高中物理速度选择器和回旋加速器解题技巧及练习题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理速度选择器和回旋加速器解题技巧及练习题含解析
一、速度选择器和回旋加速器
1.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为
104.010m
q
-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?
(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
若只撤去电场,离子流击中屏上a 点;若只撤去磁场,离子流击中屏上b 点。
求ab 间距离。
(a ,b 两点图中未画出)
【答案】(1)电场方向竖直向下;2×107m/s ;(2)0.53m 【解析】 【分析】 【详解】
(1)电场方向竖直向下,与磁场构成粒子速度选择器,离子运动不偏转,根据平衡条件有
qE
qvB
解得离子流的速度为
E
v B
=
=2×107m/s (2)撤去电场,离子在碰场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有
2
v qvB m R
=
解得
mv
R qB
=
=0.4m 离子离开磁场区边界时,偏转角为θ,根据几何关系有
1sin 2
L R θ=
= 解得
30θ=
在磁场中的运动如图1所示
偏离距离
1cos y R R θ=-=0.054m
离开磁场后离子做匀速直线运动,总的偏离距离为
1tan y y D θ=+=0.28m
若撤去磁场,离子在电场中做匀变速曲线运动通过电场的时间
L t v
≤
加速度
qE a m
=
偏转角为θ',如图2所示
则
2
1
tan 2
y v qEL v
mv θ'=
=
= 偏离距离为
2
212
y at =
=0.05m 离开电场后离子做匀速直线运动,总的偏离距离
2tan y y D θ''=+=0.25m
所以a 、b 间的距离
ab =y +y '=0.53m
2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度
大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)
求第二象限中电场强度和磁感应强度的比值0
E B ; (2)求第一象限内磁场的磁感应强度大小B ;
(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】
(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有
00qvB qE =
解得
30
2.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径
1.0m R d ==
根据洛伦兹力提供向心力有
2
v qvB m R
=
解得磁感应强度大小
3210T B -=⨯
(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小
sin y v v θ=
粒子在电场中沿y 轴方向的加速度大小
cos y qE a m
θ
=
设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有
y y
v t a ∆=
t ∆时间内,粒子沿y 轴方向通过的位移大小
2
y v y t ∆=
⋅∆
联立解得
0.3m y ∆=
由于
cos y d θ∆<
故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离
cos 0.2m d d y θ'=-∆=
3.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.
(1)求两极板间电压U 的大小
(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.
【答案】(1)20mv q (2)002121
22
v v v ≤≤ 【解析】
试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.
(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:
212
R at =
,02R v t =,2qU
a Rm =
解得:2
mv U q
=
(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R
= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:
由几何关系有:2r r R +=
由洛伦兹力提供向心力有:2
11v qv B m r
=
解得:1021
2
v v -=
若打到b 点,如图乙所示:
由几何关系有:2r R R '-=
由洛伦兹力提供向心力有:22
2v qv B m r ='
解得:2021
2
v v += 故
01021
21
2
2
v v v v ≤≤=
4.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B 3
,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入
圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π
3
,不计离子重力。
求:
(1)离子速度v 的大小; (2)离子的比荷
q m
; (3)离子在圆形磁场区域中运动时间t 。
(结果可含有根号和分式)
【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6
π
-⨯ 【解析】 【详解】
(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:
B 0qv =qE
解得:
2000m/s E
v B =
= (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示
由洛仑兹力公式和牛顿第二定律有:
2
v Bqv m r
=
由几何关系有:
2
R tan
r
θ
=
离子的比荷为:
4 210C/kg q
m
=⨯ (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t ,
2t T θπ=
2m
T qB
π=
解得:
43106
t s π
-=
⨯
5.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:
(1)金属板M 、N 间的电压U ;
(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;
(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .
【答案】(1)00B v d ;(2) t =0mv qE
;(3) 2
00
2mv mv qE qB + 【解析】 【分析】 【详解】
离子的运动轨迹如下图所示
(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =
因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =
(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0
cos 45v v
=
故离子运动到A 点时的速度:0v =
根据牛顿第二定律:qE ma =
设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0
tan 45y v v =
联立以上各式解得,离子在电场E 中运动到A 点所需时间:0
mv t qE
=
(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:
2
v qvB m R
=
解得:0mv R qB qB
=
= 由几何知识可得0
22cos 452mv AC R R qB
===
在电场中,x 方向上离子做匀速直线运动,则20
0mv OA v t qE
==
因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:
200
2mv mv OC OA AC qE qB
=+=+
【点睛】
本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.
6.如图所示,在直角坐标系xOy 平面内,以O 点为圆心,作一个半径为R 的园形区域,A 、B 两点为x 轴与圆形区域边界的交点,C 、D 两点连线与x 轴垂直,并过线段OB 中点;将一质量为m 、电荷量为q(不计重力)的带正电的粒子,从A 点沿x 轴正方向以速度v 0射入圆形区域.
(1)当圆形区域内只存在平行于y 轴方向的电场时,带电粒子恰从C 点射出圆形区域,求此电场的电场强度大小和方向;
(2)当圆形区域内只存在垂直于区域平面的磁场时,带电粒子怡从D 点射出圆形区域,求此磁场的磁感应强度大小和方向;
(3)若圆形区域内同时存在(1)中的电场和(2)中的磁场时,为使带电粒子恰能沿直线从B 点射出圆形区域,其入射速度应变为多少?
【答案】(1)2
43mv E =
方向沿y 轴正方向 (2)0
33mv B qR
= 方向垂直坐标平面向外 (3)043v v =
【解析】 【分析】
(1)只存在电场时,粒子在电场中做类平抛运动,根据水平和竖直方向的运动列方程求解电场强度;(2)区域只存在磁场时,做匀速圆周运动,由几何关系求解半径,再根据洛伦兹力等于向心力求解磁感应强度;(3)若电场和磁场并存,粒子做直线运动,电场力等于洛伦兹力,列式求解速度. 【详解】
(1)由A 到C 做类平抛运动:
03
2
R v t =; 231
2at qE ma =
解得3
439mv E qR
=
方向沿y 轴正方向; (2)
从A 到D 匀速圆周运动,则0
tan30R
r
=
,3r R =
20
0v qv B m r
= 0mv r qB =
解得0
33mv B qR
=
方向垂直坐标平面向外. (3)从A 到B 匀速直线运动,qE=qvB 解得E v B
= 即043v v =
【点睛】
此题是带电粒子在电场中的偏转,在磁场中的匀速圆周运动以及在正交场中的直线运动问题;粒子在电场中做类平抛运动,从水平和竖直两个方向列式;在磁场中做匀速圆周运动,先找半径和圆心,在求磁感应强度;在正交场中的直线运动时列平衡方程求解.
7.1932 年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图.回旋加速器的核心部分为两个 D 形盒,分别为 D 1、D 2.D 形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与 D 形盒底面垂直.两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.D 形盒的半径为 R ,磁场的磁感应强度为 B .设质子从粒子源 A 处进入加速电场的初速度不计.质子质量为 m 、电荷量为+q .加速器接入一定频率的高频交变电源,加速电压为 U .加速过程中不考虑相对论效应和重力作用.求:
(1)质子第一次经过狭缝被加速后进入 D 2 盒时的速度大小 v 1 和进入 D 2 盒后运动的轨道半径 r 1;
(2)质子被加速后获得的最大动能 E k 和交变电压的频率 f ;
(3)若两 D 形盒狭缝之间距离为 d ,且 d<<R .计算质子在电场中运动的总时间 t 1 与在磁场中运动总时间 t 2,并由此说明质子穿过电场时间可以忽略不计的原因.
【答案】(1) 12qU v m =
,112mU r B q =22
2K qB R E m
= ,2qB f m π= (3)
1BRd t U = ,2
22BR t U π= ; 12
2t d t R π=
【解析】
(1)设质子第1此经过狭缝被加速后的速度为v 1: 2112qU mv =
解得1v = 2111v qv B m r =
解得:1r =
(2)当粒子在磁场中运动半径非常接近D 型盒的半径A 时,粒子的动能最大,设速度为
v m ,则2
m
m v qv B m R
=
212
km m E mv =
解得22
2K qB R E m
=
回旋加速器正常工作时高频交变电压的频率等于粒子回旋的频率,则设粒子在磁场中运动的周期为T,则:22r m
T v qB
ππ== 则2qB
f m
π=
(3)设质子从静止开始加速到粒子离开加速了n 圈,粒子在出口处的速度为v ,根据动能
定理可得:222
22q B R nqU m =
可得22
4qB R n mU
=
粒子在夹缝中加速时,有:qU
ma d
=
,第n 次通过夹缝所用的时间满足:1n n n a t v v +∆=- 将粒子每次通过夹缝所用时间累加,则有1m v BRd t a U
=
= 而粒子在磁场中运动的时间为(每圈周期相同)222
2242qB R m BR t nT mU qB U ππ==
⋅= 可解得122t d
t R
π=,因为d<<R ,则 t 1<<t 2
8.汽车又停下来了,原来是进了加油站。
小明想,机器总是要消耗能源才干活儿,要是制造出不消耗任何能源却能源源不断对外做功的机器,那该是利国利民的大功劳一件啊!小明为此设计了一个离子加速器方案:两个靠得很近的、正对处留有狭缝的半圆形金属盒,处在垂直于纸面向里、磁感应强度大小为B 的匀强磁场中,M 和M '是固定在金属盒狭缝边缘的两平行极板,其上有正对的两个小孔,给极板充电后,上板带正电且两板间电压为
U ;质量为m 、带电量为q 的正离子从M 板小孔由静止开始加速,经M '板小孔进入磁场区域,离子经磁场偏转后又回到M 板小孔继续加速,再偏转,再加速……假设电场集中在两极板之间,其他区域没有电场,并忽略离子所受的重力,试计算: (1)两于第1次加速后获得的动能:
(2)第n 次加速后和第1n +次加速后,离子在磁场中偏转的半径大小之比;
(3)小明想,离子每次经磁场偏转后都能再次进入两极板间的电场进行加速,这个过程中电场、磁场不发生任何变化,离子动能却不断的增加……这个离子加速器就实现了不消耗任何能源便可以能源源不断地对离子做功的目的!请根据你所学的知识,试判断小明的设计方案是否科学,并具体阐述你的理由。
【答案】(1)qU ;(21
n
n +;(3)见解析。
【解析】 【分析】 【详解】
(1)由动能定理可
qU =E k -0
解得离子第1次加速后获得的动能为
E k =qU
(2)设第n 次加速后离子获得的速度为v n ,则由动能定理可知
2
102
n nqU mv =
- 设离子在磁场中偏转的轨道半径大小为r n ,根据牛顿第二定律可知
2n
n n
v qv B m r =
联立解得
12n mnU
r B q
=
同理,第n +1次加速后,离子子啊磁场中偏转的半径大小为
112(1)n m n U
r B q
++=
则
1
1
n n r n r n +=+ (3)小明的设计不科学,因为它违背了能量守恒定律,永动机不可能制成。
实际上,电场并不只是分布在两极板之间,在极板外,仍然有从M 板出发指向M'板的电场线,离子在两极板之外的磁场中运动时,电场力做负功,回到初始位置M 板的小孔处时,电场力所做的总功为零,离子速度恢复为原来的值,离子并不能持续的加速。
9.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的狭缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B 的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q ,质量为m ,粒子最大回旋半径为R .忽略粒子在电场中运动的时间.求: (1)所加交变电流的频率f ; (2)粒子离开加速器时的最大速度v ;
(3)若加速的电压为U ,求粒子达到最大速度被加速的次数n .
【答案】(1)2qB m π(2)qBR m (3)22
2qB R n mU
=
【解析】 【详解】
(1)粒子在电场中运动时间极短,因此高频交变电流频率要等于粒子回旋频率,因为
2m
T qB
π=
, 回旋频率
12qB f T m
π=
=; (2)由牛顿第二定律
2
mv qvB R
=, 解得
qBR
v m
=
; (3)获得的能量来源于电场的加速,故:
21
02
nqU mv =-,
解得
22
2
qB R
n
mU
=;
10.同步回旋加速器结构如图所示,轨道磁铁产生的环形磁场在同一时刻处处大小相等,带电粒子在环形磁场的控制下沿着固定半径的轨道做匀速圆周运动,穿越沿途设置的高频加速腔从中获取能量.如题图所示.同步加速器中磁感应强度随被加速粒子速度的增加而增加,高频加速电场的频率与粒子回旋频率保持同步.已知圆形轨道半径为R,被加速粒子的质量为m、电荷量为+q,加速腔的长度为L,且L<<R,当粒子进入加速腔时,加速电压的大小始终为U,粒子离开加速腔时,加速腔的电压为零.已知加速腔外无电场、腔内无磁场;不考虑粒子的重力、相对论效应对质量的影响以及粒子间的相互作用.若在t=0时刻将带电粒子从板内a孔处静止释放,求:
(1)带电粒子第k次从b孔射出时的速度的大小v k;
(2)带电粒子第k次从b孔射出到第(k+1)次到达b孔所经历的时间;
(3)带电粒子第k次从b孔射出时圆形轨道处的磁感应强度B k的大小;
(4)若在a处先后连续释放多个上述粒子,这些粒子经过第1次加速后形成一束长度为l1的粒子束(l1<L),则这一束粒子作为整体可以获得的最大速度v max.
【答案】(1)
2kqU
m
2m
kqU
12mkU
R q
(4)
1
2
max
L qU
v
l m
=
【解析】
【详解】
(1)粒子在电场中被加速,由动能定理得:kqU=
1
2
mv k2﹣0
解得:
2
k
kqU
v
m
=
(2) 粒子做圆周运动的周期:
2
2
2
k
k
m m
T R
qB kqU
π
π
==
由题意可知,加速空腔的长度:L<<R,
粒子在空腔的运动时间可以忽略不计,下一次经过b孔的时间间隔等于粒子在磁场中做圆
周运动的周期:k T π=(3)粒子第k 次从b 孔射出,粒子被电场加速k '次,由动能定理得:kqU =1
2
mv k 2﹣0 解得:
k v =
粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qv k B k =
2k
v m R
,解得:
k B =
(4)
粒子第一次加速后的速度:1v =
从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:111l t l v ==
由k v =
2v =粒子被二次加速后这一束粒子的长度:l 2=v 2t 1
l 1
粒子被第三次加速后的速度:3v =
从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:222l t l v == 粒子被三次加速后这一束粒子的长度:l 3=v 3t 2
l 1
粒子被第四次加速后的速度:4v =
从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:333l t l v == 粒子被三次加速后这一束粒子的长度:l 4=v 4t 3
l 1 …
粒子被第k
次加速后的速度:k v =
从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:111k k k l t l v ---==粒子被k 次加速后这一束粒子的长度:l k =v k t k ﹣1
1
当粒子束的长度:l k =k l 1
=L ,即:k =2
21L l 时粒子束的速度最大,
由动能定理得:221L l •qU =1
2
mv max 2﹣0,解得:
12max L qU
v l m
=
11.回旋加速器是利用磁场和电场共同作用对带电粒子进行加速的仪器。
现在有一个研究小组对回旋加速器进行研究。
研究小组成员分工合作,测量了真空中的D 形盒的半径为R ,磁感应强度方向垂直加速器向里,大小为B 1,要加速粒子的电荷量为q ,质量为m ,电场的电压大小为U 。
帮助小组成员完成下列计算: (1)本回旋加速器能将电荷加速到的最大速度是? (2)求要达到最大速度,粒子要经过多少次电场加速?
(3)研究小组成员根据磁场中电荷偏转的规律设计了如图乙的引出装置。
在原有回旋加速器外面加装一个圆环,在这个圆环区内加垂直加速器向里的磁场B 2,让带电粒子在加速器边缘恰好能偏转至圆环区域外边缘加以引导。
求圆环区域所加磁场的磁感应强度B 2?
【答案】(1) 1m qB R v m =;(2)22
12qB R n Um
=;(3) 1222B R B R d =+
【解析】 【详解】
(1)粒子在磁场中运动时满足:
2
1v qvB m r
=
当被加速的速度达到最大时满足:
r=R
则解得
1m qB R
v m
=
(2)粒子在电场中被加速,每次经过电场时得到的能量为Uq ,则:
2
12
m nUq mv =
解得
22
12qB R n Um
=
(3)由左手定则可知,粒子带负电;要想使得带电粒子在加速器边缘恰好能偏转至圆环区域外边缘,则粒子运动的轨道半径
11
22
r R d =+() ;
由
2
21
m m v qv B m r =
解得
1222B R
B R d
=
+
12.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .
(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v
(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P
(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小
【答案】(1) 222202e B R mc v mh h =+,222
02e B R E m = ;(2) 20e B U m
π ;(3)02sin B R n d
π
【解析】 【详解】
解:(1)正、负电子在回旋加速器中磁场里则有:2
00mv evB R
= 解得正、负电子离开回旋加速器时的速度为:00eB R
v m
=
正、负电子进入对撞机时分别具有的能量:2222
00122e B R E mv m
==
正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=
正、负电子对撞湮灭后产生的光子频率:2222
02e B R mc v mh h
=+
(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:
201
2
neU mv =
解得:22
02eB R n mU
=
正、负电子在磁场中运动的周期为:0
2m
T eB π=
正、负电子在磁场中运动的时间为:2022B R n
t T U
π==
D 型盒间的电场对电子做功的平均功率:20e B U
W E P t t m
π===
(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin
2
d
r n
π
=
解得:
2sin
d r n
π=
根据洛伦磁力提供向心力可得:2
00mv ev B r
=
电磁铁内匀强磁场的磁感应强度B 大小:
02sin
B R n B d
π
=
13.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D 1和D 2,磁感应强度为R ,金属盒的半径为R ,两盒之间有一狭缝,其间距为d ,且
R d ,两盒间电压为U .A 处的粒子源可释放初速度不计的带电粒子,粒子在两盒之间被
加速后进入D 1盒中,经半个圆周之后再次到达两盒间的狭缝。
通过电源正负极的交替变化,可使带电粒子经两盒间电场多次加速后获得足够高的能量.已知带电粒子的质量为m 、电荷量为+q .
(1)不考虑加速过程中的相对论效应和重力的影响. ①求粒子可获得的最大速度v m ;
②若粒子第1次进入D 1盒在其中的轨道半径为r 1,粒子第1次进入D 2盒在其中的轨道半径为r 2,求r 1与r 2之比.
(2)根据回旋加速器的工作原理,请通过计算对以下两个问题进行分析:
①在上述不考虑相对论效应和重力影响的情况下,计算粒子在回旋加速器中运动的时间时,为何常常忽略粒子通过两盒间狭缝的时间,而只考虑粒子在磁场中做圆周运动的时间;
②实验发现:通过该回旋加速器,加速的带电粒子能量达到25~30MeV 后,就很难再加速了。
这是由于速度足够大时,相对论效应开始显现,粒子的质量随着速度的增加而增大。
结合这一现象,分析在粒子获得较高能量后,为何加速器不能继续使粒子加速了。
【答案】(1)①m qBR v m = ②122r r =(2)①22BR t U
π= ②2m T qB π=
【解析】 【详解】
(1)①由牛顿第二定律有:2
m v qvB m R
=
可知最大速度m qBR
v m
=
②设带电粒子在两盒间加速的次数为N ,由2
v qvB m r
=和2102NqU mv =-
可得12NmU
r B q
=
所以122
r r =(2)①带电粒子在两盒间电场中加速过程中的加速度qU
a md
=
在电场中加速的总时间为1m v BdR t a U
=
= 带电粒子运动一圈加速2次,设粒子在磁场中的运动圈数为n
依据动能定理有:222
m
mv nqU =
带电粒子运动一圈的时间2m
T qB
π=
则带电粒子在磁场中运动的总时间为2
22BR t U
π=
由于R
d ,可知12t t ,所以1t 可忽略。
②由2
v qvB m r
=和2r T v π=、
可得:2m T qB
π=
从该周期公式发现,速度增加,粒子的质量会增加,其运动周期会变化,但加速电场周期不变,从而使得加速电场的变化周求与粒子的运动周期不匹配,导致无法加速。
14.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计,磁感应强度为B 的匀强磁场与盒面垂直,A 处粒子源产生的粒子初速度可忽略不计,质量为m 、电荷量为+q ,每次在两D 形盒中间被加速时加速电压均为U ,加速过程中不考虑相对论效应和重力作用。
求:
(1)粒子第4次加速后的运动半径与第5次加速后的运动半径之比; (2)粒子在回旋加速器中获得的最大动能及加速次数。
【答案】(152) 2222km q B R E m = 22
2qB R n mU
=
【解析】 【分析】
(1)带电粒子在磁场中做匀速圆周运动,根据动能定理和洛伦兹力提供向心力求出轨道半径与加速电压的关系,从而求出轨道半径之比。
(2)通过D 形盒的半径求出粒子的最大速度和最大动能,结合动能定理求出加速的次数。
【详解】。