin cos ,sin c d ααα==,4422sin cos 2sin cos A D S S αααα+=+≥,22sin cos B C S S αα==,2A D B S S S +≥,所以C 正确;4444sin sin ,sin sin A D B C S S S S αααα==,所以A D B C S S S S =,所以B 正确,故选:BC.11.(2020·湖北武汉·高三统考强基计划)设ABC 的内角,,A B C 的对边分别为,,a b c .若{cos (sin 1)0a cbc b C ++-=),则()A .3B π=B .4B π=C .ABCD .ABC 【答案】AC【分析】利用正弦定理结合两角和的正弦公式以及基本不等式化简即可。
高中竞赛奥赛专题(一)
![高中竞赛奥赛专题(一)](https://img.taocdn.com/s3/m/78a31e8dec3a87c24028c4b2.png)
高中竞赛奥赛专题(一)专题一记忆能力与运算能力一记忆能力记忆是系统化知识,形成方法,思想的先决条件,因而我们对记忆能力应引起足够的重视。
下面来试试你的记忆能力:1.求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗?2.函数与其反函数之间的一个有用的结论:3.原函数在区间上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.4.判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗?5.你知道函数的单调区间吗?(该函数在或上单调递增;在或上单调递减)这可是一个应用广泛的函数!6.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀.log符号的快捷方法吗?7.你知道判断对数ba8.“实系数一元二次方程有实数解”转化为“”,你是否注意到必须;当a=0时,“方程有解”不能转化为.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?9.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?10.在三角中,你知道1等于什么吗?(这些统称为1的代换) 常数“1”的种种代换有着广泛的应用.11.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次)12.你还记得在弧度制下弧长公式和扇形面积公式吗?()13.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义?①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是.②直线的倾斜角、到的角、与的夹角的取值范围依次是.③反正弦、反余弦、反正切函数的取值范围分别是.14.分式不等式的一般解题思路是什么?(移项通分)15.解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.)16.利用重要不等式以及变式等求函数的最值时,你是否注意到a,b(或a ,b非负),且“等号成立”时的条件,积ab或和a+b其中之一应是定值?17.在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…….18.等差数列中的重要性质:若,则;等比数列中的重要性质:若,则.19.你是否注意到在应用等比数列求前n项和时,需要分类讨论.(时,;时,)20.等差数列的一个性质:设是数列的前n项和,为等差数列的充要条件是(a, b为常数)其公差是2a.21.你知道怎样的数列求和时要用“错位相减”法吗?(若,其中是等差数列,是等比数列,求的前n项的和)22.用求数列的通项公式时,你注意到了吗?23.你还记得裂项求和吗?(如 .)24. 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.25. 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.26. 作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见.27. 求点到面的距离的常规方法是什么?(直接法、体积法) 28. 求多面体体积的常规方法是什么?(割补法、等积变换法)29. 你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见30. 设直线方程时,一般可设直线的斜率为k ,你是否注意到直线垂直于x 轴时,斜率k 不存在的情况?(例如:一条直线经过点,且被圆截得的弦长为8,求此弦所在直线的方程。
高一数学《函数与方程》竞赛试题与答案
![高一数学《函数与方程》竞赛试题与答案](https://img.taocdn.com/s3/m/e7f08c8132d4b14e852458fb770bf78a65293a9a.png)
高一数学《函数与方程》竞赛试题第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有()A .0对B .1对C .2对D .3对2.(2021·黑龙江·鸡西实验中学高一竞赛)已知函数()lg ,010=11,10x x f x x x ⎧<≤⎨-+>⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是()A .()1,10B .()111,C .()1011,D .()10+∞,3.(2022安徽·高一竞赛)已知单调函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()9g x f x x =+-的零点所在的区间为A .(1,2)B .(2,3)C .(3,4)D .(4,5)4.(2022浙江温州·高一竞赛)已知函数32log ,0()41,0x x f x x x x ⎧>=⎨++≤⎩,函数()()F x f x b =-有四个不同的零点1x ,2x ,3x ,4x ,且满足:1234x x x x <<<,则1234x x x x +的值是().A .-4B .-3C .-2D .-15.(2022广东潮州·高一竞赛)已知()()20f x ax bx c a =++>,分析该函数图像的特征,若方程()0f x =一根大于3,另一根小于2,则下列推理不一定成立的是()A .232ba<-<B .240ac b -≤C .()20f <D .()30f <6.(2022湖南·衡阳市八中高一竞赛)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(01)a f x x a -+=<<恰有三个不同的实数根,则实数a 的取值范围是()A.1,42⎛⎫⎪ ⎪⎝⎭B.4⎛ ⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.(2022陕西渭南·高二竞赛)已知定义在R 上的函数()f x 满足:(](]222,1,0()2,0,1x x f x x x ⎧--∈-⎪=⎨-∈⎪⎩且(2)()f x f x +=,52()2xg x x -=-,则方程()()f x g x =在区间[]37-,上的所有实根之和为()A .14B .12C .11D .78.(2022河南·高三竞赛(理))已知函数lg ,0,()2,0,x x x f x x ⎧>⎪=⎨≤⎪⎩若关于x 的方程2()()10f x af x -+=有且只有3个不同的根,则实数a 的值为A .2-B .1C .2D .3二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2021·福建·厦门一中高一竞赛)已知定义在R 上的偶函数f (x ),满足f (x +2)=-f (x )+f (1),且在区间[0,2]上是增函数,下列命题中正确的是()A .函数()f x 的一个周期为4B .直线4x =-是函数()f x 图象的一条对称轴C .函数()f x 在[6,5)--上单调递增,在[5,4)--上单调递减D .方程()0f x =在[0,2021]内有1010个根10.(2022·湖南衡阳·高二竞赛)已知函数()22,0log ,0x x f x x x +≤⎧=⎨>⎩,若()f x a =有三个不等实根123,,x x x ,且123x x x <<,则()A .()f x 的单调递减区间为()0,1B .a 的取值范围是()0,2C .123x x x 的取值范围是(]2,0-D .函数()()()g x f f x =有4个零点11.(2022·山东德州·高二竞赛)对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数.人们更习惯称之为“取整函数”,例如:[]3.54-=-,[]2.12=,则下列命题中的真命题是()A .[1,0]x ∀∈-,[]1x =-B .x ∀∈R ,[]1x x <+C .函数[]y x x =-的值域为[0,1)D .方程22022[]20230x x --=有两个实数根12.(2022·辽宁高二竞赛)已知函数()221,0log ,0xx f x x x ⎧+≤⎪=⎨>⎪⎩,()()()222g x f x mf x =-+,下列说法正确的是()A .()y f x =只有一个零点()1,0B .若()y f x a =-有两个零点,则2a >C .若()y f x a =-有两个零点1x ,()212x x x ≠,则121=x x D .若()g x 有四个零点,则32m >第II 卷(非选择题)三、填空题:本题共4个小题,每小题5分,共20分.13.(2021·浙江省杭州学军中学高一竞赛)已知函数()11||f x x x x +=-++,则方程()()21f x f x -=所有根的和是___________.14.(2022浙江高三竞赛)已知()f x 是偶函数,0x ≤时,()[]f x x x =-(符号[]x 表示不超过x 的最大整数),若关于x 的方程()() 0f x kx k k =+>恰有三个不相等的实根,则实数k 的取值范围为__________.15.(2021·浙江省杭州学军中学高一竞赛)已知函数222101,()2 1,x mx x f x mx x ⎧+-≤≤=⎨+>⎩,,,若()f x 在区间[)0,+∞上有且只有2个零点,则实数m 的取值范围是_________.16.(2021·浙江省杭州学军中学高一竞赛)已知函数22log (2),20()21,0x x f x x x x +-<≤⎧=⎨-+>⎩,若函数[]2()(())(1)(())()g x f f x a f f x R a a =-++∈恰有8个不同零点,则实数a 的取值范围是____________.四、解答题:本大题共5小题,17题共10分,其余各题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.(2022湖南·高三竞赛)已知二次函数2()163f x x x p =-++.(1)若函数在区间[1,1]-上存在零点,求实数p 的取值范围;(2)问是否存在常数(0)q q ≥,使得当[,10]x q ∈时,()f x 的值域为区间D ,且D 的长度为12q -.(注:区间[,]a b ()a b <的长度为b a -).18.(2022浙江高二竞赛)已知函数()2,,f x x ax b a b =++∈R ,(1)0f =.(1)若函数()y f x =在[0,1]上是减函数,求实数a 的取值范围;(2)设()()()21212x xF x f a =-+--,若函数()F x 有三个不同的零点,求实数a 的取值范围;19.(2022四川高一竞赛))已知函数()21log f x x =+,()2xg x =.(1)若()()()()()F x f g x g f x =⋅,求函数()F x 在[]1,4x ∈的值域;(2)若()H x 求证()()11H x H x +-=.求12320212022202220222022H H H H ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值;(3)令()()1h x f x =-,则()()()()24G x h x k f x =+-,已知函数()G x 在区间[]1,4有零点,求实数k 的取值范围.20.(2022广东高一竞赛)已知函数21()log 4(1)22x xf x k k k ⎡⎤=⋅--++⎢⎣⎦.(1)当2k =时,求函数()f x 在[0,)+∞的值域;(2)已知01k <<,若存在两个不同的正数a ,b ,当函数()f x 的定义域为[],a b 时,()f x 的值域为[1,1]a b ++,求实数k 的取值范围.21.(2022·山西运城高二竞赛)已知函数()()44log 41log 2x x f x =+-,()142log 23x g x a a -⎛⎫=⋅- ⎪⎝⎭.(1)若1x ∀∈R ,对[]21,1x ∃∈-,使得()221420x xf x m +≥-成立,求实数m 的取值范围;(2)若函数()f x 与()g x 的图象有且只有一个公共点,求实数a 的取值范围.22.(2022江苏盐城高一竞赛)若定义域为(0,)+∞的函数()f x 满足()0a f x f x ⎛⎫+= ⎪⎝⎭,则称()f x 为“a 型”弱对称函数.(1)若函数sin ()ln 1x mf x x x +=-+为“1型”弱对称函数,求m 的值;(2)已知函数()f x 为“2型”弱对称函数,且函数()f x 恰有101个零点(1,2,...,101)i x i =,若1011i i x =∑>λ对任意满足条件函数()f x 的恒成立,求λ的最大值.高一数学《函数与方程》竞赛试题答案一、单选题:本题共8小题,每小题5分,共40分。
全国高中数学竞赛试题及答案
![全国高中数学竞赛试题及答案](https://img.taocdn.com/s3/m/744ad255ba68a98271fe910ef12d2af90342a847.png)
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
高中数学竞赛赛题精选(带答案)
![高中数学竞赛赛题精选(带答案)](https://img.taocdn.com/s3/m/4175242927d3240c8447ef48.png)
高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
高一数学函数1
![高一数学函数1](https://img.taocdn.com/s3/m/8a33eacdc1c708a1284a446a.png)
练习 3.∵ f ( x ) ( x 3)2 ( x 2 2)2 x 2 ( x 2 1)2 ∴可知函数 y f ( x ) 的几何意义是抛物线 y x 2 上的点 2 P ( x , x ) 到两定点 A(3, 2), B(0,1) 的距离之差. ∴ PA PB ≤ AB 10
(2)设 y= f (a-x)=-f (b + x ),则点R (a-x,y),S ( b+x, -y)都在函数y = f (x) 的图像上.
b x a x a b 2 2 y y 0 2
ab ,0). ∴线段RS的中点是定点M( 2
即R、S两点关于定点M 对称,而R、S是曲线y = f (x)上的动点.
2
思考 2.若函数 y log3 ( x ax a) 的值域为 R , 则实数 a 的取值范围是______.(94 年第 5 届“希 望杯”全国数学邀请赛)a ≤ 4 或 a ≥ 0
1答案 2答案
⑶解:∵ y x x2 3x 2 的定义域为 ,1 2, ⑴易知 y x x2 3x 2 在 2, 上是增函数, ∴当 x 2, 时, y 2, ;
竞赛辅导(三)函数(上)
引入
知识要点
思考一
练习一
思考二
练习二
竞赛辅导(三)函数(上)
函数的定义域、值域、图象与性质是 历届高中数学联赛中的重点和热点内容, 通常出现在一试的题目中,并以二次函数 问题为最,作为代数解决问题的工具,也 时常需运用函数思想来解决一些更有挑战 的竞赛试题.
函数 1.函数的值域(最值)及其求法 主要方法有单调性法、换元法、判别式法、不 等式法、配方法. 2.函数的性质与图象 主要指单调性、奇偶性、周期性、对称性等, 在解决与函数有关的(如方程、不等式等)问题时,巧 妙地利用函数及其图象的相关性质 ,可以使问题得到 简化,从而达到解决问题的目的. 3.二次函数问题(热点问题) 在高考和高中联赛中都占有重要的地位. 注意解析式与函数的图象的关系. 4.函数方程与迭代(了解一下) 含有未知函数的等式的方程叫做函数方程.
高中数学竞赛模拟试题 1
![高中数学竞赛模拟试题 1](https://img.taocdn.com/s3/m/da22daef998fcc22bcd10d00.png)
全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2kk e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O A B C 中,若点O 处的三条棱两两垂直,且长度均为,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由A B C ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将A B C ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以F A 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:F M F N F A +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a b b b b b b ++=++,且123m in{,,}a a a 123min{,,}b b b ≤,求证:123m ax{,,}a a a 123m ax{,,}b b b ≤.第二试一、设圆的内接四边形A B C D 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且A B C ∠与A D C ∠的平分线交于点E ,求证:点E 在A C 上的充要条件是PR QR =.二、已知周长为1的i i i A B C ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a b c =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.。
湖南省高中数学竞赛试题及答案
![湖南省高中数学竞赛试题及答案](https://img.taocdn.com/s3/m/6da429313868011ca300a6c30c2259010202f3c8.png)
湖南省高中数学竞赛试题及答案高中数学竞赛试题含答案2022年湖南省高中数学竞赛试题及答案一、选择题:(本大题共10个小题;每小题5分,共50分,在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知函数f(x)是R上的奇函数,g(x)是R上的偶函数,若f(x) g(x) x2 9x 12,则f(x) g(x) ( )A.x 9x 12 2.有四个函数:① y=sinx+cosx ② y= sinx-cosx ③ y=sinx cosx ④ y 其中在(0,A.①3.方程x2 x 1 x x22B.x 9x 122C.x 9x 12 D.x 9x 1222sinxcosx2)上为单调增函数的是( )B.②1C.①和③ D.②和④(x2 1) x的解集为A(其中π为无理数,π=3.141 ,x为实数),则A中所有元素的平方和等于( ) A.0B.12C.22D.44.已知点P(x,y)满足(x 4cos ) (y 4sin ) 4( R),则点P(x,y)所在区域的面积为A.36πB.32πC.20πD.16π ( )5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为( ) A.9B.12D.186.已知数列{an}为等差数列,且S5=28,S10=36,则S15等于( ) A.807.已知曲线C:y A.( 1,2)B.40C.24D.-48x2 2x与直线l:x y m 0有两个交点,则m的取值范围是( ) B.( 2,2 1)C.[0,2 1)D.(0,2 1)8.过正方体ABCD-A1B1C1D1的对角线BD1的截面面积为S,Smax和Smin分别为S的最大值和最小值,则值为( ) A.Smax的Smin2B.6 2C.2 3263高中数学竞赛试题含答案9.设x 0.820.5,y sin1,z log3A.xyzB.yzx7,则x、y、z的大小关系为( )C.zxyD.zyx10.如果一元二次方程x2 2(a 3)x b2 9 0中,a、b分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P= ( ) A.1 18B.1 9C.1 6D.13 18二、填空题(本大题共4个小题,每小题8分,共32分)x2y21上异于长轴端点的任意一点,F1、F2分别是其左、右焦点,O为中心,则11.设P是椭圆169|PF1| |PF2| |OP|2 ___________.12.已知△ABC中,, ,试用、的向量运算式子表示△ABC的面积,即S△ABC= ____________________.13.从3名男生和n名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为n=__________.14.有10名乒乓球选手进行单循环赛,比赛结果显示,没有和局,且任意5人中既有1人胜其余4人,又有1人负其余4人,则恰好胜了两场的人数为____________个.三、解答题(本大题共5个小题,15-17题每小题12分,18题、19题每小题16分,共68分)15.对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x)) x,则称x为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A {x|f(x) x}34,则35B {x|f[f(x)] x}.(1). 求证:A B2(2).若f(x) ax 1(a R,x R),且A B ,求实数a的取值范围.16.某制衣车间有A、B、C、D共4个组,各组每天生产上衣或裤子的能力如下表,现在上衣及裤子要配套生产(一件上衣及一条裤子为一套),问在7天内,这4个组最多能生产多少套?高中数学竞赛试题含答案17.设数列{an}满足条件:a1 1,a2 2,且an 2 an 1 an(n 1,2,3, ) 求证:对于任何正整数n,都有an 1 11an18.在周长为定值的△ABC中,已知|AB|=6,且当顶点C位于定点P时,cosC有最小值为(1).建立适当的坐标系,求顶点C 的轨迹方程.(2).过点A作直线与(1)中的曲线交于M、N两点,求|BM| |BN|的最小值的集合.7. 2519.已知三棱锥O-ABC的三条侧棱OA、OB、OC两两垂直,P是底面△ABC内的任一点,OP与三侧面所成的角分别为α、β、 .求证:23arcsin3参考答案一、选择题:ADCBC CCCBA 二、填空题:三、解答题:15.证明(1).若A=φ,则A B 显然成立;若A≠φ,设t∈A,则f(t)=t,f(f(t))=f(t)=t,即t∈B,从而A B. 解(2):A中元素是方程f(x)=x 即ax 1 x的实根.2由A≠φ,知a=0 或a 0 1即a4 1 4a 0342222B中元素是方程a(ax 1) 1 x 即ax 2ax x a 1 0的实根由A B,知上方程左边含有一个因式ax x 1,即方程可化为2高中数学竞赛试题含答案(ax2 x 1)(a2x2 ax a 1) 0因此,要A=B,即要方程ax ax a 1 0 ① 要么没有实根,要么实根是方程ax x 1 0 ② 的根. 若①没有实根,则2 a2 4a2(1 a) 0,由此解得a222223 4若①有实根且①的实根是②的实根,则由②有ax ax a,代入①有2ax+1=0.11131 0,由此解得a . ,再代入②得2a4a2a413故a的取值范围是[ ,]44897616.解:A、B、C、D四个组每天生产上衣与裤子的数量比分别是:,,,,且__-__6897 ① __-__由此解得x只能让每天生产上衣效率最高的组做上衣,生产裤子效率最高的组做裤子,才能使做的套数最多. 由①知D组做上衣效率最高,C组做裤子效率最高,于是,设A组做x天上衣,其余(7-x)天做裤子;B组做y天上衣,其余(7-y)天做裤子;D组做7天上衣,C组做7天裤子.则四个组7天共生产上衣6×7+8x+9y (件);生产裤子11×7+10(7-x)+12(7-y) (条) 依题意,有42+8x+9y=77+10(7-x)+12(7-y),即y 9 令μ= 42+8x+9y=42+8x+9(96x. 76x2)=123+x 77max因为0≤x≤7,所以,当x=7时,此时y=3, μ取得最大值,即μ=125.因此,安排A、D组都做7天上衣,C组做7天裤子,B组做3天上衣,4天裤子,这样做的套数最多,为125套.17.证明:令a0 1,则有ak 1 ak ak 1,且1naka于是n k 1k 1ak 1k 1ak 1nakak 1(k 1,2, ) ak 1ak 1由算术-几何平均值不等式,可得1 aa1a2aaan+0 1 n 1 a2a3an 1a2a3an 1注意到a0 a1 1,可知高中数学竞赛试题含答案11n 11nan 1,即n 1 11an18.解:(1) 以AB所在直线为x轴,线段AB的中垂线为y轴建立直角坐标系,设|CA|+|CB|=2a(a3)为定值,所以C点的轨迹是以A、B为焦点的椭圆,所以焦距2c=|AB|=6.|CA|2 |CB|2 62(|CA| |CB|)2 2|CA||CB| 362a2 18因为cosC 12|CA||CB|2|CA||CB||CA||CB|又|CA| |CB| (2a__-__) a2,所以cosC 1 2,由题意得1 2 ,a 25. 225aa此时,|PA|=|PB|,P点坐标为P(0,±4).x2y21(y 0) 所以C点的轨迹方程为2516(2) 不妨设A点坐标为A(-3,0),M(x1,y1),N(x2,y2).当直线MN的倾斜角不为90时,设其方程为1k__k2)x kx ( 1) 0 y=k(x+3) 代入椭圆方程化简,得(__-__150k2225k2 400,x1x2 显然有△≥0,所以x1 x2 2216 25k16 25k而由椭圆第二定义可得339|BM| |BN| (5 x1)(5 x2) 25 3(x1 x2) x1x25525144450k81k __k __ 25 25 25__ 25k216 25k216 25k2k225222k2__-____-__取最小值,显然. 只要考虑的最小值,即考虑1 1616k2 k22525k2当k=0时,|| ||取最小值16.当直线MN的倾斜角为90时,x1=x2=-3,得|BM| || (342) 16 5x2y21(y 0),故k 0,这样的M、N不存在,即|| ||的最小值的集合为空但2516集.高中数学竞赛试题含答案19.证明:由题意可得sin2 sin2 sin2 1,且α、β、(0, 所以sin 1 sin sin2222)1(cos2 cos2 ) cos( )cos( ) 2222因为cos( ) cos( ),所以sin cos( ) sin[当当2( )]2时,时,2.22( ),同样有2故2另一方面,不妨设,则sin3,sin33令sin 1 则sin23,sin 1 1 ()2 sin2 ,331 sin2 sin2 1 1sin2 cos( )cos( ) cos( 1 1)cos( 1 1)因为1 1 ,所以cos( 1 1) cos( ) 所以cos( ) cos( 1 1) 所以1 1如果运用调整法,只要α、β、不全相等,总可通过调整,使1 1 1增大. 所以,当α=β= =arcsin。
高中数学竞赛培训资料 函数
![高中数学竞赛培训资料 函数](https://img.taocdn.com/s3/m/6b7e390e0740be1e650e9a8e.png)
高中数学竞赛培训资料 函数例一. 定义在R 上的函数f(x)满足:f(x -x 1)=x 2+21x (对所有x ≠0) 则f(x)的表达式是例二. 函数f(x)对任意正实数x ,y 满足f(xy)=f(x)+f(y),且f(2)=1,求f(641)之值。
例三. 设f(x)=x 4+ax 3+bx 2+cx+d ,其中a ,b ,c ,d 是常数,若f(1)=10,f(2)=20,f(3)=30,求f(10)+f(-6)例四. 对于每个实数x ,设f(x)是4x+1,x+2,-2x+4三个函数中的最小值,则f(x)的最大值是多少?例五. (91年全国联赛试题)设函数y=f(x)对一切实数x 都满足:f(3+x)=f(3-x),方程f(x)=0恰有6个不同的实根,则这6个实根之和为(A ) 18 (B ) 12 (C ) 9 (D ) 0例六.(88年全国联赛试题)设有三个函数,第一个是y=)(x ϕ,它的反函数就是第二个函数,而第三个函数的图象与第二个函数图象关于直线x+y=0对称,那么第三个函数是(A) y=)(x ϕ (B )y=-)(x -ϕ (C) y=-)(1x -ϕ (D) y=-)(1x --ϕ例七.设f(x)=2442+x ,求f(10011)+f(10012)+f(10013)++ f(10011000) 之值。
例八.定义在R 上的函数y=f(x)具有以下性质1. 对任何x ∈R 都有f (x 3 ) = f 3 (x)2. 对任何x 1, x 2 ∈R 且x 1≠x 2 都有f (x 1)≠f (x 2)则f 2(-1)+f 2(0)+f 2(1)=例九.若a >0,a ≠1,F(x)是一个奇函数,则G(x)=F(x)⎥⎦⎤⎢⎣⎡+-2111x a 是 (A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )与a 的取值有关例十.已知函数y=f(x),x ∈R ,f(0)≠0,且对于任意实数x 1,x 2都有f(x 1)+f(x 2)=2f(221x x +)×f(221x x -),则此函数是 (A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )奇偶性不确定例十一.已知实数 x,y 满足(3x+y)2+x 5+4x+y=0,求证:4x+y=0例十二.已知函数f(x)满足:1)f(21)=1 2)值域为[]1,1-3)严格递减,4)f(xy)=f(x)+f(y)试求不等式f -1(x) f -1(x -11)≤21的解集。