新人教版九年级上旋转学案

合集下载

《图形的旋转》教案14篇

《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。

幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。

转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。

请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。

今日我们一起来讨论旋转。

〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。

举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。

哪些地方是不同的?同桌沟通。

不同点:这两次旋转的方向不同。

你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

相同点:都围着一个点在旋转,这个点就是旋转的中心点。

都旋转了90度。

〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。

其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。

〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。

要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

九年级数学上册23.1图形的旋转学案(新版)新人教版

九年级数学上册23.1图形的旋转学案(新版)新人教版

课题名称:23.1图形的旋转1.学习目标:1)知识目标通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。

2)能力目标经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,按要求作出简单平面图形旋转后的图形。

2.学习重难点:重点:对生活中的旋转现象作数学上的分析,理解旋转的定义。

难点:对旋转现象进行分析研究,旋转后的现象进行探索。

3.学习过程1)自主学习:1. 把一个平面图形绕着平面内某一点O转动一个角度的图形变换叫做.点O叫做,转动的角叫做.2. 一般地,可以根据定义得出旋转的以下性质:(1)对应点到旋转中心的距离.(2)对应点与旋转中心所连线段的夹角等于.(3)旋转前、后的图形.2)即时巩固:1.在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O 叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2.如果图形上的点P经过旋转变为点P′,那么这两点叫做这个旋转的______.3.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.3题图4.如图,△ABC绕着点O旋转到△DEF的位置,则旋转中心是______.旋转角是______.AO=______,AB=______,∠ACB=∠______.4题图5.如图,正三角形ABC绕其中心O至少旋转______度,可与其自身重合.5题图6.一个平行四边形ABCD,如果绕其对角线的交点O旋转,至少要旋转______度,才可与其自身重合.7.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了______度.3)要点理解:1 一般地,可以根据定义得出旋转的以下性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.2. 画已知图形旋转后的图形时,首先要确定一些对应点的位置,这主要由旋转角度及对应点到旋转中心的距离相等等条件确定,也可以利用一些特殊图形的性质.3. 利用旋转设计图案时,要注意到影响设计效果的三个主要因素:基本图形,旋转中心,旋转角度.多试验才能得出美丽的图案.4)难点探究:例1.如图所示,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置,则旋转中心是哪点?旋转方向是什么?旋转角度是多少?点B的对应点是什么?例2.选择题:(1)如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A’的坐标为()A.(2,2) B.(2,4) C.(4,2) D.(1,2)(2)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是()5)点评答疑:1 一般地,可以根据定义得出旋转的以下性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.2. 旋转基本概念6)训练提升:1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针方向旋转60°后得到△EDC,此时点D在斜边AB上,斜边DE交AC于点F.则图中阴影部分的面积为()A.2 B. C.D.2.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30° B.35° C.40° D.50°3.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60° B.75° C.85° D.90°4.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.5.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A. B.5 C.4 D.6.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为______cm.7.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=______°.8.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到R t△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为______.9.如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B在旋转过程中所经过的路线的长是______cm.(结果保留π)10.如图,是两块完全一样的含30°角的三角板,分别记作△ABC与△A′B′C′,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角板ABC,使其直角顶点C恰好落在三角板A′B′C′的斜边A′B′上,当∠A=30°,AC=10时,则此时两直角顶点C、C′间的距离是______.11.如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF 时,∠AOE的大小是______.12.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件______,使四边形ABCD为矩形.13.如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是______.14.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为______.15.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为______.16.如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为______.参考答案1.C;2.C;3.C;4.A;5.B;6.;7.70;8.8;9.π;10.5;11.15°或165°;12.∠B=90°;13.关于旋转点成中心对称;14.1.6;15.2a;16.;7)课堂小结:谈谈这节课你的收获有哪些?。

人教版初中数学九年级上册《旋转》全章节精品导学案(整理含答案)

人教版初中数学九年级上册《旋转》全章节精品导学案(整理含答案)

人教版初中数学九年级上册《旋转》全章节导学案1图形的旋转(1)1.了解旋转及其旋转中心和旋转角的概念.2. 了解旋转对应点的概念及应用它们解决一些实际问题.重点:旋转及对应点的有关概念及其应用.难点:从生活中抽象出数学概念.(2分钟)请同学们完成下面各题.(1)将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.,第(1)小题图),第(2)小题图)(2)如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.(3)①圆是轴对称图形吗?②等腰三角形呢?③你还能指出其他的吗?答:(1)①是;(2)②是;(3)③等腰梯形、长方形、正多边形等.点拨精讲:(1)平移的有关概念及性质;(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质;(3)什么叫轴对称图形.一、自学指导.(10分钟)观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间点旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:(1)从3时到5时,时针转动了多少度?(60°)(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)(3)以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?归纳:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.下列物体的运动不是旋转的是(C)A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.下列现象中属于旋转的有__4__个.①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千运动.3.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点__O__,旋转角是__∠AOD(或∠BOE),经过旋转,点A转到__D__点,点C转到__F__点,点B转到__E__点,线段OA,OB,BC,AC分别转到OD,OE,EF,DF,∠A,∠B,∠C分别与∠D,∠E,∠F__是对应角.点拨精讲:旋转角指对应点与旋转中心的连线的夹角.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A,B,C,D分别移到什么位置?解:(1)可以看做是由基本图案正方形ABCD通过旋转而得到的;(2)画图略;(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.点拨精讲:旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.2.如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点__A__;旋转的度数是__45°__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.点拨精讲:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S △OEE ′=S △ODD ′,即说明△OEE′≌△ODD′.学生总结本堂课的收获与困惑.(2分钟)1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.学习至此,请使用本课时对应训练部分.(10分钟)1图形的旋转(2)1.通过观察具体实例认识旋转,探索它的基本性质.2.了解图形旋转的特征,并能根据这些特征绘制出旋转后的几何图形.重点:图形的旋转的基本性质及其应用.难点:利用旋转的性质解决相关问题.一、自学指导.(10分钟)动手操作:在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题:(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?点拨精讲:(1)OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心距离相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC和△A′B′C′形状相同且大小相等,即全等.归纳:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)如图,四边形ABCD 是边长为1的正方形,且DE =14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连接EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.△ABF 与△ADE 是完全重合的,所以△AEF 是等腰直角三角形.解:(1)旋转中心是A 点;(2)∵△ABF 是由△ADE 旋转而成的,∴B 是D 的对应点,∴∠DAB =90°就是旋转角;(3)∵AD =1,DE =14,∴AE =12+(14)2=174.∵对应点到旋转中心的距离相等且F 是E 的对应点,∴AF =174;(4)∵∠EAF =90°(与旋转角相等)且AF =AE ,∴△EAF是等腰直角三角形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.点拨精讲:关键是确定△ADE三个顶点的对应点的位置.2.已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.作法:1.连接OA;2.在逆时针方向作∠AOC=100°,在OC上截取OA′=OA;3.连接OB;4.在逆时针方向作∠BOD=100°,在OD上截取OB′=OB;5.连接A′B′.∴线段A′B′就是线段AB绕点O按逆时针方向旋转100°后的对应线段.点拨精讲:作图应满足三要素:旋转中心、旋转角、旋转方向.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.(1)此图能否旋转某一部分得到一个正方形?(2)若能,指出由哪一部分旋转而得到的?并说明理由.(3)它的旋转角多大?并指出它们的对应点.解:(1)能;(2)由△BCQ绕B点旋转得到.理由:连接AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.(3)90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B 对应点的位置,以及旋转后的三角形.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.点拨精讲:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°,∴△ADM是以A为旋转中心,以∠BAD为旋转角,由△ABK旋转而成的.∴BK=DM.点拨精讲:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.学生总结本堂课的收获与困惑.(2分钟)1.问题:对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?2.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.学习至此,请使用本课时对应训练部分.(10分钟)1图形的旋转(3)1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2. 掌握根据需要用旋转的知识设计出美丽的图案.重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.一、自学指导.(15分钟)1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.点拨精讲:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__3__次旋转,每次旋转__120°__得到的.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.如图所示,图①沿逆时针方向旋转90°可得到图__⑤__.图①按顺时针方向至少旋转__180__度可得图③.2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.解:依题意,AP绕点A旋转90°时得AP′=AP=3,则△APP′是等腰直角三角形.所以PP′=PA2+P′A2=32+32=3 2.解题的关键是确定AP与AP′垂直且相等.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)如图所示,点C是线段AB上任意一点,分别以AC,BC为边在同侧作等边三角形ACD和等边三角形BCE,连接AE,BD,试找出图中能通过旋转完全重合的一对三角形,并指明旋转中心、旋转角及旋转方向.解:△ACE旋转后能与△DCB完全重合.旋转中心是点C,旋转角是60°,旋转方向是顺时针方向.(也可看作△DCB 绕点C逆时针旋转60°得到△ACE)学生总结本堂课的收获与困惑.(3分钟)1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.学习至此,请使用本课时对应训练部分.(10分钟)2. 1中心对称1. 了解中心对称、对称中心、关于中心的对称点等概念.2. 掌握中心对称的基本性质.重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.一、自学指导.(10分钟)自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点是哪些点.解:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A,B,C,D关于中心D的对称点是A′,B′,C′,D′,这里的D′与D重合.2.如图,已知AD是△ABC的中线,作出以点D为对称中心,与△ABD成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C,B为一对对应点,因此,只要再作出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),A点关于中心D的对称点为A′.(2)连接A′B′,A′C′.则△A′B′D为所求作的三角形,如图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.(只保留作图痕迹,不要求写出作法)点拨精讲:(1)画法总结;(2)性质归纳.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B 的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B.又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′.在△BOO′中,OO′+OB>BO′,即OA+OB>OC.点拨精讲:要证明OA+OB>OC,必然把OA,OB,OC转化在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,旋转60°,便可把OA,OB,OC转化在一个三角形内.2.教材第66页练习.学生总结本堂课的收获与困惑.(2分钟)1.中心对称及对称中心的概念;2.关于中心对称的两个图形的性质.学习至此,请使用本课时对应训练部分.(10分钟)2.2中心对称图形1. 掌握中心对称图形的定义.2. 准确判断某图形是否为中心对称图形.重点:中心对称图形的判断.难点:两个图形成中心对称和中心对称图形的关系,以及中心对称图形的判定.一、自学指导.(7分钟)自学:自学课本P66~67的内容.探究:中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合.那么这个图形叫做中心对称图形,这个点就是它的对称中心.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)将下面左图的四张扑克牌中的一张旋转180°后,得到右图,你知道旋转了哪一张扑克吗?议一议.解:J.点拨精讲:这里相当于问哪一张扑克牌是中心对称图形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什么?(出示课件图片)(1)平行四边形(2)矩形(3)菱形(4)正方形(5)正三角形(6)线段(7)角(8)等腰梯形解:常见的中心对称图形:线段(线段中点)、平行四边形(对角线交点)、矩形、菱形、正方形、圆(圆心)等.2.中心对称图形与中心对称有哪些区别与联系.解:区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称.联系:如果将成中心对称的两个图形看成一个整体,则它们是中心对称图形;如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)1.英文大写字母中有哪些中心对称图形?答:(H,I,N,O,S,X,Z).2.说一说:在生活中你还见过哪些中心对称图形?学生思考、举例、回答问题,教师展示图片、归纳总结.3.想一想:你学过的几何图形具有怎样的对称性?点拨精讲:边数为奇数的正多边形只是轴对称图形而不是中心对称图形,边数为偶数的正多边形既是轴对称图形,又是中心对称图形.4.课本第67页小练习2.点拨精讲:怎样判断非常见几何图形是否为中心对称图形的妙法:将书本转180°,即倒过来后,看图形是否与原来一样.5.如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?点拨精讲:由两个中心对称图形构成的图形,过两个对称中心的直线,把这个图形分成的两部分面积相等.学生总结本堂课的收获与困惑.(2分钟)1.中心对称图形的定义.2.怎样准确判断某图形是否为中心对称图形.学习至此,请使用本课时对应训练部分.(10分钟)2.3关于原点对称的点的坐标掌握两个点关于原点对称时的坐标特征,能够运用特征解决相关问题.重点:关于原点对称的点的坐标的关系及初步应用.难点:关于原点对称的点的坐标的性质及其运用它解决实际问题.一、自学指导.(10分钟)自学:自学课本P68的内容.思考:关于原点作中心对称时,(1)它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?(2)坐标与坐标之间符号又有什么特点?点拨精讲:(1)横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等;(2)坐标符号相反,即P(x,y)关于原点O的对称点为P′(-x,-y).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-2),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?解:A,B,C,D,E,F点关于原点O对称点分别为A′(3,-1),B′(4,0),C′(0,-3),D′(-2,-2),E′(-3,2),F′(2,2).这些点的横纵坐标与已知点的横纵坐标互为相反数.2.如图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形.解:△ABC的三个顶点A(-2,2),B(-4,-1),C(1,1)关于原点的对称点分别为A′(2,-2),B′(4,1),C′(-1,-1),依次连接A′B′,B′C′,A′C′,就可得到与△ABC关于原点对称的△A′B′C′,如右图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)如图,直线AB与x轴、y轴分别相交于A,B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1.(2)求出过线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等),它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.点拨精讲:(1)只需画出A,B两点绕点O顺时针旋转90°得到的点A1,B1,连接A1B1.(2)先求出A1B1中点的坐标,设反比例函数解析式为y=kx代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加以说明.这一条直线是存在的,因为A1B1与双曲线是相切的,只要我们通过A1B1的坐标作A1,B1关于原点的对称点A2,B2,连接A2B2的直线就是我们所求的直线.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.点拨精讲:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.2.教材P69的第1,2,3题.学生总结本堂课的收获与困惑.(2分钟)本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y),及利用这些特点解决一些实际问题.学习至此,请使用本课时对应训练部分.(10分钟)3课题学习图案设计1.认识和欣赏平移、轴对称、旋转在现实生活中的应用.2. 利用图形的平移、轴对称、旋转变换设计组合图案.重点:设计图案.难点:如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、自学指导.(10分钟)自学:自学教材P72内容,思考下列问题.(1)我们学过哪些图形变换?它们分别有何特征?(2)下列图形之间的变换分别属于什么变换?探究:(1)观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?(2)观察三种图形变换的过程,回答问题:①平移、旋转和轴对称变换的基本特征;②归纳三种图形变换的共性.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.分析图案的形成过程要注意些什么?分析图案的形成过程,应注意运用__平移、__轴对称__、__旋转__进行描述,只要合理就行.2.图案设计的关键是什么?选取简单的基本几何图形,然后通过不同的变换组合出美丽的图案.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)用平移、旋转或轴对称变换分析下图中各个图案,分析它是将哪种基本图形经过了哪些变换后得到的?点拨精讲:将基本图形从组合图案中分离出来,并再现此基本图形的变换过程.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.某单位搞绿化,要在一块圆形空地上种植四种颜色的花,为了便于管理和美观,相同颜色的花集中种植,且每种颜色的花所占的面积相同,现征集设计方案,你能帮忙设计吗?点拨精讲:将基本图形创造性地应用平移、轴对称、旋转等变换,设计出和谐、丰富、美观的组合图案.2.下面花边中的图案,由圆弧、圆构成.仿照例图,请你为班级的板报设计一条花边,要求:(1)只要画出组成花边的一个图案;(2)以所给的图形为基础,用圆弧、圆或线段画出;(3)图案应有美感.学生总结本堂课的收获与困惑.(2分钟)利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.学习至此,请使用本课时对应训练部分.(10分钟)。

九年级数学上册 23.1 图形的旋转学案2 (新版)新人教版

九年级数学上册 23.1 图形的旋转学案2 (新版)新人教版

图形的旋转1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2. 掌握根据需要用旋转的知识设计出美丽的图案.重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.一、自学指导.(15分钟)1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC 旋转后的三角形.点拨精讲:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__3__次旋转,每次旋转__120°__得到的.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.如图所示,图①沿逆时针方向旋转90°可得到图__⑤__.图①按顺时针方向至少旋转__180__度可得图③.2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.解:依题意,AP绕点A旋转90°时得AP′=AP=3,则△APP′是等腰直角三角形.所以PP′=PA2+P′A2=32+32=3 2.解题的关键是确定AP与AP′垂直且相等.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)如图所示,点C是线段AB上任意一点,分别以AC,BC为边在同侧作等边三角形ACD 和等边三角形BCE,连接AE,BD,试找出图中能通过旋转完全重合的一对三角形,并指明旋转中心、旋转角及旋转方向.解:△ACE旋转后能与△DCB完全重合.旋转中心是点C,旋转角是60°,旋转方向是顺时针方向.(也可看作△DCB绕点C逆时针旋转60°得到△ACE)(学生总结本堂课的收获与困惑).(3分钟)1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.学习至此,请使用本课时对应训练部分.(10分钟)。

新人教版九年级上册第23章 旋转复习导学案

新人教版九年级上册第23章 旋转复习导学案

第23章旋转教学目标1.了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用。

2.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用。

3.掌握关于原点对称的点坐标的变化规律。

学习重、难点重点:中心对称图形的有关概念及其它们的运用。

难点:区别关于中心对称的两个图形和中心对称。

一、知识体系旋转二、专题复习专题1:旋转的概念和性质的应用例1:如图,将左边的△AOB 沿顺时针旋转90°后,得到右边的△COD ,如果∠AOB=75°,BO=3.则∠DOC=____,∠AOD=___,OD=____.例2:如图,点D 是等腰三角形ABC 内的一点,BC 是斜边,如果将△ABODCADB绕点A逆时针旋转到△AEC的位置,则∠ADE的度数是____.例3.两个边长为1的正方形,如图所示, 让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动, 另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化? 说明理由.专题2:中心对称及中心对称图形例4;下列命题是假命题的是()A.任何一个具有对称中心的四边形都是平行四边形。

B.平行四边形既是轴对称图形,又是中心对称图形。

C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形。

D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条。

例5 如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.专题3:平面直角坐标系中的对称例6: 1.四边形ABCD各顶点的坐标分别为A(5,0),B(-2,3),C(-1,0),D(-1,-5),作出与四边形ABCD关于原点O对称的图形。

2. 如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .专题4:运用旋转变换进行方案设计例6:如图是一块纸板,你能将它的面积分成相等的两部分吗?请在图中画出并保留作图痕迹。

2022年九年级数学上册 第23章 旋转导学案(新版)新人教版

2022年九年级数学上册 第23章 旋转导学案(新版)新人教版

第23章旋转第1课时图形的旋转(1)【学习目标】1、通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。

2、经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,按要求作出简单平面图形旋转后的图形。

3、学生在经历了实际探究、知识应用及内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习的数学的主动性。

培养学生初步的审美能力,增强对图形的欣赏意识.。

【重点难点】重点:对生活中的旋转现象作数学上的分析,理解旋转的定义。

难点:对旋转现象进行分析研究,旋转后的现象进行探索。

【学法指导】问题式指导法。

学生通过预习课本、联系生活实际、查阅资料以及完成课前导学案等学习内容后提出问题。

使学生在认识图形的旋转的过程中,了解图形旋转的概念、形成新的知识结构,获得新的学习方法。

通过学生学习图形的旋转有关知识,体会获得学习数学新知识的乐趣。

教学互动设计方法导引【自主学习,基础过关】一、自主复习:1、将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2、如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?小结(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、预习引导:鼓励学生独立解决问题,让学生初步感受旋转,同时让学生感受旋转在生活中的应用。

问题1:钟表的指针在不停地转动,从3时到5时,时针转动了多少度? 问题2:风车风轮在每个叶片在风的吹动下如何转动到新的位置? 问题3:问题1、2有什么共同特点呢?三、自主学习,归纳总结1. 把一个平面图形绕着平面内某一点O 转动一个角度的图形变换叫做 .点O 叫做 ,转动的角叫做 .2. 一般地,可以根据定义得出旋转的以下性质: (1)对应点到旋转中心的距离 .(2)对应点与旋转中心所连线段的夹角等于 . (3)旋转前、后的图形 . 四、课堂练习,巩固新知1. 已知把ABC ∆绕着点B 顺时针旋转︒60后能与C B A '''∆重合.求:(1)找出旋转中心; (2)指出对应定点和对应边; (3)指出旋转角. A'C'BCA 2(1)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(-2,0)和(2,0).月牙①绕点B 顺时针旋转90°得到月牙②,则点A 的对应点A’的坐标为( ) A .(2,2) B .(2,4)C .(4,2)D .(1,2) (2)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )五、我的疑惑: (学生自主写出自己的疑惑,各小组组长收集,整理和分析这些疑惑,把这些疑惑传递给老师,老师一并把有意义的疑惑呈现给所有同学。

人教版九年级数学上第25章《旋转》导学案

人教版九年级数学上第25章《旋转》导学案

学习目标1.通过学习使学生了解旋转的、旋转中心、旋转角的含义2.理解旋转的性质学习过程一、忆一忆平移的有关概念及性质如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.什么叫轴对称图形?探索新知像这样,把一个图形绕着某转动一个的图形变换叫做旋转,点O叫做,转动的角叫做. .试一试1.如图,如果把△ADE,它绕A点按顺时针方向旋转得到△ABM,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点D、E分别移动到什么位置?(3)指出,经过旋转,点A、B、C、D分别移到什么位置?有效训练:1.从5点15分到5点20分,分针旋转的度数为().A.20 B.26°C.30°D.36°2.如图(1),在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70°B.80°C.60°D.50°(1) (2) (3)3.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.4.如图(2),△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.5.如图(3),△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________△ADP•是________三角形.MDCABE学习目标:了解旋转的实质,掌握旋转规律解决问题学习过程:忆一忆1.什么叫旋转?什么叫旋转中心?什么叫旋转角?探索新知1、(1)对应点到旋转中心的距离;(2)对应点与旋转中心所连线段的夹角等于;(3)旋转前、后的图形.试一试1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.有效训练1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()4.在作旋转图形中,各对应点与旋转中心的距离________.5.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?学习目标:理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.学习过程忆一忆1.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2. 如图,△AOB 绕O 点旋转后,G 点是B 点的对应点,作出△AOB 旋转后的三角形.有效训练1.下面的图形,绕着一个点旋转120°后,能与原来的位置重合的是( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)2.五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.3.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.4.如图,△ABC 的直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,如果AP=3,求PP ′的长.5、如图,∠AOB =90°,∠B =30°,△A ’OB ’可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若点A ’在AB 上,则旋转角α的大小可以是( )A 、30°B 、45°C 、60°D 、90°(提示:本题要充分重视条件“点A ’在AB 上”,由此可推出△AOA ’是等边三角形.)6、(2009年,武汉)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)请直接写出点A 关于y 轴对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标;(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.学习目标: 1、两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.2.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.3.关于中心对称的两个图形是全等图形.探索新知 把一个图形绕着某一个点旋转 ,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做 .试一试1.如图,四边形ABCD 绕D 点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A 、B 、C 、D 关于中心的对称点是哪些点.2.如图,已知△ABC ,画出以点O 为对称中心,与△ABC •成中心对称的三角形.①.关于中心对称的两个图形,对称点所连线段都经过对 ,而且被对称中心 . ②.关于中心对称的两个图形是 .应用拓展:如图,在△ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置.(1)若平移的距离为3,求△ABC 与△A ′B ′C ′重叠部分的面积.(2)若平移的距离为x (0≤x ≤4),求△ABC 与△A ′B ′C ′重叠部分的面积y ,写出y 与x 的关系式.有效训练1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,•那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(•填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)•梯形.4.如图,在正方形ABCD 中,作出关于B 点的中心对称图形.OC BA学习目标:1.中心对称图形的概念.2.对称中心的概念及其它们的运用.3.难点与关键:区别关于中心对称的两个图形和中心对称图形.忆一忆1.关于中心对称的两个图形具有什么性质?思考:中心对称图形是。

九年级数学上册-图形的旋转第1课时旋转的概念与性质导学案新版新人教版

九年级数学上册-图形的旋转第1课时旋转的概念与性质导学案新版新人教版

第二十三章旋转23.1图形的旋转第1课时旋转的概念与性质一、新课导入1.导入课题:运用课件欣赏日常生活中一些物体的旋转现象,观察旋转的过程,引入新课.2.学习目标:(1)了解生活中广泛存在的旋转现象,知道旋转是继平移、对称之后的又一种基本变换.(2)能结合图形指出什么是旋转中心、旋转角和对应点.(3)体会旋转的形成过程,并探究旋转的性质.3.学习重、难点:重点:旋转的有关概念和性质.难点:探究旋转的性质.二、分层学习1.自学指导:(1)自学内容:教材第59页的内容.(2)自学时间:5分钟.(3)自学方法:观察生活中物体的旋转现象,体会旋转过程,形成旋转概念的感性认识.(4)自学参考提纲:①把一个平面图形绕着平面内某一点O转动一个角度 ,叫做图形的旋转.②从课文中的思考实例可以看出:图形的旋转三要素是旋转中心 , 旋转方向 , 旋转角 .③如右图,点P是正方形ABCD内一点,将△ABP绕B点顺时针方向旋转到△CBP′的位置时,其旋转中心是点B ,旋转角度为90° ,点A、B、P的对应点分别为 C、B、P′ .2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生能否抓住旋转的要素.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流、改正.4.强化:(1)旋转的三要素.(2)指出课本中风车的旋转中心、旋转角、旋转方向.(3)练习:①时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的角度是多少?从上午9时到上午10时呢?解:从上午6时到上午9时,时针旋转的角度为90°,从上午9时到上午10时,时针旋转的角度是30°.②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点 O ,旋转角是∠AOA′ ,点A 的对应点是点A′.1.自学指导:(1)自学内容:教材第60页的“探究”——旋转的性质.(2)自学时间:6分钟.(3)自学方法:准备一块硬纸板、小刀和一张白纸,小组合作,通过操作、研讨,再总结归纳.(4)探究参考提纲:①按下列要求动手画图:在硬纸板上先挖一个三角形洞,再在三角形洞外挖一个小洞O(作为旋转中心),把挖好洞的硬纸板放在白纸上,在白纸上描出挖掉的三角形图案(△ABC),围绕旋转中心转动硬纸板,再描出挖掉的三角形图案(△A′B′C′),移开硬纸板,用虚线连接OA、OA′、OB、OB′、OC、OC′.②OA与OA′、OB与OB′、OC与OC′分别有何关系?分别相等 .③∠AOA′、∠BOB′、∠COC′之间有何关系?∠AOA′=∠BOB′=∠COC′ .④△ABC与△A′B′C′有何关系?△ABC≌△A′B′C′ .⑤观察你画的图形,还有不同的发现吗?AB=A′B′,BC=B′C′,AC=A′C′.2.自学:学生可参考自学指导进行自学探究.3.助学:(1)师助生:①明了学情:看学生是否能在探究提纲的指导下,动手操作、实验,并归纳出相应结论.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳.4.强化:(1)归纳旋转的性质.(2)完成以下练习:①如图1,小明坐在秋千上,秋千旋转了80°.请在图中小明身上任意选一点P,利用旋转的性质,标出点P的对应点.②如图2,用左面的三角形经过怎样的旋转,可以得到右面的图形?解:分别绕点O顺时针旋转120°,240°.③找出图3中扳手拧螺母时的旋转中心和旋转角.解:点O就是旋转中心,旋转角就是∠POP′.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?自我感知有何不足?2.教师对学生的评价:(1)表现性评价:点评学生的主动参与情况、小组协作交流情况、学习效果及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探究新知的兴趣.此外,本节课需要注意的地方:①教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯;②如何将“创设情境”与教学有机地结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多地考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 下列现象中属于旋转的有(D)①火车行驶;②荡秋千运动;③方向盘的转动;④钟摆的运动;⑤圆规画圆.A.1个B.2个C.3个D.4个2.(10分) 如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(C)A.30°B.45°C.90°D.135°第2题图第3题图3.(20分) 如图,四边形ABCD是边长为4的正方形,且DE=1,△ABF是△ADE的旋转图形.旋转中心是点A ,旋转了 90 度,AF的长度是17,连接EF,则△AEF的形状是等腰直角三角形 .4.(10分) 如图,右边的小鸡是由左边的小鸡经过旋转得到的,旋转中心是点O.从图中量一量旋转角是多少度.解:旋转角为85°.5.(20分)下面两组图形分别是用左边的图形经过怎样的旋转得到右边的图形的?解:(1)绕中心顺时针旋转60°,120°,180°,240°,300°得到;(2)绕中心顺时针旋转90°,180°,270°得到.二、综合应用(20分)6.(10分) 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与自身重合的是(B)A.72°B.108°C.144°D.216°第6题图第7题图7.(10分)把图中的五角星图案,绕着它的中心点O旋转,旋转角为多少度时,旋转后的五角星能与自身重合?解:旋转角为72°或144°或216°或288°时,旋转后的五角星能与自身重合.三、拓展延伸(10分)8.(10分)如图,△ABD、△AEC都是等边三角形,BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?解:BE=DC.理由:因为AB是由AD绕中心点A逆时针旋转60°得到,AE是由AC绕中心点A逆时针旋转60°得到,所以△ABE可看成是由△ADC绕中心点A逆时针旋转60°得到.根据旋转的性质得△ADC≌△ABE.所以BE=DC.23.1图形的旋转。

最新人教版九年级上数学23章旋转全章导学案

最新人教版九年级上数学23章旋转全章导学案

23.1 图形的旋转(1)一、学习目标:1.掌握旋转的概念,了解旋转中心、旋转角、旋转方向、对应点的概念及其应用。

2.掌握旋转的性质,应用概念解决一些实际问题. 学习过程: 一、自主预习:1.前面我们学过图形的两种变换,如下图,由△ABC 到△A′B′C′2.预习课本第55页至56 页的部分,完成以下问题(1).旋转的定义:把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的 ,点O 叫做 ,转动的角叫做.图形上的点P 经过旋转变为点P′,这两个点叫做这个旋转的.旋转也是一种图形变换.(2).如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OCD ,在这个旋转过程中:A. 旋转中心是 ; 旋转角是 ;B. 经过旋转,点A 、B 分别移动到什么位置?即点A 、B 的对应点分别是 。

线段OB 的对应线段是____;线段AB 的对应线段是____; ∠A 的对应角是_____;∠B 的对应角是_____; (3). 如图,四边形ABCD 是边长为1的正方形,且DE=14, △ABF 是由△ADE 的旋转得到的图形① 旋转中心是_________; ②AF 的长度是________③旋转了_______度(4). 图形旋转的三个要素: 、 、 。

二、合作探究:1.如图,△ABC 绕点O 顺时针旋转一定角度 得到△A ′B′C′,OA 与OA′有什么关系? ∠AOA′与∠BOB′有什么关系?A ′C′DCA 'B 'B A△ABC 与△A′B′C′形状和大小有什么关系? 2.归纳总结 旋转的性质:⑴对应点到旋转中心的距离 ;⑵对应点与旋转中心所连线段的夹角等于 ; ⑶旋转前、后的图形 。

旋转三要素: 、 、 。

三、达标检测1.如图1,将ABC Rt ∆绕点C 按顺时针方向旋转︒90到C B A '''∆的位置,已知斜边cm AB 10=,cm BC 6=,(1)旋转中心是_______(2)如果连接B B ',那么B BC '∆的形状是_______图1 图2 图3 图42.如图2,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,•点E •在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC 为等边三角形,D 为△ABC •内一点,•△ABD •经过旋转后到达△ACP 的位置,则, (1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP •是________三角形. 4.如图4,△ABC 与△ADE 都是直角三角形,∠C 与∠AED 都是直角,点E 在AB 上,∠D =30°,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点______,旋转了_____度。

新人教版九年级数学上册图形的旋转全章导学案(有答案)

新人教版九年级数学上册图形的旋转全章导学案(有答案)

图形的旋转(1)——总第1课时一、学习目标1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。

二、重点:旋转相关概念以及性质 难点:利用性质解决相关问题。

三、学习过程:(一).自学教材P56并填空:1、把一个平面图形___着平面内某一点O_____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。

因此,旋转的决定因素....是_________和_________。

(二).自学检测:1.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度. 2.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别移动______________3.如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。

(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________. (三)自学教材P57探究,总结归纳旋转地性质。

①_______________________________________________________ ②_______________________________________________________ ③________________________________________________________ (四)旋转性质的应用1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向 旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝, AE=_______㎝,DE 与AB 的位置关系为_________________.2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ , 则△PBQ 的形状是_____________________________. 四、总结应用规律: 五、当堂检测:1.下列现象中属于旋转的有____________①地下水位逐年下降;②传送带的移动;③方向盘的转动; ④水龙头的转动;⑤钟摆的运动;⑥荡秋千2.等边三角形至少旋转_____度才能与自身重合。

第23章旋转全章导学案(新人教版九年级上 扫描版)-教学文档

第23章旋转全章导学案(新人教版九年级上 扫描版)-教学文档

第23章旋转全章导学案(新人教版九年级上扫
描版)
学习目标:
1.了解旋转定义;
2.理解旋转的性质;
3.了解中心对称的性质;
4.了解各种中心对称图形;
5.探索图形的变换。

学习过程:
一、知识回顾
1.在平面内,将一个图形绕一个沿某个方向转动一个,这样的图形运动称为旋转。

2.这个称为,转动的称为。

3.旋转性质:(1)对应点到旋转中心的相等;(2)任意一对对应点与旋转中心所连的都是旋转角;(3)图形上的每一个点都绕旋转中心沿相同方向转动了的角度。

即旋转角。

4. 在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相,那么这两个图形叫做中心对称,这个点叫做它的。

5. 中心对称图形上的每一对对应点所连成的线段都被对称中心。

6.点P(x,y)关于原点对称的点是________,关于x轴对称的点是______,关于y轴对称的点是_______.
7、请问以下三个图形中是轴对称图形的有,是中心对称图形的有。

8、中心对称与中心对称图形两个概念区别和联系
中心对称是全等图形之间的中心对称图形是图形本身成对称的。

中心对称的两个图形性质:
成中心对称的两个图形是成中心对称的两个图形,对称点的连线都经过,并且被对称中心。

9、下列图形中,是中心图形又是轴对称图形的有(1)平行四边形(2)菱形;(3)矩形;(4)正方形;(5)等腰梯形;(6)线
段;(7)角;(8)线段;(9)等边三角形;(10)圆;。

人教版数学九年级上册23.1旋转优秀教学案例

人教版数学九年级上册23.1旋转优秀教学案例
(三)学生小组讨论
1.分配不同难度的旋转问题,让学生进行小组讨论,共同探究解决问题的方法。
2.鼓励学生提出自己的观点和思路,培养学生的沟通表达能力和团队协作能力。
3.教师巡回指导,解答学生的问题,给予学生个性化的指导和建议。
(四)总结归纳
1.让学生用自己的语言总结旋转的定义、性质和应用,提高学生的知识整合能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的旋转现象,如荡秋千、转盘等,让学生感受旋转的存在。
2.向学生提问:“你们在生活中还见过哪些旋转现象?它们有什么共同特点?”引导学生思考,激发学习兴趣。
3.引导学生观察教室内的物品,如电风扇、投影仪等,让学生找出它们旋转的轴和不旋转的部分,培养学生的观察能力。
二、教学目标
(一)知识与技能
1.让学生掌握旋转的定义、性质和基本公式,理解旋转的本质和作用。
2.培养学生运用旋转知识解决实际问题的能力,提高学生的空间想象能力和逻辑思维能力。
3.使学生了解旋转在生活中的应用,拓宽学生的知识视野,激发学生学习数学的兴趣。
(二)过程与方法
1.通过观察、操作、思考、交流等活动,让学生经历旋转概念的形成过程,培养学生的动手操作能力和独立思考能力。
2.鼓励学生提出疑问,充分尊重学生的个性差异,培养学生的批判性思维。
3.引导学生总结旋转的性质和公式,提高学生的知识整合能力。
(三)小组合作
1.组织学生进行小组讨论,共同探究旋转问题,培养学生的团队协作能力和沟通能力。
2.分配不同难度的任务,让每个学生在小组合作中都能发挥自己的特长,提高学生的参与度。
3.通过对旋转知识的学习,使学生体验到数学的美丽和神奇,激发学生学习数学的兴趣和热情。

九年级数学上册23旋转学案新版新人教版

九年级数学上册23旋转学案新版新人教版

九年级数学上册23旋转学案新版新人教版23.1 图形的旋转(1)1.了解旋转及其旋转中心和旋转角的概念.2. 了解旋转对应点的概念及应用它们解决一些实际问题.重点:旋转及对应点的有关概念及其应用.难点:从生活中抽象出数学概念.(2分钟)请同学们完成下面各题.(1)将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.,第(1)小题图),第(2)小题图)(2)如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.(3)①圆是轴对称图形吗?②等腰三角形呢?③你还能指出其他的吗?答:(1)①是;(2)②是;(3)③等腰梯形、长方形、正多边形等.点拨精讲:(1)平移的有关概念及性质;(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质;(3)什么叫轴对称图形.一、自学指导.(10分钟)观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间点旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:(1)从3时到5时,时针转动了多少度?(60°)(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)(3)以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?归纳:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.下列物体的运动不是旋转的是(C)A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.下列现象中属于旋转的有__4__个.①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千运动.3.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点__O__,旋转角是__∠AOD(或∠BOE),经过旋转,点A转到__D__点,点C转到__F__点,点B转到__E__点,线段OA,OB,BC,AC分别转到OD,OE,EF,DF,∠A,∠B,∠C 分别与∠D,∠E,∠F__是对应角.点拨精讲:旋转角指对应点与旋转中心的连线的夹角.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A,B,C,D分别移到什么位置?解:(1)可以看做是由基本图案正方形ABCD通过旋转而得到的;(2)画图略;(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.点拨精讲:旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.2.如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点__A__;旋转的度数是__45°__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.点拨精讲:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE′=S△ODD′,即说明△OEE′≌△ODD′.学生总结本堂课的收获与困惑.(2分钟)1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.学习至此,请使用本课时对应训练部分.(10分钟)23.1 图形的旋转(2)1.通过观察具体实例认识旋转,探索它的基本性质.2.了解图形旋转的特征,并能根据这些特征绘制出旋转后的几何图形.重点:图形的旋转的基本性质及其应用.难点:利用旋转的性质解决相关问题.一、自学指导.(10分钟)动手操作:在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题:(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?点拨精讲:(1)OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心距离相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC和△A′B′C′形状相同且大小相等,即全等.归纳:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.△ABF与△ADE是完全重合的,所以△AEF是等腰直角三角形.解:(1)旋转中心是A点;(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点,∴∠DAB=90°就是旋转角;(3)∵AD=1,DE=,∴AE==.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=;(4)∵∠EAF=90°(与旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.点拨精讲:关键是确定△ADE三个顶点的对应点的位置.2.已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.作法:1.连接OA;2.在逆时针方向作∠AOC=100°,在OC上截取OA′=OA;3.连接OB;4.在逆时针方向作∠BOD=100°,在OD上截取OB′=OB;5.连接A′B′.∴线段A′B′就是线段AB绕点O按逆时针方向旋转100°后的对应线段.点拨精讲:作图应满足三要素:旋转中心、旋转角、旋转方向.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.(1)此图能否旋转某一部分得到一个正方形?(2)若能,指出由哪一部分旋转而得到的?并说明理由.(3)它的旋转角多大?并指出它们的对应点.解:(1)能;(2)由△BCQ绕B点旋转得到.理由:连接AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.(3)90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.点拨精讲:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M在AK 的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°,∴△ADM是以A为旋转中心,以∠BAD为旋转角,由△ABK旋转而成的.∴BK=DM.点拨精讲:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.学生总结本堂课的收获与困惑.(2分钟)1.问题:对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?2.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.学习至此,请使用本课时对应训练部分.(10分钟)23.1 图形的旋转(3)1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2. 掌握根据需要用旋转的知识设计出美丽的图案.重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.一、自学指导.(15分钟)1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.点拨精讲:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__3__次旋转,每次旋转__120°__得到的.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.如图所示,图①沿逆时针方向旋转90°可得到图__⑤__.图①按顺时针方向至少旋转__180__度可得图③.2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.解:依题意,AP绕点A旋转90°时得AP′=AP=3,则△APP′是等腰直角三角形.所以PP′===3.解题的关键是确定AP与AP′垂直且相等.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)如图所示,点C是线段AB上任意一点,分别以AC,BC为边在同侧作等边三角形ACD和等边三角形BCE,连接AE,BD,试找出图中能通过旋转完全重合的一对三角形,并指明旋转中心、旋转角及旋转方向.解:△ACE旋转后能与△DCB完全重合.旋转中心是点C,旋转角是60°,旋转方向是顺时针方向.(也可看作△DCB绕点C逆时针旋转60°得到△ACE)学生总结本堂课的收获与困惑.(3分钟)1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.学习至此,请使用本课时对应训练部分.(10分钟)23.2 中心对称23. 2. 1 中心对称1. 了解中心对称、对称中心、关于中心的对称点等概念.2. 掌握中心对称的基本性质.重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.一、自学指导.(10分钟)自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(centralsymmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点是哪些点.解:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A,B,C,D关于中心D的对称点是A′,B′,C′,D′,这里的D′与D 重合.2.如图,已知AD是△ABC的中线,作出以点D为对称中心,与△ABD成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C,B为一对对应点,因此,只要再作出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),A 点关于中心D的对称点为A′.(2)连接A′B′,A′C′.则△A′B′D为所求作的三角形,如图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.(只保留作图痕迹,不要求写出作法)点拨精讲:(1)画法总结;(2)性质归纳.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B.又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′.在△BOO′中,OO′+OB>BO′,即OA+OB>OC.点拨精讲:要证明OA+OB>OC,必然把OA,OB,OC转化在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,旋转60°,便可把OA,OB,OC转化在一个三角形内.2.教材第66页练习.学生总结本堂课的收获与困惑.(2分钟)1.中心对称及对称中心的概念;2.关于中心对称的两个图形的性质.学习至此,请使用本课时对应训练部分.(10分钟)23.2.2 中心对称图形1. 掌握中心对称图形的定义.2. 准确判断某图形是否为中心对称图形.重点:中心对称图形的判断.难点:两个图形成中心对称和中心对称图形的关系,以及中心对称图形的判定.一、自学指导.(7分钟)自学:自学课本P66~67的内容.探究:中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合.那么这个图形叫做中心对称图形,这个点就是它的对称中心.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)将下面左图的四张扑克牌中的一张旋转180°后,得到右图,你知道旋转了哪一张扑克吗?议一议.解:J.点拨精讲:这里相当于问哪一张扑克牌是中心对称图形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什么?(出示课件图片)(1)平行四边形(2)矩形(3)菱形(4)正方形(5)正三角形(6)线段(7)角(8)等腰梯形解:常见的中心对称图形:线段(线段中点)、平行四边形(对角线交点)、矩形、菱形、正方形、圆(圆心)等.2.中心对称图形与中心对称有哪些区别与联系.解:区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称.联系:如果将成中心对称的两个图形看成一个整体,则它们是中心对称图形;如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)1.英文大写字母中有哪些中心对称图形?答:(H,I,N,O,S,X,Z).2.说一说:在生活中你还见过哪些中心对称图形?学生思考、举例、回答问题,教师展示图片、归纳总结.3.想一想:你学过的几何图形具有怎样的对称性?点拨精讲:边数为奇数的正多边形只是轴对称图形而不是中心对称图形,边数为偶数的正多边形既是轴对称图形,又是中心对称图形.4.课本第67页小练习2.点拨精讲:怎样判断非常见几何图形是否为中心对称图形的妙法:将书本转180°,即倒过来后,看图形是否与原来一样.5.如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?点拨精讲:由两个中心对称图形构成的图形,过两个对称中心的直线,把这个图形分成的两部分面积相等.学生总结本堂课的收获与困惑.(2分钟)1.中心对称图形的定义.2.怎样准确判断某图形是否为中心对称图形.学习至此,请使用本课时对应训练部分.(10分钟)23.2.3 关于原点对称的点的坐标掌握两个点关于原点对称时的坐标特征,能够运用特征解决相关问题.重点:关于原点对称的点的坐标的关系及初步应用.难点:关于原点对称的点的坐标的性质及其运用它解决实际问题.一、自学指导.(10分钟)自学:自学课本P68的内容.思考:关于原点作中心对称时,(1)它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?(2)坐标与坐标之间符号又有什么特点?点拨精讲:(1)横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等;(2)坐标符号相反,即P(x,y)关于原点O的对称点为P′(-x,-y).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-2),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?解:A,B,C,D,E,F点关于原点O对称点分别为A′(3,-1),B′(4,0),C′(0,-3),D′(-2,-2),E′(-3,2),F′(2,2).这些点的横纵坐标与已知点的横纵坐标互为相反数.2.如图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形.解:△ABC的三个顶点A(-2,2),B(-4,-1),C(1,1)关于原点的对称点分别为A′(2,-2),B′(4,1),C′(-1,-1),依次连接A′B′,B′C′,A′C′,就可得到与△ABC关于原点对称的△A′B′C′,如右图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)如图,直线AB与x轴、y轴分别相交于A,B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1.(2)求出过线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等),它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.点拨精讲:(1)只需画出A,B两点绕点O顺时针旋转90°得到的点A1,B1,连接A1B1.(2)先求出A1B1中点的坐标,设反比例函数解析式为y=代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加以说明.这一条直线是存在的,因为A1B1与双曲线是相切的,只要我们通过A1B1的坐标作A1,B1关于原点的对称点A2,B2,连接A2B2的直线就是我们所求的直线.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.点拨精讲:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC 关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.2.教材P69的第1,2,3题.学生总结本堂课的收获与困惑.(2分钟)本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y),及利用这些特点解决一些实际问题.学习至此,请使用本课时对应训练部分.(10分钟)23.3 课题学习图案设计1.认识和欣赏平移、轴对称、旋转在现实生活中的应用.2. 利用图形的平移、轴对称、旋转变换设计组合图案.重点:设计图案.难点:如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、自学指导.(10分钟)自学:自学教材P72内容,思考下列问题.(1)我们学过哪些图形变换?它们分别有何特征?(2)下列图形之间的变换分别属于什么变换?探究:(1)观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?(2)观察三种图形变换的过程,回答问题:①平移、旋转和轴对称变换的基本特征;②归纳三种图形变换的共性.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.分析图案的形成过程要注意些什么?分析图案的形成过程,应注意运用__平移、__轴对称__、__旋转__进行描述,只要合理就行.2.图案设计的关键是什么?选取简单的基本几何图形,然后通过不同的变换组合出美丽的图案.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)用平移、旋转或轴对称变换分析下图中各个图案,分析它是将哪种基本图形经过了哪些变换后得到的?点拨精讲:将基本图形从组合图案中分离出来,并再现此基本图形的变换过程.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.某单位搞绿化,要在一块圆形空地上种植四种颜色的花,为了便于管理和美观,相同颜色的花集中种植,且每种颜色的花所占的面积相同,现征集设计方案,你能帮忙设计吗?点拨精讲:将基本图形创造性地应用平移、轴对称、旋转等变换,设计出和谐、丰富、美观的组合图案.2.下面花边中的图案,由圆弧、圆构成.仿照例图,请你为班级的板报设计一条花边,要求:(1)只要画出组成花边的一个图案;(2)以所给的图形为基础,用圆弧、圆或线段画出;(3)图案应有美感.学生总结本堂课的收获与困惑.(2分钟)利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.学习至此,请使用本课时对应训练部分.(10分钟)。

旋转学案教案|学案|教学设计[人教版初三九年级]

旋转学案教案|学案|教学设计[人教版初三九年级]

第二十三章旋转23.1 图形的旋转(1)一、如图,可以看到点A旋转到点A′,OA旋转到OA′,∠AOB旋转到∠A′OB′,这些都是互相对应的点、线段与角。

那么,点B的对应点是点__;线段OB的对应线段是线段___;线段AB的对应线段是线段___;∠A的对应角是___;∠B的对应角是___;旋转中心是点___;旋转的角度是___.二、指出图中各图形的旋转中心,旋转角和“基本图案”:三、如图,△ABC为等边三角形,△AP′B旋转后能与△APC重合,那么:(1)指出旋转中心;(2)求旋转角的度数;(3)求∠PAP′的度数.四、如图,△OAB绕点O逆时针旋转一定角度后,有哪些线段相等?有哪些角相等?五、已知线段AB和一点O,请将线段AB绕点O逆时针旋转60°,作图.六、如图已知△ABC绕点C旋转后,顶点A的对应点为D,试确定顶点B的对应点的位置,并作出旋转后的图形.实践与探究:如图,方格纸中有两个形状、大小一样的图形,请指出如何运用轴对称、平移、旋转这三种运动,将一个图形重合到另一个图形上。

23.1 图形的旋转(2)一、把一个直角梯形进行旋转1、选择不同的旋转中心、不同的旋转角、看看旋转效果如何2、请你设计旋转过程,使旋转结果成一美丽风车二、在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在B′处,求点B′与点B原来位置之间的距离.AG .三、如图,正方形ABCD中,F是BC上一点,E是AB延长线上一点,且BF=BE.求证:CEA23.2.1 中心对称一、选择A.两个全等三角形必关于某一点中心对称。

B.关于中心对称的两个三角形不一定是全等三角形。

C.两个三角形对应点连线都经过同一点,这两个三角形关于该点成中心对称。

D.关于中心对称的两个三角形,对称点连线都经过对称中心。

2.右图中,AB C ∆与'C 'B 'A ∆关于点O 成中心对称,下列结论中不成立 的是( )A .'OC OC =B .'OA OA =C .'C 'B BC =D .'B 'C 'A AB C ∠=∠ 二、如图,已知四边形ABCD 以及点O ,画出四边形'D 'C 'B 'A 使四边形ABCD 与四边形'D 'C 'B 'A 关于点O 成中心对称,并找出图中的对称点和对称线段.三、图中的两个图形关于某点对称,找出它们的对称中心.实践与探究X-k -b- 1.-c-o-m两个人轮流在一张桌面(长方形或正方形或圆形)上摆放硬币.规则是每人每次摆一个,硬币不能互相重叠,也不能有一部分在桌面边缘之外,摆好之后不许移动.这样经过多次摆放,直到谁最先摆下硬币谁就认输.按照这个规则你用什么方法才能取胜呢?23.2.2 中心对称图形一、判断题1. 如果一个图形绕着某一点旋转,能够与另一个图形重合,那么这两个图形成中心对称. ()2. 平行四边形是中心对称图形. ( )3. 长方形既是轴对称图形,又是中心对称图形. ( )4. 轴对称图形一定不是中心对称图形. ( )5. 等边三角形是中心对称图形. ( )6. 中心对称图形是全等形. ( )7. 对称中心在中心对称图形任意两点连线的中点上. ( ) 8. 正方形是轴对称图形,它共有两条对称轴. ( ) 二、选择题9.下列图不是中心对称图形的是 ( )A .①③B .②④C .②③D .①④10.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是( ) A .2 B .3 C .4 D .5 11.如图所示图形旋转一定角度能与自身重合,则旋转的角度可能是( ) A .30° B .60° C .90° D .120° 三、解答题12.如图,ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求FC 的长23.2.3 关于原点对称的点的坐标一、选择题DBCE1.点(-1,4)关于原点对称的点的坐标()A.(-1,-4) B.(1,-4) C.(1,4) D.(4,-1)2.在直角坐标系中,点A(1,2)的横坐标乘以-1,纵坐标不变,得到A′点,则A与A′的关系是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.将A点向x轴负方向平移一个单位得到A′点3.如图,若将△ABC绕点C顺时针旋转90°后得到△A’B’C’,则点A的对应点A’的坐标是()A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)4.如图,△ABC和△ADE都是等腰直角三角形,∠ACB和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图(1),再将图(1)作为“基本图形”绕着A点经过逆时针连续旋转得到图(2),两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30° D.30°,60°(1)(2)(第3题) (第4题)二、如图,在直角坐标平面内,点A的坐标为(-2,3),点B的坐标为(-5,0),画出点A点B关于原点的对称点,并写出对称点的坐标Xk b1.co m图形的旋转复习题一、填空题BCEABCEDA1.图形的平移、旋转、轴对称中,其相同的性质是_________.2.经过旋转,对应点到旋转中心的距离___________.3.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.4. 下列大写字母A,B,C,D,E,F,C,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.5.边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为______cm.6.关于中心对称的两个图形,对称点的连线7.如图所示,△ABO与△CDO关于点O成中心对称,则在一直线上的三点有,并且AO=,BO= .8.如果两个图形的对应点连成的线段都经过某一点,并且被平分,则这两个图形一定关于这一点成对称.二、选择题9.如图所示,下列图形中即是轴对称图形,又是中心对称图形的是()10.下列图案中,可以由一个”基本图案”连续旋转得到的是().A B C D11.对图案的形成过程叙述正确的是().A.它可以看作是一只小狗绕图案的中心位置旋转90°、180°、270°形成的B.它可以看作是相邻两只小狗绕图案的中心位置旋转180°形成的C.它可以看作是相邻两只小狗绕图案的恰当的对称轴翻折而成的D.它可以看作是左侧、上面的小狗分别向右侧、下方平移得到的第11题Xkb1 .com12.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以A为中心().45oA.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到(1)关于中心对称的两个图形一定不全等.(2)关于中心对称的两个图形是全等形.(3)两个全等的图形一定关于中心对称.第12题A.0个B.l个C.2个D.3个三、解答题14.在下面的正方形中,以右上角顶点为旋转中心,按逆时针旋转一定角度后使之与原图形成轴对称.15.已知四边形ABCD和点O,画四边形A′B′C′D′使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.16.如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.17.如图所示:AB是长为4cm的线段,且CD⊥AB于O,你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.18.已知如图所示:四边形AECF中AE=AF,∠EAF=9O°,∠C=90°,AB⊥FC于B,且AB =BC,若FC=10,EC=6,求四边形AECF的面积.19.如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C对的对称点.20.有一块长4m,宽3m的园地.现要在园地上开辟一个花坛,使花坛面积是原园地面积的一半,且使设计图案是轴对称图形,又是中心对称图形,问如何设计.第二十三章检测题一、选择题1.下列图形中是中心对称图形的是()2.如图,ABCD是平行四边形,O是对称中心,过O的直线分别交AD、BC于E、F,则图中相等的线段有()对A.3 B.4 C.5 D.63.如图△ABC是等腰直角三角形,点D是斜边BC的中点,△ABD绕点A旋转到△ACE的位置,恰与△ACD组成正方形ADCE,则△ABD所经过的旋转是()A.顺时针旋转225°B.逆时针旋转45°C.顺时针旋转315°D.逆时针旋转90°4.如图,Rt△ABC的边BC绕点C旋转到CE位置,则下列说法正确的是()A.点B与点D为对应点,且∠ACD=∠BCE B.∠ACB=∠BCE C.AB=DE D.线段AB与线段CE是对应线段(第2题)(第3题)(第4题)5.点(5,-4)关于原点对称的点的坐标是()A.(-5,-4) B.(5,4) C.(-5,4) D.(5,4) 6.下列图形中,(2)是由(1)()得到的DA C(1) (2)A.平移 B.旋转 C.轴对称 D.平移与旋转的组合二、填空题7.观察下列图形,将其中的轴对称图形和中心对称图形所对应的编号填入相应的圈内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

豆村中学__九_年级数学教(学)案
课题图形的旋转(1)主备教师郑淑花
课型
新授课第_1_课

时间
2.像这样,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,
点O叫做旋转中心,转动的角叫旋转角.因此,旋转的决定因素
....是________
3.在上面几幅图中,标出旋转中心。

4.线段OA绕点O旋转至OB,请在图中
标出旋转中心、旋转角。

5.如图,三角形OAB绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A、B分别移动到什么位置?
归纳:旋转包括三要素:、、
【合作交流】
要求:先自己独立完成下列问题,将自己在学习中遇到的问题在组内提出寻求帮助;
拿一张硬纸板,在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把
挖好的硬纸板放在白纸上,先在白纸上描出这个挖掉的三角形图案(△ABC),然后围绕
旋转中心O转动硬纸板,在白纸上再描出这个挖掉的三角形(△A′B′C′),移去硬纸
板.
根据图回答下面问题:
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
[来源学§科§网Z§X§X§K]
3.△ABC与△A′B′C′形状和大小有什么关系
学习杂记授课教师郑淑花
学习目标1.了解图形的旋转的有关概念并理解它的基本性质.2.了解中心对称的概念并理解它的基本性质.


图形旋转的基本性质.


图形旋转的基本性质的归纳与运用
学习杂记学习过程
【合作复习】
要求: 独立完成下列练习,然后和你的同伴相互交流
在平面内,将一个图形沿移动 ,这样的图形运动称为平移.
2.平移的性质
对应点所连的线段且,对应线段且,对应角 .
3.下列A、B、C、D四幅图案中,能通过平移图案(1)得到的是()
(1) A B C D
【自主学习】[来源:]
要求:先独立完成下列问题,把有疑问的做好标记,然后在组内交流疑惑
1.观察下面的图形回答问题:
(1)上面情景中的转动现象,有什么共同的特征?
答:。

(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?
答:。

A
o
B
学习杂记 综合以上的实验操作得出旋转的基本性质:
(1)对应点到旋转中心的距离 ;
(2)对应点与旋转中心所连线段的夹角等于 ; (3)旋转前、后的图形 .
例:如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD
经过旋转后到△ACP 位置,则旋转中心是__________,旋转角等于_________度,△ADP 是___________三角形.
课堂检测
1.下列现象中属于旋转的有( )个
①地下水位逐年下降; ②传送带的移动; ③方向盘的转动 ④水龙头开关的转动;
⑤钟摆的运动; ⑥荡秋千运动.
A.2
B.3
C.4
D.5
2.钟表的分针匀速旋转一周需要60分.
(1)指出它的旋转中心;
(2)经过20分,分针旋转了多少度? 3.如图,四边形AOBC 绕O 点旋转得到四边形DOEF. 在这个旋转过程中:[来源学科网]
(1)旋转中心是什么?
(2)经过旋转,点A 、B 分别移动到什么位置?
(3)旋转角是什么?
(4)AO 与DO 的长有什么关系?BO 与EO 呢?
(5)∠AOD 与∠BOE 有什么大小关系?
应用提高
1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________.
2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ ,则△PBQ 的形状是____1 等边三角形至少旋转__________度才能与自身重合。

3.图1可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是( )
A .90
B .60
C .45
D .30
4.如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )
A 、300
B 、600
C 、900
D 、1200
5.如图3,P 是等边△ABC 内一点,△BMC 是由△BPA 旋转所得,则∠PBM =______
6.如图所示,△ABP 是由△ACE 绕A 点旋转得到的,那么△ABP 与△ACE 是什么关系? 若∠BAP =40°,∠B =30°,∠PAC =20°,求旋转角及 ∠CAE=____°∠E=____°
∠BAE=____°_________________________.
学习杂记
反思或总结
A
B
C
D
P
A
O
C B
D
E
F
A E B
C
P。

相关文档
最新文档