7.2.2、3平面向量的减法和数乘(1)

合集下载

平面向量的加减与数乘

平面向量的加减与数乘

平面向量的加减与数乘平面向量是数学中重要的概念之一,它在几何学、物理学等领域中有着广泛的应用。

本文将讨论平面向量的加减与数乘运算,以及它们的性质和应用。

一、平面向量的表示平面向量可以用有序的数对表示,如向量AB可以表示为(AB),其中A和B是向量的起点和终点。

另外,向量也可用坐标表示,如向量AB的坐标表示为(AB) = (x2 - x1, y2 - y1),其中(x1, y1)和(x2, y2)分别是A和B的坐标。

二、平面向量的加法设有两个平面向量AB和CD,它们的起点分别为A和C,终点分别为B和D。

向量AB和CD的和为向量AD,即(AB) + (CD) = (AD)。

将向量AB平移到向量CD的起点,然后从起点画一条向量,这条向量就是向量AD。

三、平面向量的减法与向量的加法不同,向量的减法是通过减去一个向量得到另一个向量。

设有两个平面向量AB和CD,它们的起点分别为A和C,终点分别为B和D。

向量AB和CD的差为向量AC,即(AB) - (CD) = (AC)。

将向量CD平移到向量AB的起点,然后从起点画一条向量,这条向量就是向量AC。

四、平面向量的数乘平面向量的数乘是将向量的长度与一个实数相乘,从而改变向量的长度和方向。

设有一个平面向量AB和实数k,向量AB的数乘为k(AB),即k乘以向量的长度。

当k>0时,数乘向量的方向与原向量相同;当k<0时,数乘向量的方向与原向量相反。

五、平面向量运算的性质1. 加法的交换律:对于任意的平面向量AB和CD,有(AB) + (CD) = (CD) + (AB)。

2. 减法的性质:对于任意的平面向量AB和CD,有(AB) - (CD) = (AB) + (-CD),其中-CD是向量CD的相反向量。

3. 结合律:对于任意的平面向量AB、CD和EF,有(AB) + ((CD) + (EF)) = ((AB) + (CD)) + (EF)。

4. 数乘和加法的分配律:对于任意的实数k和平面向量AB、CD,有k((AB) + (CD)) = k(AB) + k(CD)。

平面向量的基本运算法则

平面向量的基本运算法则

平面向量的基本运算法则平面向量是在平面上具有大小和方向的量,它在数学和物理中都有广泛的应用。

对于平面向量,有一些基本的运算法则需要掌握。

一、平面向量的表示方法表示一个平面向量可以使用坐标表示法或者矢量表示法。

1. 坐标表示法:假设平面上有一个点P,以原点O为起点,连接OP,并将OP表示为一个有向线段,那么OP就是一个平面向量。

通常用大写字母表示向量,比如向量OP可以表示为向量OQ = (x, y)。

2. 矢量表示法:平面向量还可以使用矢量符号表示,比如向量OP 可以表示为向量→OP。

二、平面向量的基本运算包括加法、减法、数乘和数量积。

1. 加法:设有两个平面向量→AB和→CD,它们的和表示为→AB+→CD,即将两个向量的起点对齐,连接终点即可得到它们的和向量→AD。

2. 减法:设有两个平面向量→AB和→CD,它们的差表示为→AB-→CD,即将被减向量→CD取反,然后按照加法法则相加,即→AB+(-→CD)。

3. 数乘:设有一个平面向量→AB,它与一个实数k的乘积表示为k→AB,即将向量→AB的长度乘以实数k,方向不变。

4. 数量积:设有两个平面向量→AB和→CD,它们的数量积表示为→AB·→CD,即将两个向量的模长相乘再乘以它们夹角的余弦值。

如果→AB和→CD垂直,它们的数量积为0;如果夹角为锐角,它们的数量积为正;如果夹角为钝角,它们的数量积为负。

三、平面向量基本运算法则的性质平面向量的基本运算法则满足一些重要的性质。

1. 交换律:对于加法和数量积来说,交换向量的顺序不改变运算结果,即→AB+→CD = →CD+→AB,→AB·→CD = →CD·→AB。

2. 结合律:对于加法来说,可以将多个向量的和分成多个组,然后先对每组中的向量进行加法运算,再将每组的运算结果进行加法运算,结果是相同的。

3. 分配律:对于加法和数乘来说,分配律成立,即k(→AB+→CD)= k→AB+k→CD,(k+m)→AB = k→AB+m→AB。

平面向量的运算规则

平面向量的运算规则

平面向量的运算规则平面向量是研究平面上有大小和方向的量,常用于解决几何问题和物理问题。

为了对平面向量进行运算,我们需要了解平面向量的运算规则。

本文将介绍平面向量的加法、减法、数乘和数量积的运算规则,以及向量的共线性和平行性。

一、平面向量的加法规则对于平面上的两个向量A和A,它们的加法规则如下:A + A = A + A即向量的加法满足交换律。

二、平面向量的减法规则对于平面上的两个向量A和A,它们的减法规则如下:A - A≠ A - A向量的减法不满足交换律。

减法运算可以通过将减法转化为加法进行计算:A - A = A + (-A)其中,-A表示向量A的反向向量,即大小相等,方向相反。

三、平面向量的数乘规则对于平面上的向量A和一个实数A,它们的数乘规则如下:AA = AA即数乘满足交换律。

数乘后的向量与原向量大小相等,方向与原向量平行或反向。

四、平面向量的数量积规则平面向量的数量积又称为点积或内积。

对于平面上的两个向量A和A,它们的数量积规则如下:A·A = AA cosθ其中,A·A表示向量A和A的数量积,AA为A和A的模的乘积,θ为A和A之间的夹角。

根据数量积的定义,我们可以得到以下结论:1. 若A·A = 0,则A与A垂直,即A和A互相垂直。

2. 若A·A > 0,则A与A夹角为锐角。

3. 若A·A < 0,则A与A夹角为钝角。

五、平面向量的共线性和平行性对于平面上的两个向量A和A,它们的共线性和平行性判断规则如下:1. 共线性判断:若存在一个实数A,使得A = AA,则A与A共线,且方向相同或相反。

2. 平行性判断:若A与A共线且方向相同或相反,则A与A平行。

总结:平面向量的运算规则包括加法、减法、数乘和数量积。

其中,加法满足交换律,减法不满足交换律,数乘满足交换律。

数量积可以判断向量的垂直性和夹角的锐钝性。

同时,共线性和平行性的判断也是平面向量运算中的重要内容。

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则平面向量是二维的有方向和大小的量,通常用箭头表示。

在平面上,我们可以进行平面向量的加法、减法、数乘、点乘和叉乘等运算,下面将详细介绍这些运算法则。

1.平面向量的加法:设有平面向量A和B,表示为⃗A和⃗B,其加法运算为:⃗A+⃗B=⃗C,其中C是由A和B的箭头所形成的三角形的对角线的向量。

加法满足以下性质:-交换律:⃗A+⃗B=⃗B+⃗A-结合律:(⃗A+⃗B)+⃗C=⃗A+(⃗B+⃗C)2.平面向量的减法:设有平面向量A和B,表示为⃗A和⃗B,其减法运算为:⃗A-⃗⃗B=⃗C,其中C是由A的箭头指向B的箭头所形成的三角形的对角线的向量。

3.平面向量的数乘:设有平面向量A和实数k,表示为⃗A和k,其数乘运算为:k⃗A=⃗B,其中B的大小等于A的大小乘以k,方向与A相同(若k>0),或相反(若k<0)。

数乘满足以下性质:- 结合律:k(l⃗A) = (kl)⃗A-分配律:(k+l)⃗A=k⃗A+l⃗A4.平面向量的点乘(数量积):设有平面向量A和B,表示为⃗A和⃗B,其点乘运算为:⃗A · ⃗B = ABcosθ,其中A和B的夹角θ的余弦值等于点乘结果与两个向量大小的乘积的商。

点乘满足以下性质:-交换律:⃗A·⃗B=⃗B·⃗A-结合律:(⃗A+⃗B)·⃗C=⃗A·⃗C+⃗B·⃗C-数乘结合律:(k⃗A)·⃗B=k(⃗A·⃗B)特殊情况下:-若⃗A与⃗B垂直,即⃗A·⃗B=0,则称⃗A与⃗B是正交的或垂直的。

-若⃗A和⃗B非零,且⃗A·⃗B>0,则夹角θ为锐角。

-若⃗A和⃗B非零,且⃗A·⃗B=0,则夹角θ为直角。

-若⃗A和⃗B非零,且⃗A·⃗B<0,则夹角θ为钝角。

5.平面向量的叉乘(向量积):设有平面向量A和B,表示为⃗A和⃗B,其叉乘运算为⃗A × ⃗B = nABsinθ⃗n,其中n为垂直于A和B所在平面的单位向量,θ为A和B 的夹角。

(完整版)平面向量的加减法运算和数乘运算

(完整版)平面向量的加减法运算和数乘运算

注意:(1)两相向量的和仍是一个向量;(2)当向量a r 与b r 不共线时,a r +b r 的方向不同向,且|a r +b r |<|a r |+|b r |;(3)当a r 与b r 同向时,则a r +b r 、a r 、b r 同向,且|a r +b r |=|a r |+|b r |;当a r 与b r 反向时,若|a r |>|b r |,则a r +b r 的方向与a r 相同,且|a r +b r |=|a r |-|b r |,若|a r |<|b r |,则a r +b r 的方向与b r 相同,且|a r +b r |=|b r |-|a r |.2、向量加法的交换律:a r +b r =b r +a r3.向量加法的结合律:(a r +b r ) +c r =a r + (b r +c r )证:知识点二 向量的减法1.用“相反向量”定义向量的减法:“相反向量”的定义: 记作 规定:零向量的相反向量仍是零向量-(-a r ) = a r任一向量与它的相反向量的和是零向量a r + (-a r ) =0r如果a r 、b r 互为相反向量,则a r = -b r , b r = -a r , a r + b r = 0r向量减法的定义:向量a r 加上的b r 相反向量,叫做a r 与b r 的差,即:a r - b r = a r + (-b r )2.用加法的逆运算定义向量的减法:3.求作差向量:已知向量a r 、b r ,求作向量∵(a r -b r ) + b r = a r + (-b r ) + b r = a r +0r = a r减法的三角形法则作法:在平面内取一点O , 作OA u u u r = a r , OB uuu r = b r , 则BA u u u r = a r - b r即a r - b r 可以表示为从向量b r 的终点指向向量a r 的终点向量知识点三 向量的数乘运算 1、定义:实数λ与向量a ρ的积是一个 ,这种运算叫做向量的数乘,记作: ,其长度与方向规定如下:(1)|λa ρ|=|λ||a ρ| (2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=02、运算定律 结合律:λ(μa ρ)=第一分配律:(λ+μ)a ρ= 第二分配律:λ(a ρ+b ρ)=3、向量共线定理。

平面向量复习课教案

平面向量复习课教案

平面向量复习课教案第一章:向量的概念与运算1.1 向量的定义与表示介绍向量的概念,解释向量的定义展示向量的表示方法,包括箭头表示和坐标表示强调向量的方向和模长的意义1.2 向量的运算复习向量的加法、减法和数乘运算解释向量加法和减法的几何意义探讨数乘向量的性质和运算规则第二章:向量的数量积2.1 数量积的定义与性质引入数量积的概念,解释数量积的定义展示数量积的计算公式和性质强调数量积的交换律、分配律和消去律2.2 数量积的应用探讨数量积在向量投影中的应用解释夹角和向量垂直的概念展示数量积在向量长度和方向判断中的应用第三章:向量的坐标运算3.1 坐标系的建立介绍坐标系的定义和建立方法解释直角坐标系和笛卡尔坐标系的区别和联系强调坐标系中点的表示方法3.2 向量的坐标运算复习向量在坐标系中的表示方法介绍向量的坐标运算规则,包括加法、减法和数乘强调坐标运算与几何意义的联系第四章:向量的线性相关与基底4.1 向量的线性相关性引入线性相关的概念,解释线性相关的定义探讨线性相关性的性质和判定方法强调线性相关性与向量组的关系4.2 向量的基底介绍基底的概念,解释基底的定义和作用探讨基底的选择方法和基底的性质强调基底与向量表示和线性相关的联系第五章:向量的线性空间5.1 线性空间的概念引入线性空间的概念,解释线性空间的定义探讨线性空间的性质和运算规则强调线性空间与向量组的关系5.2 向量组的线性表示介绍线性表示的概念,解释线性表示的定义探讨线性表示的方法和性质强调线性表示与基底和线性空间的关系第六章:向量的叉积与外积6.1 叉积的定义与性质引入叉积的概念,解释叉积的定义和几何意义展示叉积的计算公式和性质强调叉积的交换律、分配律和消去律6.2 叉积的应用探讨叉积在面积计算和力矩中的应用解释向量垂直和向量积的关系展示叉积在几何图形判断中的应用第七章:向量场的概念与运算7.1 向量场的定义与表示介绍向量场的概念,解释向量场的定义和表示方法展示向量场的图形表示和箭头表示强调向量场的物理意义和应用领域7.2 向量场的运算复习向量场的加法和乘法运算解释向量场的叠加原理和运算规则强调向量场的运算与物理意义的联系第八章:向量函数的概念与性质8.1 向量函数的定义与表示引入向量函数的概念,解释向量函数的定义和表示方法展示向量函数的图像和性质强调向量函数的应用领域和数学意义8.2 向量函数的性质与应用探讨向量函数的连续性、可导性和可微性解释向量函数在物理和工程中的应用展示向量函数的图像和性质第九章:向量微积分的基本定理9.1 向量微积分的定义与性质介绍向量微积分的基本概念,解释向量微积分的定义和性质展示向量微积分的运算规则和公式强调向量微积分在物理和工程中的应用9.2 向量微积分的基本定理复习格林定理、高斯定理和斯托克斯定理解释向量微积分基本定理的意义和应用强调向量微积分基本定理在几何和物理中的重要性第十章:向量的进一步应用10.1 向量在几何中的应用探讨向量在几何图形判断和证明中的应用解释向量积和向量场的几何意义展示向量在几何问题解决中的应用10.2 向量在物理中的应用解释向量在物理学中的重要性,包括力学和电磁学探讨向量在力学中速度、加速度和力矩的应用展示向量在电磁学中电场和磁场的应用10.3 向量在工程中的应用介绍向量在工程领域中的应用,如土木工程和航空工程解释向量在结构分析和流体动力学中的应用展示向量在工程问题解决中的作用重点和难点解析1. 向量的概念与表示:向量的定义和表示方法是理解向量运算和应用的基础。

平面向量的运算

平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。

平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。

本文将介绍平面向量的基本概念和运算规则。

一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。

可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。

二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。

具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。

三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。

对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。

四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。

设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。

五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。

设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。

中职教育-数学(基础模块)下册课件:第七章 平面向量.ppt

中职教育-数学(基础模块)下册课件:第七章  平面向量.ppt

,E→.F

FG
(3)相等向量为

AB
C→D ,D→E

GH

(4)互为负向量的向量为

BC
D→E ,B→C

GH

7.2 平面向量的线性运算
7.2.1 平面向量的加法
如右图所示,一人从A点出发,走到B点,又从B点
走到C点,则他的最终位移

AC
可以看作是位移

AB

B→C 的和.
如右图所示,已知向量a与b,
解 位移是向量,它包括大小和方向 两个要素.本题中,虽然这两个向量的 模相等,但它们的方向不同,所以,两 辆汽车的位移不相同.如图所示为用有 向线段表示两辆汽车的位移.
方向相同或相反的两个非零向量称为平行向量.向量a与b平行记作 a ∥b . 如图所示,向量 a ,b ,c平行,任意作一条与向量a所在直线平行的直线l,
如右
图所示,
设有两个
非零向量
a
,b



OA
a
,O→B
b
,则
AOB θ(0°剟θ 180°) 称为向量 a ,b 的夹角.
显然,当 θ 0°时,a 与 b 同向;当 θ 180°时,a 与 b 反向;当 θ 90° 时,a 与 b 垂直,记作 a b .
我们将 a b cosθ 称为向量 a ,b 的内积(或数量积),记作 a gb ,
7.1
• 平面向量的概念
7.2
• 平面向量的线性运算
7.3
• 平面向量的坐标表示
7.4
• 平面向量的内积
7.1 平面向量的概念
标量是指只有大小、没有方向的量,如长度、质量、温度、面积等; 向量是指既有大小、又有方向的量,如速度、位移、力等.

7.2-平面向量的加法、减法和数乘向量

7.2-平面向量的加法、减法和数乘向量

a
交换律:
ab
总结: 向量的加法满足交换律与结合律。
ba
结合律:
a b c a b c
典例分析
例2:如图所示,已知 a, b,用向量加法的三角形 法则 作和向量a b。
a b
(1)
解析: 作AB a, BC b;
A B
C
a b AB BC AC
D O A B
C
练习3
如图所示,已知O是正六边形ABCDEF的中心, 则:
A F O E
( 1 ) OA OC ______ OB ;
(2) BC EF ______ 0 ;
B
0 ; ( 3) OA FE ______
D C (4) AB BC CD DE EF FA ________ 0 。
(1)用向量加法的平行四边形法则作出 箭尾所受两个方向力F1、F2的合力F。 (2)如果力F1、F2的大小为100N,它 们的夹角为90°,则它们的合力F的大小 是多少?
典例分析
例3:如图所示,已知a, b,用向量加法的平行四边 形法则作和向量a b。
b
a
A
C
D
B
在平面内任取一点 A, 作AB b, AC a, 解: 以AC、AB为邻边作平行四边形 ABDC,
(3)b / / a(a 0)是b a成立的什么条件?
成立 充要
41
向量共线定理:
向量a (a 0)与b共线, 当且仅当有唯一一个实数 , 使b a.
即a与b共线
b a (a 0)
思考:1) a 为什么要是非零向量?

2.2.2-3平面向量减法和数乘及其几何意义

2.2.2-3平面向量减法和数乘及其几何意义

即: a b a (b)
注:向量的运算结果仍然是一个向量。
探究一:向量减法的三角形法则 如图
a
b
a (b)
(1)求作 b; (2)在(1)的基础上, 求作a (b)
B
a
A
a (b) a b
C
b
AB AC CB
b
向量减法的三角形法则
1 在平面内任取一点O
2 作OA a,OB b
A
3向量BA a b 4 BA OA OB
注意:
O
.
a b
a b
B
1、两个向量相减,两个向量起点必须相同 2、差向量指向被减向量的终点
注意:准确运用实数与向量积的定义及运 算律是解题的关键!
1.把下列各小题中的向量 b表示为实数与 a的积: (1)a 3e, b 9e; 2 1 (2)a e, b e; 3 3
b 3a 1 b a 2
2.化简: 5(3a 2b) 4(2b 3a)
3a 2b
共线定理
对于向量 a (a≠0), b ,以及实数λ 思考1:如果 b=λa 那么,向量a与b是否共线? 思考2:如果 向量a与b共线, 那么,是否存在λ使得b=λa ? 向量 b 与非零向量 a 共线当且仅当 有唯一一个实数λ,使得 b=λa
如图,已知两个非零向量 a, b ,试作 OA a b ,
(1)(BA BC) (ED EC)
DA
CA CD
(2)(AC BO OA) (DC DO OB)

平面向量的加减法

平面向量的加减法

[精解详析] 因为 a+b= BA ,c-d= DC , 所以 a= OA ,b= BO ,c= OC ,d= OD ;如图所示,作 平行四边形 OBEC,平行四边形 ODFA,根据平行四边形法则 可得:b-c= EO ,a+d= OF .
跟踪练习
1.如图,已知正方形 ABCD 的边长等于 1,
An1 An A0 An ,这可以称为向量加法
例题讲解
[例1] 如图所示,
已知向量a,b,c试作出向量a+b+c.
[精解详析] 法一:如图 1 所示, 首先在平面内任取一点 O,作向量 OA = a,再作向量 AB =b,则得向量 OB =a+b; 然后作向量 BC = c,则向量 OC = (a+ b)+ c =a+b+c 即为所求.
AB =a, BC =b, AC =c,试作以下
向量并分别求模. (1)a+b+c; (2)a-b+c.
解:(1)如图,由已知得:a+b= AB + BC = AC ,又 AC =c, 延长AC到E, 使| CE |=| AC |. 则a+b+c= AE ,且| AE |=2 2. (2)作 BF = AC ,连接CF, 则D、C、F共线, 则 DB + BF = DF , 而 DB = AB - AD =a- BC =a-b, ∴a-b+c= DB + BF = DF 且| DF |=2.
例题讲解
[例 2] 化简或计算:
(1) CD + BC + AB ; (2) AB + DF + CD + BC + FA .
[精解详析] (1) CD + BC + AB =( AB + BC )+ CD = AC + CD = AD . (2) AB + DF + CD + BC + FA =( AB + BC )+( CD + DF )+ FA = AC + CF + FA = AF + FA =0.

高三一轮复习 平面向量的概念及线性运算

高三一轮复习 平面向量的概念及线性运算

第二十六课时平面向量的概念及线性运算考纲要求:1.平面向量的概念(B) 2.平面向量的加法、减法及数乘运算(B)知识梳理:1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量.规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b +c)减法求a与b的相反向量-b的和的运算a-b=a+(-b) 数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在惟一一个实数λ,使得b=λa.基础训练::1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)向量不能比较大小,但向量的模可以比较大小.( )(2)向量与有向线段是一样的,因此可以用有向线段来表示向量.( )( )(4)向量a-b与b-a是相反向量.( )(5)若a∥b,b∥c,则a∥c.( )(6)向量与向量是共线向量,则A,B,C,D四点在一条直线上.( )(7)当两个非零向量a,b共线时,一定有b=λa,反之成立.( )答案:(1)√(2)×(3)√(4)√(5)×(6)×(7)√2.如图,设O是正六边形ABCDEF的中心,则图中与相等的向量有________.3.化简:4.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________.答案:-13[典题1](1)给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________. (2)给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题为________.(填序号) 解析:(1)①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.(2)①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量. 答案:(1)②③ (2)①③④ 小结:(1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.[典题2](1)设D 为△ABC 所在平面内一点,则下列结论正确的是________.(填序号)(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . (λ1,λ2为实数),则λ1+λ2的值为________.答案:(1)① (2)12答案:23小结:向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.练习:答案:3[典题3]设两个非零向量a 和b 不共线.(1)若=a +b ,=2a +8b ,=3(a -b ).求证:A 、B 、D 三点共线. (2)试确定实数k ,使k a +b 和a +k b 共线. 解析: (1)因为=a +b ,=2a +8b ,=3(a -b ),所以=+=2a +8b +3(a -b )=5(a +b )=5,所以,共线.又与有公共点B , 所以A 、B 、D 三点共线.(2)因为k a +b 与a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ),即⎩⎪⎨⎪⎧k =λ,1=λk ,解得k =±1.即k =±1时,k a +b 与a +k b 共线. [探究1] 若将本例(1)中“=2a +8b ”改为“=a +m b ”,则m 为何值时,A 、B 、D 三点共线?解:+=(a +m b )+3(a -b )=4a +(m -3)b ,即=4a +(m -3)b .若A 、B 、D 三点共线,则存在实数λ,使=λ,即4a +(m -3)b =λ(a +b ),∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7.故当m =7时,A 、B 、D 三点共线.[探究2] 若将本例(2)中的“共线”改为“反向共线”,则k 为何值? 解:因为k a +b 与a +k b 反向共线,所以存在实数λ,使k a +b =λ(a +k b )(λ<0),所以⎩⎪⎨⎪⎧k =λ,k λ=1,所以k =±1.又λ<0,k =λ,所以k =-1.故当k =-1时两向量反向共线. 小结:(1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.练习:1.已知a ,b 是两个不共线的非零向量,且a 与b 起点相同.若a ,t b ,13(a +b )三向量的终点在同一直线上,则t =________.解析:∵a ,t b ,13(a +b )三向量的终点在同一条直线上,且a 与b 起点相同.∴a -t b 与a -13(a +b )共线,即a -t b 与23a -13b 共线,∴存在实数λ,使a -t b =λ⎝ ⎛⎭⎪⎫23a -13b , ∴⎩⎪⎨⎪⎧1=23λ,t =13λ,解得λ=32,t =12,即t =12时,a ,t b ,13(a +b )三向量的终点在同一条直线上.答案:3总结:1.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.注意:1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.课后作业1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量与相等;④若非零向量与是共线向量,则A ,B ,C ,D 四点共线.则所有正确命题的序号是________.解析:根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量与互为相反向量,故③错误;由于方向相同或相反的向量为共线向量,故与也可能平行,即A ,B ,C ,D 四点不一定共线,故④错误.3.如图,已知AB 是圆O 的直径,点C 、D 是半圆弧的两个三等分点,=a ,=b ,则=________.解析:连结CD ,由点C 、D 是半圆弧的三等分点,得CD ∥AB 且=12a ,所以=b +12a .4.A 、B 、O 是平面内不共线的三个定点,且点P 关于点A 的对称点为Q ,点Q 关于点B 的对称点为R ,则=________.6.如图,在△ABC中,AH⊥BC交BC于H,M为AH的中点,若则λ+μ=________.7.△ABC所在的平面内有一点P,满足则△PBC与△ABC的面积之比是________.9.如图,在△ABC中,BO为边AC上的中线,,若且 (λ∈R),则实数λ的值为________.10.在平行四边形ABCD 中,点E 是AD 的中点,BE 与AC 相交于点F ,若(m ,n ∈R ),则m n的值为________.解析:设=a ,=b ,则=m a +n b ,=12b -a ,由向量与共线可知存在实数λ,使得即m a +n b =12λb -λa ,又a 与b 不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ,所以mn=-2.11.如图,在平行四边形ABCD 中,设S ,R ,Q ,P 分别为AP ,SD ,RC ,QB 的中点,若=m a +n b ,则m +n =________.答案:6512.如图所示,在△ABO 中,AD 与BC 相交于点M ,设试用a 和b 表示向量.解:设=m a +n b ,则=m a +n b -a =(m -1)a +n b ,=12 =-a +12b . ∵A 、M 、D 三点共线,故存在实数t ,使得即(m -1)a +n b =t ⎝⎛⎭⎪⎫-a +12b , ∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t n =t 2,消去t 得m -1=-2n ,即m +2n =1.①联立①②,解得m =17,n =37.故=17a +37b .。

平面向量的基本运算总结

平面向量的基本运算总结

平面向量的基本运算总结平面向量是指在平面内具有大小和方向的量。

在数学和物理学中,平面向量的运算是十分重要的。

本文将对平面向量的基本运算进行总结,包括向量的加法、减法、数乘以及数量积等。

1. 向量的加法向量的加法是指将两个向量相加,得到一个新的向量。

向量的加法满足以下几个性质:- 交换律:A + B = B + A- 结合律:(A + B) + C = A + (B + C)- 零向量:对于任意向量 A,有 A + 0 = A2. 向量的减法向量的减法是指将一个向量减去另一个向量,得到一个新的向量。

向量的减法可以通过向量的加法和数乘来表示,即 A - B = A + (-B)。

3. 向量的数乘向量的数乘是指将一个向量与一个实数相乘,得到一个新的向量。

向量的数乘满足以下性质:- 结合律:k(A + B) = kA + kB- 分配律:(k + l)A = kA + lA- 分配律:k(lA) = (kl)A- 数乘零向量:0A = 04. 数量积数量积(也称为点积或内积)是向量的一种运算,结果为一个实数。

数量积可以通过向量的坐标表示为A·B = |A||B|cosθ,其中 |A| 和 |B| 分别表示向量 A 和向量 B 的模,θ 表示两个向量之间的夹角。

数量积满足以下性质:- 交换律:A·B = B·A- 分配律:A·(B + C) = A·B + A·C- 数乘结合律:(kA)·B = k(A·B) = A·(kB)5. 向量的模和单位向量向量的模表示向量的长度,可以通过勾股定理计算得到。

向量的模记作 |A|。

单位向量是指模为 1 的向量。

可以通过将向量除以其模来得到单位向量,即 u = A/|A|。

6. 运算实例以下是一些平面向量运算的实例:- 已知向量 A = (3, 4),B = (-2, 1),求 A + B。

7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量

7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量
-y)b=(4y-7)a+2xb,求实数 x、y 的值. 【分析】 依题意,以向量 a、b 为单位向量建立坐标系(或一定角度,
不一定是直解) 【解】 因为 3xa+(10-y)b=(4y-7)a+2xb
所以(3x,10-y)=(4y-7,2x),联立方程组31x0=-4yy=-27x,解得yx==43. 故 x=3,y=4.
二、填 空 题
9.向量 a∥b 且|a|=3|b|,则向量 a、b 的关系式是__a_=__3_b_或__a_=__-__3_b___. 【解析】 由两向量平行知 a=3b 或 a=-3b.
10.若向量 a=e1+e2,b=e1-e2,则 2a+3b=__5_e_1_-__e_2 __. 【解析】 2a+3b=2(e1+e2)+3(e1-e2)=5e1-e2.
11.在四边形 ABCD 中,A→D=12B→C,则四边形 ABCD 是___梯___形. 【解析】 由A→D=12B→C得A→D∥B→C,A→D=12B→C.
12.如果 a=-2b(b≠0),则 a 与 b 的位置关系是_平__行__且__反__向___. 【解析】 由向量平行的概念可知 a 与 b 平行,又 λ=-2<0,∴a 与 b 反向.
6.(1)(-2)×12 a=__-__a__;(2)2(a+b)-3(a-b)=__-__a_+__5_b__. 【解析】 (1)(-2)×12a=(-2)×12a=(-1)a=-a;
(2)2(a+b)-3(a-b)=2a+2b-(3a-3b)=2a+2b-3a+3b=-a+5b.
一、选 择 题
5.已知向量 e1、e2 不共线,实数 x、y 满足(3x-4y)e1+(2x-3y)e2=6e1
+3e2,则 x-y=( A )

平面向量的运算如何进行平面向量的加减乘除运算

平面向量的运算如何进行平面向量的加减乘除运算

平面向量的运算如何进行平面向量的加减乘除运算平面向量是描述平面上的有向线段的数学工具,具有大小和方向。

在平面向量的运算中,常见的操作包括向量的加法、减法、数量乘法和除法。

下面将详细介绍平面向量的运算方法。

一、平面向量的加法平面向量的加法是将两个向量的对应元素进行相加的运算。

设有向量A = (x1, y1)和向量B = (x2, y2),则向量A和向量B的和为向量C = (x1 + x2, y1 + y2)。

例子:已知向量A = (1, 2),向量B = (3, 4),求向量A和向量B的和。

解:向量A和向量B的和为向量C = (1 + 3, 2 + 4) = (4, 6)。

二、平面向量的减法平面向量的减法是将两个向量的对应元素进行相减的运算。

设有向量A = (x1, y1)和向量B = (x2, y2),则向量A和向量B的差为向量C = (x1 - x2, y1 - y2)。

例子:已知向量A = (1, 2),向量B = (3, 4),求向量A和向量B的差。

解:向量A和向量B的差为向量C = (1 - 3, 2 - 4) = (-2, -2)。

三、平面向量的数量乘法平面向量的数量乘法是指一个向量与一个实数的乘法运算。

设有向量A = (x, y)和实数k,则向量A乘以实数k的结果为向量B = (kx, ky),即向量A的每个元素分别乘以实数k。

例子:已知向量A = (3, 4),求向量A乘以实数2的结果。

解:向量A乘以实数2的结果为向量B = (2 × 3, 2 × 4) = (6, 8)。

四、平面向量的除法平面向量的除法并没有直接定义,因为除法运算在平面向量中没有明确的意义。

平面向量的运算主要是通过加法、减法和数量乘法来实现。

如果需要进行向量的除法运算,一般可以通过乘以倒数的方式来实现。

即将除法转化为乘法运算。

例子:已知向量A = (4, 6),求向量A除以实数2的结果。

解:向量A除以实数2的结果可以通过将实数2转化为倒数的方式来实现,即向量A除以实数2可以表示为向量A乘以实数1/2。

平面向量的加减法

平面向量的加减法

uuur
这说明,在平行四边形ABCD中,uAuCur
uuur 所表示的向量就是AB 与
AD 的和.这种求和方法叫做向量加法的平行四边形法则.
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0;
(2) a+b = b+a;
(3) (a+b)+ c = a +(b+c).

uuur uuur uuur OA OB BA.
(7.2)
观察图可以得到:起点相同的
a-b
A
两个向量a、 b,其差a − b仍然是一
B
个向量,其起点是减向量b的终点,
b
a
终点是被减向量a的终点.
O
运算法则
已知a、b, a-b可以表示为从向量b 的终点指向向量a的终点的向量.
巩固知识 典型例题
向量加r 法r满足r交换r 律和r 结r 合律r :r r r a b b a (a+b)+c a (b c)
以上两个运算律可以推广到任意多个向量.
巩固知识 典型例题
例3 一艘船以12 km/h的速度航行,方向垂直于河岸,已知水流
速度为5 km/h,求该u船uur 的实际航行u速uur度.
创设情境 兴趣导入
王涛同学从家中(A处)出发,向正南方向行走500 m到
达超市(B处),买了文具后,又沿着北偏东60°角方向行
A
走200 m到达学校(C处)(如
图).王涛同学这两次位移的 总效果是从家(A处)到达了学
500m
C 200m
校(C处).
位移uAuCur
叫做位移
uAuBur 与位移

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则
平面向量是代表平面上的位移或者力的理论对象,是数学中的一个基本概念。

而对于平面向量的运算法则,我们通常会涉及到加法、减法、数乘、数量积、向量积等内容。

下面将详细介绍平面向量的运算法则。

1. 向量的加法
两个向量相加的结果是一个新的向量,其方法是将两个向量的起点相同,然后将两个向量的箭头相连,新向量的箭头指向这两个箭头的相连处。

若将两个向量分别表示为a和b,则它们的和向量c=a+b。

2. 向量的减法
两个向量相减的结果是一个新的向量,其方法是将两个向量的起点相同,然后将被减向量的箭头逆向,再将两个向量的箭头相连,新向量的箭头指向这两个箭头的相连处。

若将两个向量分别表示为a和b,则它们的差向量c=a-b。

3. 向量的数乘
数k与向量a的乘积,记作ka,表示将向量a的长度乘以k倍,方向不变。

若k>0,则ka与a同向;若k<0,则ka与a反向。

4. 向量的数量积
向量a与向量b的数量积,记作a·b或者ab,是一个标量,表示a 与b的长度之积再乘以它们夹角的余弦值。

如果a=(x₁, y₁)、b=(x₂, y₂),则a·b = x₁x₂ + y₁y₂。

5. 向量的向量积
向量a与向量b的向量积,记作a×b,是一个向量,其大小是a与b 围成的平行四边形的面积,方向垂直于a和b构成的平面,方向满足右手螺旋定则。

以上就是关于平面向量的运算法则的介绍,这些运算法则在解决平面向量相关问题时非常重要,希望可以对你有所帮助。

高等数学第7章 向量代数与空间解析几何

高等数学第7章 向量代数与空间解析几何

30
31
32
7.2.4 向量线性运算的坐标表示
33
34
35
36
7.2.5 向量数量积的坐标表达式 设有两个向量
37
38
39
40
41
42
43
44
习题7.2 A组 1.在空间直角坐标系中,指出下列各点在哪个卦 限.A(1,-2,3),B(2,3,-4),C(2,-3,-4), D( -2,-3,1)。 2.求点p( -3,2,-1)关于坐标面与坐标轴对称点 的坐标。 3.求点A( -4,3,5)在坐标面与坐标轴上的投影 点的坐标。
21
22
23
7.2 空间直角坐标系与向量的坐标表示
7.2.1 空间直角坐标系 在空间中任意选定一点O,过O点作三条相互垂直 且具有相同单位长度的数轴,分别称为x轴、y轴和z轴.x 轴、y轴和z轴要满足右手定则,即右手握住z轴,大拇 指指向z轴的正向,其余四个手指从x轴的正方向。
24
25
7.2.2 向量的坐标表示 设x轴、y轴、z轴正向的单位向量依次为i,j,k,如 图7.17所示。
第7章 向量代数与空间解析几何
空间解析几何是通过点与坐标的对应,把抽象的数 与空间的点统一起来,从而使得人们可以用代数的方法 研究几何问题,也可以用几何的方法解决代数问题.本章 首先介绍向量及其代数运算,然后以向量为工具研究空 间的直线与平面,最后讨论空间曲面与曲线的一般方程 和特点.
1
7.1 向量及其运算
12
13
(6)向量的数量积 1)数量积的概念在物理学中,如果物体受到恒力F 的作用,沿直线发生的位移s,设力F 与位移s的夹角为 θ,则力F对物体所做的功为 W =|F|·|s|·cosθ

平面向量的减法运算

平面向量的减法运算

AB BC AD DB _B_C___ MD MN MP DP _M__N__
AM AN MGGE _N__E__ ABCD AC BD __0____
如图所示,在平行四边形ABCD中,设
AB
a
,AD
b,试用
a
,b表示向量
AC、
BD 、DB。
D
C
b
A
a
B
平面向量的数乘运算
a
b
b
b
a
b
a
a
b
a
2、快速抢答:
AB AD __D_B___
OB OC DB _C__D__
BA BC ___C_A__
OA OC BO CO __B_A__
OAOB __B_A__
AB AC BD DC __0___
NQ QP MN MP __0___ AB BC DC DA __0___
1.三角形法则:
a
b
(首尾相接,首指向尾)
平 面
ab



2.平行四边形法则: (同个起点,所夹对角线)
a
ab
b
加 法
平面向量的减法
数量中的减法:5-3=2 也可以看做 5+(-3)=2 即 减去一个数可以看做加上这个数的相反数
类比:减去一个向量可以看做加上这个向量的负向量
向量中的减法: a b OA OB OA ( OB) OA BO BA
B
A
C
a b AB AC CB
例1
已知如图所示向量
a
、b
,请
b
B
a
A
a b
例2 化简:
⑴ OD OA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2.如图:已知 AD 3 AB , DE 3BC , 试判断 AC 与 AE 是否共线.
E
b
E AD DE 3 AB 3 BC
C A B D
3AB BC
3 AC
∴ AC与 AE 共线.
例3: 如图,在平行四边形ABCD中,点M是AB中点,点
1 N在线段BD上,且有BN= BD,求证:M、N、C 3
三点共线。 提示:设AB = a BC = b
D
C
1 1 则MN= … = a + b 3 6 1 MC= … = a+ b 2
N A M B
课堂小结:
向量的减法
一、定义(利用向量的加法定义)。 二、几何意义(起点相同,由减向量的终点 指向被减向量的终点)。

AB b, AC a AE a ( b ) a b 又 b BC a 所以 BC a b
B
b
a A b
a b a b
D C E
(a) a (2) a (a) 0 (a) a 0 (3)设 a , b 互为相反向量,那么 a b, b a, a b 0
的相反向量仍是 。 0 0
你能利用我们学过的向量的加法法则作出 a (b) 吗?
N
M
Q
P
OC OA AB BC a a a 记作 3a
PN PQ QM MN (a) (a) (a) 记作 3a
3a与a的方向相同 3a 3 a
3a与a的方向相反 3a 3 a
一、向量的数乘运算的定义:
实数与向量a的积是一个确定的向量,记为 a,
(2)当 , b a 共线时,怎样作 a b 呢? BA (4) OD OA AD (3) BC AC O A B a OA b OB OA BA (5) OB a b BA B O A
变式
a, b 本例中,当 满足什么条件时, 互相垂直? a 与 b a b
AC a b DB a b
b
D
C
A
a
B
a b
向量的数乘运算
已知非零向量a,作a+a+a和(-a)+(-a)+(-a)
a a O A a B a C -a -a -a
特别地:( ) a a a b a b 向量的加、减、数乘运算统称为向量的线性运算










例1:计算下列各式
(1)(3) 4a 12a (2)3(a b ) 2(a b ) a 5b
向量的数乘
一、①λ
a 的定义及运算律 b=λa 向量a与b共线
②向量共线定理 (a≠0)
二、定理的应用: 1. 证明 向量共线 2. 证明 三点共线: AB=λBC A,B,C三点共线
不借助向量的加法法则你能直接作出
a b 吗?
一般地
a
b
B
b
O
a
a b
a b 可以表示为从向量 b的终点指向向量 a 的终点的向量 注意:(1)起点必须相同。(2)指向被减向量的终点。 (1)如果从 a 的终点指向 b 终点作向量,所得向量是什么呢? 练习:
(3)(2a 3b c ) (3a 2b c )
a 5b 2c
(4)(t1 t 2 )(c b) (t1 t 2 )(c b)
2t1 b 2t 2 c
定理 向量
有且仅有一个实数 ,使得 b a .
其方向和长度规定如下: (1) a a ;
(2) 当 0, a与a 的方向相同;当 0, a的方向与a的方向相反;当 0, a 0.
注意:比较两个向量时,主要看它们的长度和方向
(1) 根据定义,求作向量3(2a)和(6a) (a为 非零向量),并进行比较。 (2) 已知向量 a,b,求作向量2(a+b)和2a+2b, 并进行比较。
a b
d
c
a
b
c
O
C
作法:
在平面内任取一点O, 作 OA a, OB b, OC c, OD d ,

BA a b
DC c d
起点相同,连接终点,指向被减向量的终点。 注意:
a
3(2a )
b
3(2a ) = 6 a
a b
a
2a 2b
2b
2(a b ) 2a 2b
2a
三、向量的数乘运算满足如下运算律:
,是实数,
(1)( a ) ( )a;


(2)( )a a a; (3) ( a b ) a b .
练习:已知向量 a, b,求作向量 a b
(1) (2)

a
b
a b
a b
a b
a
(3)
a b a
(4)
b
b
a b
例4 在 AB a, AD b, ABCD 中, 你能用 a , b表示 AC, DB 吗?
向量的减法运算
a+ b = b+ a (a + b) + c = a + (b + c )
向量的减法运算及其几何意义
回顾: (1)你还能回想起实数的相反数是怎样定义的吗?
实数 思考
(2)两个实数的减法运算可以看成加法运算吗? : 如设
a 的相反数记作 a 。
x, y R , x y x ( y)
如何定义向量的减法运算呢?
2.2.2 向量的减法运算及其几何意义
一、相反向量:
设向量 a ,我们把与 a 长度相同,方向相反 的向量叫做 a 的相反向量。 记作: a
规定: (1)
二、向量的减法: a b a (b)
三、几何意义:
( 三 A 角 形 法 则 )
b a AD DB (1) AB (2) BA BC CA
例3 已知向量 a, b, c, d ,求作向量 a b , c d。 a b B D A cd d
相关文档
最新文档