1.2 幂的乘方与积的乘方 第1课时 教案

合集下载

七年级数学下册《幂的乘方与积的乘方》教案、教学设计

七年级数学下册《幂的乘方与积的乘方》教案、教学设计
1.教学活动设计:
将学生分成若干小组,针对教师提出的问题,进行小组讨论。讨论过程中,教师巡回指导,引导学生深入探讨幂的乘方与积的乘方的运算规律。
2.教学内容:
(1)讨论幂的乘方与积的乘方的运算规律;
(2)探讨幂的乘方与积的乘方在实际问题中的应用;
(3)分享各自解题的方法和技巧。
(四)课堂练习
1.教学活动设计:
4.针对学生在积的乘方学习中可能遇到的困难,设计具有启发性的例题和练习题,帮助学生逐步突破难点,增强自信心。
三、教学重难点和教学设想
(一)教学重难点
1.重点:幂的乘方与积的乘方的概念及其运算规律。
2.难点:
(1)理解幂的乘方的意义,能够灵活运用幂的乘方进行计算;
(2)掌握积的乘方的运算规律,解决实际问题中的积的乘方问题;
(3)鼓励学生积极参与课堂讨论,培养学生的表达能力和团队合作精神;
(4)定期进行阶段性的评价,了解学生的学习进度,及时调整教学策略。
4.教学反思:
(1)在教学过程中,关注学生的反馈,根据学生的实际情况调整教学节奏和难度;
(2)注重培养学生的数学思维,提高学生分析问题和解决问题的能力;
(3)课后及时反思教学效果,总结经验教训,不断优化教学方法和策略。
1.关注学生对幂的概念的理解,引导学生从已知的幂的运算规律出发,逐步探索幂的乘方法则;
2.重视学生的个体差异,针对不同学生的学习能力和接受程度,进行分层教学,确保每个学生都能掌握基本概念和运算方法;
3.注重培养学生的逻辑思维能力和空间想象能力,通过丰富的教学活动,激发学生的学习兴趣,提高学生的课堂参与度;
讨论结束后,每组选派一名代表进行课堂分享。
5.预习作业:预习下一节课的内容——整式的乘法法则,为课堂学习做好准备。

北师大版七下数学1.2.2幂的乘方与积的乘方教学设计

北师大版七下数学1.2.2幂的乘方与积的乘方教学设计

北师大版七下数学1.2.2幂的乘方与积的乘方教学设计一. 教材分析北师大版七下数学1.2.2幂的乘方与积的乘方是本册书中的一个重要内容,主要让学生掌握幂的乘方和积的乘方的运算法则。

本节课的内容在学生的学习过程中起到了承上启下的作用,为后续学习指数函数和其他数学概念奠定了基础。

教材通过丰富的例题和练习题,引导学生理解和掌握幂的乘方与积的乘方的运算规律,提高学生的数学运算能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、幂的定义等基础知识,对于幂的运算有一定的了解。

但学生对于幂的乘方和积的乘方的运算法则的理解和应用能力还有待提高。

因此,在教学过程中,教师需要结合学生的实际情况,通过生动的实例和丰富的练习,引导学生深入理解幂的乘方与积的乘方的运算规律,提高学生的数学运算能力。

三. 教学目标1.理解幂的乘方的运算法则;2.理解积的乘方的运算法则;3.能够运用幂的乘方与积的乘方的运算规律解决实际问题。

四. 教学重难点1.幂的乘方的运算法则;2.积的乘方的运算法则;3.幂的乘方与积的乘方的运算规律的应用。

五. 教学方法1.实例教学:通过生动的实例,引导学生理解幂的乘方与积的乘方的运算规律;2.小组合作:学生进行小组讨论,培养学生的合作意识和团队精神;3.练习巩固:通过丰富的练习题,巩固学生对幂的乘方与积的乘方的运算规律的理解;4.问题解决:引导学生运用幂的乘方与积的乘方的运算规律解决实际问题。

六. 教学准备3.练习题;4.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)教师通过一个实例,如“计算(-3)^2 * (-3)^3”,引导学生思考幂的乘方和积的乘方的运算规律。

2.呈现(10分钟)教师通过多媒体课件,呈现幂的乘方与积的乘方的运算法则,并用生动的实例进行解释。

3.操练(10分钟)教师学生进行小组合作,让学生通过互相讨论和解答练习题,巩固对幂的乘方与积的乘方的运算规律的理解。

14.1.2幂的乘方教案

14.1.2幂的乘方教案

14.1.2幂的乘方教案第一篇:14.1.2幂的乘方教案§14.1.2幂的乘方【学习目标】1、掌握幂的乘方计算公式.2、熟练应用幂的乘方公式解决问题.【预习检测】1、同底数幂的乘法法则是_____________________ 用公式如何表示_____________________________2、5×5=534();a×a=a344();a+a=______.3443、根据乘方的意义,a表示3个_____相乘,即a=___×____×____.那么(a)表示3个_____相乘,即(a)=___×____×____.二、问题导学:问题1.根据乘方的意义及同底数幂的乘法填空: 32 33()m3m3(1)(2)= 2×2 = 22322(m是正整数);(2)(3)= 3×3 ×3= 323222()(3)(a)= a×a ×a = a(4)(a)= a×a ×a = a问题2.归纳幂的乘方计算公式: mnm3mmm()()(a)=___________________________=__________三、自主反馈:1.(a)=______________;a×a =___________;2.计算:(1)(10)(2)(5)(3)(a)(4)(a)解:(1)(10)=10×_______=10(2)(3)(4)353()35433m33232四、典型例题:探究1、计算:(1):-(x)(2): [(-x)] 4343探究2、计算:(1): t2⋅(t3)2(2):探究3(如何进行公式的逆运算?)1.已知2n=3,则23n=(2n)()=_____=______.2.已知an=5, 则a2n=____________________________.3.已知am=2, an=3,则am+n =_______________________;amn=_______________________;a2m+3n=_______________________.五、归纳小结: 1.幂的乘方 2.公式的逆运用.(x⋅x2⋅x3)4六、课堂作业: 1.判断下列计算正误:358(1)(a)= a···············()(2)a·a = a·············()(3)a+a = a·············()(4)(a)·a = a·············()2.下列运算正确的是()33332644A.(x)= x·x B.(x)=(x)34 264862C.(x)=(x)D.(x)=(x)23 494 483 515 3.计算(-x)的结果是()556 6A.-x B.x C.-x D.x 234.下列计算错误的是()55254m2m2A.(a)= a B.(x)=(x)2m m2 2m 2mC.x=(-x)D.a=(-a)5.在下列各式的括号内, 应填入b的是()12 8126A.b=()B.b =()123 122C.b =()D.b =()46.计算填空(1).(2)=__________=___________.(2).(6)=__________=___________.(3).(-2)=__________=___________.(4).(a)=__________.(5).若x=3,则x=________.2 3(6).b·b·b=________.m2m32m5 347.计算:(1).(10)(2).(-x)32(3).-(xm)5(5).(x·x2·x3)48、(1).已知3n=5,求32n.(2).已知am=3, an=5,分别求am+n;(4).(a2)3·a5(6).[(y2)3] 4amn ;am+2n.第二篇:《1.2幂的乘方与积的乘方》教案《1.2幂的乘方与积的乘方》教案一、教学目标:1.知识与技能:了解积的乘方的运算性质,并能解决一些实际问题.2.过程与方法:经历探索积的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.3.情感与态度:体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点:重点:积的乘方运算性质:(ab)n= anbn(n是正整数).难点:幂的运算性质的综合运用及混合运算.三、教学过程设计:本节课设计了几个教学环节:复习回顾、探索交流、知识扩充、公式逆用、课堂小结、布置作业.复习回顾活动内容:复习前几节课学习的有关幂的三个知识点.1.幂的意义:a⨯a⨯Λ⨯a=a 1424434n个an2.同底数幂的乘法运算法则am⋅an=am+n(m、n为正整数)3.幂的乘方运算法则(am)n=amn(m、n都是正整数)探索交流活动内容:地球可以近似地看做是球体,如果用V,r 分别代表球的体积和半径,那么V=43πr.地球的半径约为6×103 km,它的体积大约是多少立方千米?3本环节是这节课最为重要的环节之一,充分借助教材提供的求地球体积的情境,引导学生思考“(6×103)3等于多少”,同时分析这种运算的特征,展开对“积的乘方”运算的探索,教师还可以在课上可以对直接学生进行升级式提问:(1)根据幂的意义,(ab)3表示什么?(2)为了计算(化简)算式ab·ab·ab,可以应用乘法的交换律和结合律.又可以把它写成什么形式?(3)由(ab)3=a3b3 出发,你能想到更为一般的公式吗?活动目的:经历了前两节课的探究,在本课中可以启发学生自主从具体特殊的数字问题到抽象的字母,新的挑战更会激起学生学习的兴趣,达到更好的学习效果.知识扩充活动内容:积的乘方的运算法则:(ab)n=anbn 积的乘方,等于每一因数乘方的积.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质?怎样用公式表示?进一步探讨出答案(abc)n=an·bn·cn 课堂小结活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调.布置作业1.完成课本习题1.2的1、2.2.拓展作业:你能用几何图形直观的解释(3b)2=9b2吗?第三篇:幂的乘方教案14.1.2 幂的乘方【学习目标】1.经历探索幂的乘方的运算性质的过程,发展推理能力和数学语言的表述能力,体会从特殊到一般,从具体到抽象的思想方法;2.理解幂的乘方的运算性质、幂的乘方与同底数幂的乘法的区别与联系,能运用性质进行简单的计算.一、复习:1.回顾同底数幂的乘法:aman=am+n(m,n都是正整数)2.计算:(1)a4·a4·a4;(2)x3·x3·x3·x3。

北师大版数学七年级下册1.2《幂的乘方与积的乘方》教案

北师大版数学七年级下册1.2《幂的乘方与积的乘方》教案

北师大版数学七年级下册1.2《幂的乘方与积的乘方》教案一. 教材分析《幂的乘方与积的乘方》是北师大版数学七年级下册第1章第2节的内容。

本节课主要介绍了幂的乘方和积的乘方的概念及其运算法则。

通过本节课的学习,学生能够理解幂的乘方和积的乘方的含义,掌握其运算法则,并能够运用到实际问题中。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对幂的概念有一定的了解。

但是,对于幂的乘方和积的乘方的概念及其运算法则可能还不太清楚。

因此,在教学过程中,需要引导学生通过观察、思考、探究,从而理解和掌握幂的乘方和积的乘方的概念及其运算法则。

三. 教学目标1.理解幂的乘方和积的乘方的概念及其运算法则。

2.能够运用幂的乘方和积的乘方的概念及其运算法则解决实际问题。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.幂的乘方和积的乘方的概念及其运算法则。

2.运用幂的乘方和积的乘方的概念及其运算法则解决实际问题。

五. 教学方法1.引导法:通过引导学生观察、思考、探究,从而让学生理解和掌握幂的乘方和积的乘方的概念及其运算法则。

2.实例法:通过具体的例子,让学生理解和掌握幂的乘方和积的乘方的概念及其运算法则。

3.练习法:通过课堂练习和课后作业,巩固学生对幂的乘方和积的乘方的概念及其运算法则的理解和掌握。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾幂的概念,为新课的学习做好铺垫。

2.呈现(10分钟)利用PPT课件,呈现幂的乘方和积的乘方的定义和运算法则,让学生观察和思考,引导学生在小组内进行讨论,共同探究幂的乘方和积的乘方的概念及其运算法则。

3.操练(10分钟)让学生在课堂上进行幂的乘方和积的乘方的运算练习,教师及时进行指导和纠正,帮助学生巩固对幂的乘方和积的乘方的概念及其运算法则的理解。

4.巩固(10分钟)通过PPT课件展示一些实际问题,让学生运用幂的乘方和积的乘方的概念及其运算法则进行解决,巩固学生对知识点的掌握。

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案教学目标:1.理解幂的乘方。

2.能够计算幂的乘方。

3.理解积的乘方。

4.能够计算积的乘方。

教学重点:1.幂的乘方的概念与计算。

2.积的乘方的概念与计算。

教学准备:1.黑板、粉笔和擦子。

2.计算器。

教学过程:一、导入(5分钟)1.教师通过一个简单的问题导入新知识:“假如我现在有3个苹果,每个苹果有4个橘子,你能说出总共有多少个橘子吗?”2.学生回答后,教师引导学生思考如何计算橘子的总数。

二、幂的乘方(20分钟)1.教师写出问题:“如果有3个苹果,每个苹果有4个橘子,你能用幂的乘方表示这个问题吗?”2.学生思考后,教师解释幂的乘方的概念:幂的乘方是指将一个幂作为乘数,连续相乘的操作。

在这个问题中,3个苹果可以表示为3^1,每个苹果有4个橘子可以表示为4^3,所以总共的橘子数可以表示为3^1×4^33.教师用黑板上的例子,如2^3,解释幂的乘方的计算方法:将底数2连乘3次,即2×2×2=8,所以2^3=8、教师帮助学生理解幂的乘方的计算方法。

4.学生进行练习,计算以下幂的乘方:(a)5^2;(b)10^3;(c)3^4三、积的乘方(20分钟)1.教师写出问题:“如果有2组橘子,每组橘子有3个苹果,你能用积的乘方表示这个问题吗?”2.学生思考后,教师解释积的乘方的概念:积的乘方是指将一个积作为乘数,连续相乘的操作。

在这个问题中,2组橘子可以表示为(2×3)^1,每组橘子有3个苹果可以表示为3^2,所以总共的橘子数可以表示为(2×3)^1×3^23.教师用黑板上的例子,如(3×4)^2,解释积的乘方的计算方法:先将两个因数(3×4)相乘,得到12,然后再将12连乘2次,即12×12=144,所以(3×4)^2=144、教师帮助学生理解积的乘方的计算方法。

4.学生进行练习,计算以下积的乘方:(a)(2×5)^2;(b)(4×6)^3;(c)(2×3×4)^2四、扩展应用(25分钟)1.教师给学生提供更复杂的问题,让学生运用幂的乘方和积的乘方来解决。

幂的乘方与积的乘方第一课时参考课件

幂的乘方与积的乘方第一课时参考课件
幂的乘方:a^m * a^n = a^(m+n)
幂的乘方:a^m / a^n = a^(m-n)
幂的乘方:a^m * a^n = a^(m+n)
幂的乘方运算实例
2^3 = 2 * 2 *2=8
3^2 = 3 * 3 =9
4^3 = 4 * 4 * 4 = 64
5^2 = 5 * 5章节标题
02
幂的乘方规则
幂的乘方定义
幂的乘方:是指两个幂相乘, 结果仍然是幂,且底数不变, 指数相加
幂的乘方性质:幂的乘方具有 交换律、结合律和分配律
幂的乘方公式:a^m * a^n = a^(m+n)
幂的乘方应用:在数学、物理、 化学等领域都有广泛应用
幂的乘方运算规则
幂的乘方:(a^m)^n = a^(mn)
YOUR LOGO
20XX.XX.XX
幂的乘方与积的乘方第一课时
,a click to unlimited possibilities
汇报人:
目 录
01 单 击 添 加 目 录 项 标 题 02 幂 的 乘 方 规 则 03 积 的 乘 方 规 则 04 幂 的 乘 方 与 积 的 乘 方 的 关 系 05 幂 的 乘 方 与 积 的 乘 方 的 练 习
积的乘方运算实例
添加 标题
2^3 * 3^4 = (2*3)^(3+4) = 6^7
添加 标题
(a+b)^2 * (c+d)^2 = (a^2 + 2ab + b^2) * (c^2 + 2cd + d^2) = a^2c^2 + 2ac^2d + 2abcd^2 + b^2c^2 + 2bcd^2 + b^2d^2

1.2幂的乘方与积的乘方(教案)

1.2幂的乘方与积的乘方(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“幂的乘方与积的乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调幂的乘方运算规律和积的乘方运算规律这两个重点。对于难点部分,如指数相乘的含义,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与幂的乘方与积的乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,让学生计算一系列幂的乘方和积的乘方的例子,以演示这两个基本原理。
五、教学反思
在本次教学过程中,我重点关注了幂的乘方与积的乘方这两个知识点。通过教学实践,我发现以下几点值得反思:
1.学生对幂的乘方运算规律的理解程度。在讲解过程中,我注意到部分学生对指数相乘的含义理解不够深入。为了帮助学生更好地理解这一概念,我采用了举例和比较的方法,让学生通过具体计算体会指数相乘的实质。在今后的教学中,我还需要进一步关注这部分学生的理解情况,适时调整教学策略,以确保他们能够真正掌握这一知识点。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过幂的乘方与积的乘方运算规律的探究,使学生能够运用所学知识进行逻辑推理,提高解决问题的能力。
2.增强学生的数学运算能力:让学生熟练掌握幂的乘方与积的乘方运算规律,并能运用到实际计算中,提高数学运算速度和准确性。

1.2幂的乘方与积得乘方(1)

1.2幂的乘方与积得乘方(1)
课题:幂的乘方与积的乘方(1)
学习目标:
1.经历探索幂的乘方的运算性质的过程,了解正整数指数幂的意义。
2.了解幂的乘方的运算性质,并能解决一些实际问题。
一、自主预习:
1.什么叫做乘方?
2.怎样进行同底数幂的乘法运算?
根据乘方的意义及同底数幂的乘法填空:
(1) = =2 (2) ==3
(3) ==
3.想一想:
(3) (x3)4·x2;(4) [(-x)2]3;
(5) (-a)2(a2)2;(6)x·x4–x2·x3
3.x3·(xn)5=x13,则n=_______.
4.已知am=3,an=2,求am+2n的值;
5.已知a2n+1=5,求a6n+3的值.
6.填空:[(a-b)3]2=(b-a)( )
7.若4﹒8m﹒16m=29,求m的值
1、计算:
(1) (2)
(3) (4)
(5)
2、选择题:
(1)下列计算正确的有( )
A、 B、
C、 D、
(2)下列运算正确的是().
A.(x3)3=x3·x3B.(x2)6=(x4)4
C.(x3)4=(x2)6D.(x4)8=(x6)2
(3)下列计算错误的是().
A.(a5)5=a25; B.(x4)m=(x2m)2;
C.x2m=(-xm)2; D.a2m=(-a2)m
(4)若 ( )
A、9B、6C、27D、18
四、总结反思:
幂的乘方,底数,指数。
= (m,n为正整数)
五、课后练习:
1.判断下面计算是否正确?如果有错误请改正:
(1) (x3)3=x6; (2)a6·a4=a24..

1.2幂的乘方与积的乘方第1课时-七年级数学下册课件(北师大版)

1.2幂的乘方与积的乘方第1课时-七年级数学下册课件(北师大版)
=23m×24n
=23m+4n=23=8.
四、当堂练习
1.计算(102)4的结果是
A.106
( B )
B.108
C.109
D.105
2.下列运算正确的是( D )
A.a·a3=a3
B.-(a2)3=a6
C.(a3)2=a5
D.2(a2)2-a4=a4
3.计算a3·(a3)2的结果是 ( B )
A.a8
北师大版 数学 七年级下册
第一章 整式的乘除
2 幂的乘方与积的乘方
第1课时
学习目标
1.理解并掌握幂的乘方法则;(重点)
2.掌握幂的乘方法则的推导过程并能灵活运用.(难点)
一、导入新课
复习回顾
同底数幂的乘法法则:
同底数幂相乘,底数不变,指数相加.
am·
an=am+n (m,n都是正整数)
am·
a n·
乘方法则.
幂的乘方法则的逆用:amn=(am)n=(an)m
三、典例精析
例1:计算下列各式.

(1)[( ) ] ;

(5)(an+1)2;
(2)-(b5)2; (3)[(-a)4]3;
(6)-[(m-n)5]3.
×
解:(1)[( ) ] =( ) =( ) ;
(4)-(x2)m=-x2×m=-x2m;
(5)(y2)3 ·y=y2×3·
y=y6·
y=y7;
(6)2(a2)6–(a3)4=2a2×6 -a3×4 =2a12-a12 =a12.
注意:幂的乘方和
同底数幂的乘法一
起计算,要先解决
乘方,再计算乘法.
二、新知探究

幂的乘方与积的乘方(第1课时)教学课件北师大版中学数学七年级(下)

幂的乘方与积的乘方(第1课时)教学课件北师大版中学数学七年级(下)
444 =(44)11 = 25611
533 =(53)11 = 12511
∴ 444 >355 > 533
比较底数大于1的幂的大小的方法有两种: (1)
底数相同,指数越大,幂就越大;
(2)指数相同,底数越大,幂就越大.
课堂小结
1、幂的乘方的法则
语言叙述: 幂的乘方,底数不变,指数相乘
符号叙述:( a m ) n a mn (、都是正整数)
6.若3=3,求(3)4的值.
解:( )4 =34 =81
+ 3


2
7.已知 =2, =3,求
的值.
+

解:
=
()2 ·()3 = 22× 33 =4×27=108
随堂训练
拓展练习
比较 355,444,533 的大小。
解: ∵ 355 =(35)11 = 24311
(1)13·7=( 20)=( 4 )5=( 5 )4=( 2 )10
(2) =( )2 =( 2) (为正整数)
知识讲授
例3
已知10m=3,10n=2,求下列各式的值.
(1)103m; (2)102n; (3)103m+2n.
解:(1)103m=(10m)3=33=27.
第 一 章整式的乘除
第一章 整式的乘除
1.2
幂的乘方与积的乘方
第1课时 幂的乘方
学习目标
1.经历探索幂的乘方运算性质的过程,进一步体
会幂的运算的意义.(重点)
2.掌握幂的乘方的运算性质.(难点)
新课导入
地球、木星、太阳可以近似地看作是球体,木星、太阳的半径分
别约是地球的10倍和102 倍,它们的体积分别约是地球的多少倍?

(完整版)《幂的乘方与积的乘方》教案

(完整版)《幂的乘方与积的乘方》教案

幂的乘方与积的乘方一、教学目标(一)知识目标1。

经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2。

了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点(一)教学重点幂的乘方的运算性质及其应用.(二)教学难点幂的运算性质的灵活运用。

三、教具准备投影片三张第一张:做一做,记作(§1。

4.1 A)第二张:例题,记作(§1.4。

1 B)第三张:练习,记作(§1.4。

1 C)四、教学过程Ⅰ。

提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。

[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以。

根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。

于是我们就求出了V=106立方毫米,V1=109立方毫米。

我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算。

北师大版数学七年级下册2 幂的乘方与积的乘方教案与反思

北师大版数学七年级下册2 幂的乘方与积的乘方教案与反思

2 幂的乘方与积的乘方路漫漫其修远兮,吾将上下而求索。

屈原《离骚》原创不容易,【关注】店铺,不迷路!第1课时幂的乘方教学目标一、基本目标1.了解幂的乘方的运算法则,并能解决一些实际问题.2.经历探索幂的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行幂的乘方的运算.【教学难点】幂的乘方法则的总结及其运用.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P5~P6的内容,完成下面练习.【3min反馈】1.(1)乘方的意义:32中,底数是3,指数是2,表示2个3相乘.(32)3的意义:3个32相乘;(2)根据幂的意义填空:(32)3=32×32×32(根据幂的意义)=32+2+2(根据同底数幂的乘法法则)=32×3,(am)2=am·am=a2m(根据am·an=am+n),(am)n=am·am·…·am(幂的意义)=am+m+…+m(同底数幂相乘的法则)=amn(乘法的意义);(3)幂的乘方法则:(am)n=amn(m、n都是正整数),即幂的乘方,底数不变,指数相乘.2.已知球体的体积公式为V=43πR3.(1)若乙球的半径为3cm,则乙球的体积V乙=36πcm3.甲球的半径是乙球的10倍,则甲球的体积V甲=36_000πcm3,V甲是V乙的103倍;(2)地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的10倍、100倍,它们的体积分别约是地球的103倍、106倍.3.(教材P6例1)计算:(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.解:(1)原式=106. (2)原式=b25.(3)原式=a3n. (4)原式=-x2m.(5)原式=y7. (6)原式=a12.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-24)3;(2)(xm-1)2;(3)[(24)3]3;(4)(-a5)2+(-a2)5.【互动探索】(引发学生思考)确定各式的底数→利用幂的乘方法则计算.【解答】(1)原式=212.(2)原式=x2(m-1)=x2m-2.(3)原式=24×3×3=236.(4)原式=a10-a10=0.【互动总结】(学生总结,老师点评)(1)运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.(2)在幂的乘方中,底数可以是单项式,也可以是多项式.(3)幂的乘方的推广:((am)n)p=amnp(m、n、p都是正整数).【例2】若92n=38,求n的值.【互动探索】(引发学生思考)比较等式两边的底数→将等式转化为(32)2n=38→建立方程求n值.【解】依题意,得(32)2n=38,即34n=38,所以4n=8,所以n=2.【互动总结】(学生总结,老师点评)解此类题时,可将等式两边化成底数或指数相同的数,再比较.【例3】已知ax=3,ay=4(x、y为整数),求a3x+2y的值.【互动探索】(引发学生思考)将a3x+2y变形,得a3x·a2y,再利用幂的乘方进行解答.【解答】因为ax=3,ay=4,所以a3x+2y=a3x·2y=(ax)3·(ay)2=33×42=27×16=432.【互动总结】(学生总结,老师点评)利用amn=(a)n=(an)m,可对式子进行变形,从而使问题得到解决.活动2 巩固练习(学生独学)1.计算(-a3)2的结果是( A )A.a6 B.-a6C.-a5 D.a52.下列运算正确的是( B )A.(x3)2=x5 B.(-x)5=-x5C.x·x2=x6 D.x2+2x3=5x53.当n为奇数时,(-a2)n+(-an)2=0.4.计算:(1)a2·(-a)2·(-a2)3+a10;(2)x4·x5·(-x)7+5(x4)4-(x8)2.解:(1)原式=a2·a2·(-a6)+a10=-a10+a10=0.(2)原式=x4·x5·(-x7)+5x16-x16=-x 16+5x 16-x 16=316.活动3 拓展延伸(学生对学)【例4】请看下面的解题过程:比较2100与375的大小.解:因为2100=(24)25,375=(33)25,而24=16,33=27,16<27, 所以2100<375.请你根据上面的解题过程,比较3100与560的大小.【互动探索】仔细阅读材料,确定例子的解题方法是将指数化为相同,再比较底数的大小来比较所求两个数的大小.【解答】因为3100=(35)20,560=(53)20,而35=243,53=125,243>125, 所以3100>560.【互动总结】(学生总结,老师点评)此题考查了幂的乘方法则的应用,根据题意得到3100=(35)20,560=(53)20是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)幂的乘方法则⎩⎨⎧ 内容:幂的乘方,底数不变,指数相乘字母表示:am n =amn m 、n 都是正整数推广:am n p =amnp m 、n 、p 都是正整数练习设计请完成本课时对应练习!第2课时 积的乘方教学目标一、基本目标1.了解积的乘方的运算法则,并能解决一些实际问题.2.经历探索积的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行积的乘方的运算.【教学难点】明确幂的乘方与积的乘方的异同.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P7~P8的内容,完成下面练习.【3min 反馈】1.(1)(3×5)4=3(4 )·5(4 );(2)(3×5)m =3(m )·5(m );(3)(ab )n =a (n )·b (n );(4)(ab )n =(ab )·(ab )·…·(ab n 个ab =a ·a ·…·a n 个a ·b ·b ·…·b n 个b =anbn .2.积的乘方法则:(ab )n =anbn (n 是正整数),即积的乘方等于积的每一个因式分别乘方,再把所得的幂相乘.推广:(abc )n =anbncn (n 是正整数).3.(教材P7例2)计算:(1)(3x )2;(2)(-2b )5;(3)(-2xy )4;(4)(3a 2)n .解:(1)原式=9x 2. (2)原式=-32b 5.(3)原式=16x 4y 4. (4)原式=3na 2n .环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(x 4·y 2)3;(2)(anb 3n )2+(a 2b 6)n ;(3)[(3a 2)3+(3a 3)2]2;(4)⎝ ⎛⎭⎪⎫991002018×⎝ ⎛⎭⎪⎫100992019; (5)0.12515×(23)15.【互动探索】(引发学生思考)先确定运算顺序,再根据积的乘方法则计算.【解答】(1)原式=x 12y 6.(2)原式=a 2nb 6n +a 2nb 6n =2a 2nb 6n .(3)原式=(27a 6+9a 6)2=(36a 6)2=1296a 12.(4)原式=⎝ ⎛⎭⎪⎫99100×100992018×10099=1×10099=10099. (5)原式=⎝ ⎛⎭⎪⎫1815×815=⎝ ⎛⎭⎪⎫18×815=1. 【互动总结】(学生总结,老师点评)(1)~(3)题按先乘方再乘除后加减的运算顺序计算;(4)、(5)题逆用(ab )n =anbn 可使计算简便.活动2 巩固练习(学生独学)1.计算(x 2y )2的结果是( B )A .x 6yB .x 4y 2C .x 5yD .x 5y 22.(am )m ·(am )2不等于( C )A .(am +2)mB .(am ·a 2)mC .am 2+am 2D .(am )3·(am -1)m 3.已知am =2,an =3,则a 2m +3n =108.4.计算:(1)-4xy 2·(xy 2)2·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3;(3)⎝ ⎛⎭⎪⎫232018×⎝ ⎛⎭⎪⎫322019. 解:(1)原式=-4xy 2·x 2y 4·(-8x 6)=32x 9y 6.(2)原式=a 6b 12-a 6b 12=0.(3)原式=⎝ ⎛⎭⎪⎫23×322018×32 =32. 活动3 拓展延伸(学生对学)【例2】太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3) 【互动探索】已知球的体积公式和其半径,代入数据直接计算. 【解答】因为R =6×105千米,所以V =43πR 3=43×3×(6×105)3=8.64×1017(立方千米). 即它的体积大约是8.64×1017立方千米.【互动总结】(学生总结,老师点评)读懂题目信息,理解球的体积公式并熟记积的乘方法则是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)积的乘方法则⎩⎨⎧内容:积的乘方等于积的每一个因式分 别乘方,再把所得的幂相乘字母表示:ab n =anbn n 是正整数逆用:anbn =ab n n 是正整数练习设计请完成本课时对应练习!【素材积累】 宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案一. 教材分析《幂的乘方与积的乘方》是湘教版七年级数学下册第2章第1节的内容。

本节课主要让学生掌握幂的乘方运算法则和积的乘方运算法则,培养学生运用幂的运算性质解决实际问题的能力。

教材通过引入实例,引导学生发现规律,从而得出幂的乘方与积的乘方的运算法则。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘法、幂的定义及简单的幂的运算。

但对于幂的乘方与积的乘方,学生可能存在理解上的困难。

因此,在教学过程中,教师需要注重引导学生发现规律,让学生在理解的基础上掌握运算法则。

三. 教学目标1.理解幂的乘方与积的乘方的运算法则。

2.能够运用幂的运算性质解决实际问题。

3.培养学生的观察能力、推理能力及运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:幂的乘方与积的乘方的运算法则。

2.教学难点:理解幂的乘方与积的乘方的本质,能够灵活运用运算法则解决实际问题。

五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中发现幂的乘方与积的乘方的规律。

2.引导发现法:教师引导学生观察、分析、推理,从而得出幂的乘方与积的乘方的运算法则。

3.实践操作法:让学生在课堂上动手操作,巩固幂的乘方与积的乘方的运算法则。

六. 教学准备1.教学课件:制作课件,展示幂的乘方与积的乘方的实例及运算法则。

2.教学素材:准备一些实际问题,让学生在解决实际问题的过程中运用幂的运算性质。

3.学生活动材料:为学生提供一些练习题,让学生在课堂上进行实践操作。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,让学生尝试解决。

例如:计算(23)2,32×33等。

引导学生发现这些问题都可以转化为幂的乘方与积的乘方的问题。

2.呈现(10分钟)教师通过课件展示幂的乘方与积的乘方的实例,引导学生发现规律。

如:(a m)n=a mn,(ab)n=a n b n等。

让学生总结出幂的乘方与积的乘方的运算法则。

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案

教师学生年级七年级授课时间2018.05授课课题幂的乘方及积的乘方授课类型新授课教学目标1. 体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题。

2. 会用幂的乘方、积的乘方性质进行计算,并能解决一些实际问题。

教学重点及难点重点:(1)同底数幂的乘法性质及其运算。

(2)幂的乘方及积的乘方性质的正确、灵活运用。

难点:(1)同底数幂的乘法性质的灵活运用。

(2)探索幂的乘方、积的乘方两个性质过程中发展推理能力和有条理的表达能力。

参考资料教学过程复习巩固新课导入授课内容分析、推导(突出教学内容要点,采用的教学方法等,要求简明扼要,若有及教材中相同的文字、表格、例题等不要在教案上照抄,可注明教材页码。

)一:知识归纳1.同底数幂的意义乘方:求n个相同因数a的积的运算叫做乘方读法:a n读作a的n次幂(或a的n次方)。

同底数幂是指底数相同的幂,如:23及25,a4及a,()a b23及()a b27,()x y-2及()x y-3等等。

注意:底数a可以是任意有理数,也可以是单项式、多项式。

2. 同底数幂的乘法性质a a am n m n·=+(m,n都是正整数)这就是说,同底数幂相乘,底数不变,指数相加。

当三个或三个以上同底数幂相乘时,也具有这一性质,例如:a a a am n p m n p··=++(m,n,p都是正整数)3. 幂的乘方的意义幂的乘方是指几个相同的幂相乘,如()a53是三个a5相乘读作a的五次幂的三次方,()a m n是n个a m相乘,读作a的m次幂的n次方4. 幂的乘方性质na指数幂底数()a a m n mn =(m ,n 都是正整数)这就是说,幂的乘方,底数不变,指数相乘。

注意:(1)不要把幂的乘方性质及同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)。

(2)此性质可逆用:()a a mn mn=。

幂的乘方与积的乘方(一)市公开课获奖课件省名师示范课获奖课件

幂的乘方与积的乘方(一)市公开课获奖课件省名师示范课获奖课件
2 幂旳乘方与积旳乘方(第1课时 )
幂旳意义:
n个a
a·a·… ·a = an
同底数幂乘法旳运算性质: am·an= am+n
am ·an =(a·a· … ·a) ·(a·a·… ·a)
m个a
n个a
= a·a·… ·a = am+n
(m+n)个a
同底数幂相乘,底数不变,指数相加.
正方体旳体积之比= 边长比旳 立方
乙正方体旳棱长是 2 cm, 则乙正方体旳体积 V乙= 8 cm3
甲正方体旳棱长是乙正方体旳 5 倍,则甲正方 体旳体积 V甲= 1000 cm3
能够看出,V甲 是 V乙 旳 125 倍 即 53 倍
地球、木星、太阳能够近似地看做是 球体 .木星、太阳旳半径分别约是地球旳 10倍和102倍,它们旳体积分别约是地球旳 多少倍?
⑴ a12 =(a3)( ) =(a2)( )
=a3 a( )=( )3 =( )4
(2) y3n =3, y9n =
.
(3) (a2)m+1 =
.
(4) 32﹒9m =3( )
1. am an amn m, n都是正整数
同底数幂相乘,底数不变,指数相加.
2. (am)n=amn (m,n都是正整数)
解:(1) (62)4 = 62·62·62·62=62+2+2+2 =68 =62×4 ;
(2) (a2)3 = a2·a2·a2 =a2+2+2 =a6 =a2×3 ;
(3) (am)2 =am·am =am+m=a2m ;
n 个am
(4) (am)n =am·am·… ·am
n 个m =am+m+ … +m =amn

沪科版七年级下册数学8.1.2 幂的乘方与积的乘方教案与反思

沪科版七年级下册数学8.1.2 幂的乘方与积的乘方教案与反思

2.幂的乘方与积的乘方原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!古之学者必严其师,师严然后道尊。

欧阳修1.理解幂的运算性质2,掌握幂的乘方的运算;(重点)2.理解幂的运算性质3,掌握积的乘方的运算并能运用其解决实际问题.(重点、难点)一、情境导入1.填空:(1)同底数幂相乘,________不变,指数________;(2)a2·a3=________;10m×10n=________;(3)(-3)7×(-3)6=________;(4)a·a2·a3=________;(5)(23)2=2( );(x4)5=x( );(2100)3=2( ).2.计算(22)3;(24)3;(102)3.问题:(1)上述几道题目有什么共同特点?(2)观察计算结果,你能发现什么规律?(3)你能推导一下(am)n的结果吗?请试一试.二、合作探究探究点一:幂的乘方【类型一】直接应用幂的运算性质2进行计算计算:(1)(a3)4; (2)(xm-1)2;(3)[(24)3]3; (4)[(m-n)3]4.解析:直接运用(am)n=amn计算即可.解:(1)(a3)4=a3×4=a12;(2)(xm-1)2=x2(m-1)=x2m-2;(3)[(24)3]3=24×3×3=236;(4)[(m-n)3]4=(m-n)12.方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.【类型二】方程与幂的乘方的应用已知2x+5y-3=0,求4x·32y的值.解析:由2x+5y-3=0得2x+5y=3,再把4x·32y统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.解:∵2x+5y-3=0,∴2x+5y=3,∴4x·32y=22x·25y=22x+5y=23=8.方法总结:本题考查了幂的乘方的用及同底数幂的乘法,整体代入求解也比较关键.【类型三】根据幂的乘方的关系,求代数式的值已知2x=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由2x=8y+1,9y=3x-9得2x=23(y+1),32y=3x-9,则x=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.方法总结:根幂的乘方的逆运算进行转化,得到x和y的方程组,求出x、y,再计算代数式的值.探究点二:积的乘方【类型一】含积的乘方的混合运算计算:(1)(-2a2)3·a3+(-4a)2·a7-(5a3)3;(2)(-a3b6)2+(-a2b4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方然后合并.解:(1)原式=-8a6·a3+16a2·a7-125a9=-8a9+16a9-125a9=-117a;(2)原式=a6b12-a6b12=0.方法总结:先算积的乘方,再算乘法,最后算加减,然后合并同类项.【类型二】积的乘方在实际中的应用太阳可以近似地看作是球体,如果用V、R分别代表球的体积和半径,么V=3πR3,太阳的半径约为6×105千米,它的体积大约是多少立方千米(π取3)?解析:将R=6×105千米代入V=43πR3,即可求得答案.解:∵R=6×105千米,∴V=43πR3=43×π×(6×105)3=8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键.【类型三】利用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数的幂是解答此类问题的关键.三、板书设计1.幂的乘方幂的运算性质2:幂的乘方,底数不变,指数相乘.(am)n=amn(m,n都是正整数).2.积的乘方幂的运算性质3:积的乘方等于各因式乘方的积.(ab)n=anbn(n是正整数).幂的乘方和积的乘方的探究方式与上一课时相似,因此在教学中可以就此展开教学.在探究问题的过程中,进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得对新知识的感性认识,进而理解运用【素材积累】1、冬天是纯洁的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、情境导入 1.填空: (1)同底数幂相乘,________不变,指数________; (2)a 2×a 3=________;10m ×10n =________; (3)(-3)7×(-3)6=________; (4)a ·a 2·a 3=________;
(5)(23)2=23·23=________;
(x 4)5=x 4·x 4·x 4·x 4·x 4=________.
2.计算(22)3;(24)3;(102)3.
问题:(1)上述几道题目有什么共同特点?
(2)观察计算结果,你能发现什么规律?
(3)你能推导一下(a m )n 的结果吗?请试一试.
二、合作探究
探究点一:幂的乘方
计算:
(1)(a 3)4; (2)(x m -1)2;
(3)[(24)3]3; (4)[(m -n )3]4.
解析:直接运用(a m )n =a mn 计算即可.
解:(1)(a 3)4=a 3×4=a 12;
(2)(x m -1)2=x 2(m -1)=x 2m -2;
(3)[(24)3]3=24×3×3=236;
(4)[(m -n )3]4=(m -n )12.
方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.
探究点二:幂的乘方的逆用
【类型一】 逆用幂的乘方比较数的大小
请看下面的解题过程:比较2100与375的大小.
解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375.
请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法.
解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案. 解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560. 方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.
【类型二】 逆用幂的乘方求代数式的值
已知2x +5y -3=0,求4x ·32y 的值.
解析:由2x +5y -3=0得2x +5y =3,再把4x ·32y 统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.
解:∵2x +5y -3=0,∴2x +5y =3,∴4x ·32y =22x ·25y =22x +5y =23=8.
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.
【类型三】 逆用幂的乘方结合方程思想求值
已知221=8y +1,9y =3x -9,则代数式13x +12
y 的值为________. 解析:由221=8y +1,9y =3x -9得221=23(y +1),32y =3x -
9,则21=3(y +1),2y =x -9,解得x =21,y =6,故代数式13x +12
y =7+3=10.故答案为10. 方法总结:根据幂的乘方的逆运算进行转化得到x 和y 的方程组,求出x 、y ,再计算代数式.
三、板书设计
1.幂的乘方法则:
幂的乘方,底数不变,指数相乘.。

相关文档
最新文档