高考全国1卷文科数学试卷及答案清晰word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考全国1卷文科数学试卷及答案(清晰word 版)
绝密★启用前
普通高等学校招生全国统一考试
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,
只有一项是符合题目要求的。

1. 设1i
2i 1i
z -=++,则||z =
A .0
B .
12
C .1
D 2.已知集合{0,2}A
,{2,1,0,1,2}B ,则A B =
A .{0,2}
B .{1,2}
C .{0}
D .{2,1,0,1,2}--
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是 A .新农村建设后,种植收入减少
B .新农村建设后,其他收入增加了一倍以上
C .新农村建设后,养殖收入增加了一倍
D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A .
B .12π
C .
D .10π
5.已知椭圆22
214x y C a +=:的一个焦点为(2,0),则C 的离心率为
A .13
B .1
2
C D
6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为
A .2y x =-
B .y x =-
C .2y x =
D .y x =
7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .31
44
AB AC - B .
13
44
AB AC - C .
3144AB AC +D .13
44
AB AC + 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表
面上的点N 在左视图上的对应点为B ,则在此圆柱侧
面上,从M 到N 的路径中,最短路径的长度为 A .217B .25 C .3D .2
10.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为
30︒,
则该长方体的体积为 A .8
B .62
C .82
D .83
11.设函数2,0,
()1,
0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是
A .(,1]-∞-
B .(0,)+∞
C .(1,0)-
D .(,0)-∞
12.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点
(1,)A a ,(2,)B b ,且2
cos23
α=
,则||a b -= A .15
B .
5 C .
25
D .1
二、填空题:本题共4小题,每小题5分,共20分。

13.已知函数22()log ()f x x a =+. 若(3)1f =,则a =.
14.若x ,y 满足约束条件220,10,0,x y x y y --⎧⎪
-+⎨⎪⎩
≤≥≤则32z x y =+的最大值为.
15.直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =.
16.ABC △的内角A ,B ,C 的对边分别为a ,b ,c . 已知
sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为.
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为
必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)
已知数列{}n a 满足11a =,12(1)n n na n a +=+. 设n
n a b n
=. (1)求1b ,2b ,3b ;
(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 18.(12分)
如图,在平行四边形ABCM 中,
3AB AC ==,90ACM ∠=︒. 以AC 为折痕将
ACM △折起,使点M 到达点D 的位置,且
AB DA ⊥.
(1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2
3
BP DQ DA ==,求三棱锥Q ABP -的体积. 19.(12分)
某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数
1
3
2
4
9
26
5
使用了节水龙头50天的日用水量频数分布表
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图; (2)估计该家庭使用节水龙头后,日用水量小于0.353m 的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.) 20.(12分)
设抛物线22C y x =:
,点(2,0)A ,(2,0)B -,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠. 21.(12分)
已知函数()e ln 1x f x a x =--.
(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1
e
a ≥时,()0f x ≥.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所
做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xO y 中,曲线1C 的方程为||2y k x =+. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.
(1)求2C 的直角坐标方程;
(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 23.[选修4-5:不等式选讲](10分)
已知()|1||1|f x x ax =+--.
(1)当1a =时,求不等式()1f x >的解集;
(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.
文科数学试题参考答案
一、选择题 1.A2.C
3.A4.C
5.B 6.D 7.A
8.B9.B10.C
11.B
12.D
二、填空题
13.7-14.615.22 16.
23
3
三、解答题 17.解:
(1)由条件可得12(1)
n n n a a n
++=
. 将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =. 从而11b =,22b =,34b =.
(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n n
a a n n
+=
+,即12n n b b +=,又11b =,所以{}n b 是首项为1,公比为2的等比数列.
(3)由(2)可得12n n
a n
-=,所以12n n a n -=⋅. 18.解:
(1)由已知可得,90BAC ∠=︒,
BA AC ⊥.
又BA AD ⊥,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .

2







3DC CM AB ===,32DA =.
又2
3
BP DQ DA ==
,所以22BP =. 作QE AC ⊥,垂足为E ,则QE
1
3
DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,1QE =. 因此,三棱锥Q ABP -的体积为
111
1322sin 451332
Q ABP ABP V QE -=⨯⨯=⨯⨯⨯⨯︒=△S .
19.解:
(1)
(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.353m 的频率为
0.20.110.1 2.60.120.050.48,
因此该家庭使用节水龙头后日用水量小于0.353m 的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为
1
1
(0.0510.1530.2520.3540.4590.55260.655)0.48.
50
x 该家庭使用了节水龙头后50天日用水量的平均数为
估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m ).
20.解:
(1)当l 与x 轴垂直时,l 的方程为2x =,可得M 的坐标为(2,2)或(2,2)-. 所以直线BM 的方程为112y x =
+或1
12
y x =--.
(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以ABM ABN ∠=∠. 当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,11(,)M x y ,22(,)N x y ,则120,0x x >>.
由2(2),2y k x y x
=-⎧⎨=⎩得2240ky y k --=,可知12122
,4y y y y k +==-.
直线BM ,BN 的斜率之和为
121222BM BN y y k k x x +=
+++2112
12122()
(2)(2)
x y x y y y x x +++=++.① 将112y x k =
+,222y
x k =+及1212,y y y y +的表达式代入①式分子,可得 121221121224()2()y y k y y x y x y y y k +++++=
88
0k -+==.
所以0BM BN k k +=,可知BM ,BN 的倾斜角互补,所以ABM ABN ∠=∠. 综上,ABM ABN ∠=∠.
21.解:
(1)()f x 的定义域为(0,)+∞,1
()e x f x a x
'=-.
由题设知,(2)0f '=,所以212e
a =
.
从而2
1()e ln 12e
x
f x x =
--,211()e 2e x f x x '=-. 当02x <<时,()0f x '<;当2x >时,()0f x '>. 所以()f x 在(0,2)单调递减,在(2,)+∞单调递增.
(2)当1
e
a ≥时,e ()ln 1e x f x x --≥.
设e ()ln 1e x g x x =--,则e 1
()e x g x x
'=-.
当01x <<时,()0g x '<;当1x >时,()0g x '>. 所以1x =是()g x 的最小值点. 故当0x >时,()(1)0g x g =≥.
因此,当1
e
a ≥时,()0f x ≥.
22.解:
(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为
22(1)4x y ++=.
(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.
由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线. 记y 轴右边的射线为1l ,y 轴左边的射线为2l . 由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价
于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.

1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故
43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当4
3
k =-时,1l 与2C 只有
一个公共点,2l 与2C 有两个公共点.

2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故
0k =或43k =
. 经检验,当0k =时,1l 与2C 没有公共点;当4
3
k =时,2l 与2C 没有公共点.
综上,所求1C 的方程为4
||23y x =-+.
23.解:
(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,
11,2, 1.
x f x x x x --⎧⎪
=-<<⎨⎪⎩
≤≥ 故不等式()1f x >的解集为1
{|}2
x x >.
(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<的解集为20x a <<,所以2
1a
≥,故02a <≤. 综上,a 的取值范围为(0,2].
高考理科数学试题及答案
(考试时间:120分钟试卷满分:150分)
一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有









的。

1.
31i
i
+=+() A .12i + B .12i - C .2i + D .2i -
2. 设集合{}1,2,4A =,{}
2
40x x x m B =-+=.若{}1A
B =,则B =()
A .{}1,3-
B .{}1,0
C .{}1,3
D .{}1,5
3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加
增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏
4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某
几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π
5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪
-+≥⎨⎪+≥⎩
,则2z x y =+的最小值是()
A .15-
B .9-
C .1
D .9
6. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同
的安排方式共有()
A .12种
B .18种
C .24种
D .36种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中
有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的
S =()A .2 B .3 C .4 D .5
9. 若双曲线C:22
221x y a b
-=(0a >,0b >)的一条渐
近线被圆()2
224x y -+=所截得的弦长为2,则C 的 离心率为()
A .2
B .3
C .2
D .
23
3
10. 若2x =-是函数2
1`
()(1)x f x x ax e
-=+-的极值点,则()f x 的极小值为()
A.1-
B.3
2e -- C.3
5e - D.1
11. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异
面直线1AB 与1C B 所成角的余弦值为()
A .
3 B .15 C .10 D .3 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()
A.2-
B.32-
C. 4
3
- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100
次,X 表示抽到的二等品件数,则D X =. 14. 函数()23sin 3cos 4f x x x =+-
(0,2x π⎡⎤
∈⎢⎥⎣⎦
)的最大值是. 15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则
11
n
k k
S ==∑. 16. 已知F 是抛物线C:2
8y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点
N .若M 为F N 的中点,则F N =.
三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必做题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)
ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2
sin()8sin 2
B
A C +=. (1)求cos B
(2)若6a c += , ABC ∆面积为2,求.b
18.(12分)
淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下: 1.
设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;
2.
填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法
3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
P (

0.050 0.010 0.001 k
3.841
6.635
10.828
19.(12分)
如图,四棱锥PABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,
o 1
,90,2
AB BC AD BAD ABC ==
∠=∠= E 是PD 的中点.
(1)证明:直线//CE 平面PAB
(2)点M 在棱PC 上,且直线BM 与底面ABCD 所
成锐角为o 45 ,求二面角MABD 的余弦值 20. (12分)
设O 为坐标原点,动点M 在椭圆C :2
212
x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =
.
(1) 求点P 的轨迹方程;
(2)设点Q 在直线x=3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.(12分)
已知函数3
()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;
(2)证明:()f x 存在唯一的极大值点0x ,且2
30()2e
f x --<<.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,按所做的第一题计分。

22.[选修44:坐标系与参数方程](10分)
在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线
1C 的极坐标方程为cos 4ρθ=.
(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;
(2)设点A 的极坐标为(2,
)3
π
,点B 在曲线2C 上,求OAB ∆面积的最大值.
23.[选修45:不等式选讲](10分)
已知3
3
0,0,2a b a b >>+=,证明: (1)3
3()()4a b a b ++≥; (2)2a b +≤.
参考答案
1.D 2.C
【解析】1是方程240x x m -+=的解,1x =代入方程得3m =
∴2430x x -+=的解为1x =或3x =,∴{}13B =,
3.B
【解析】设顶层灯数为1a ,2=q ,()7171238112
-==-a S ,解得13a =.
4.B
【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半. 5.A
【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.
6.D
【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.
由此把4份工作分成3份再全排得23
43C A 36⋅=
7.D
【解析】四人所知只有自己看到,老师所说及最后甲说的话.
甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.
8.B
【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A
【解析】取渐近线b
y x a
=
,化成一般式0bx ay -=,圆心()20,到直线距离为2
2
23b a b
=
+
得224c a =,24e =,2e =.
10.C
【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹
角或其补角(异面线所成角为π02⎛
⎤ ⎥⎝
⎦,)
可知112MN AB =
=
,112NP BC = 作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,1
2
MQ AC =
ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠
14122172⎛⎫
=+-⨯⨯⋅-= ⎪⎝⎭
,AC
则MQ =
,则MQP △
中,MP = 则PMN △中,222
cos 2MN NP PM PNM MH NP
+-∠=⋅⋅
又异面线所成角为π02⎛
⎤ ⎥⎝⎦


11.A 【解析】()()21
21x f x x a x a e -'⎡⎤=+++-⋅⎣⎦,
则()()3
2422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦,
则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.
12.B
【解析】几何法:
如图,2PB PC PD +=(D 为BC 中点),
则()
2PA PB PC PD PA ⋅+=⋅,
要使PA PD ⋅最小,则PA ,PD 方向相反,即P 点在线段AD 上, 则min 22PD PA PA PD ⋅=-⋅, 即求PD PA ⋅最大值, 又3
23PA PD AD +==⨯
=, 则2
233
24
PA PD PA PD ⎛⎫+⎛⎫ ⎪⋅== ⎪ ⎪ ⎪⎝
⎭⎝⎭≤, 则min 33
2242
PD PA ⋅=-⨯=-. 解析法:
建立如图坐标系,以BC 中点为坐标原点, ∴()
03A ,,()10B -,,()10C ,. 设()P x y ,, ()
3PA x y
=--,,
()
1PB x y =---,,
()1PC x y =--,,
∴()
222222PA PB PC x y y ⋅+=-+
则其最小值为33242⎛⎫
⨯-=- ⎪⎝⎭
,此时0x =,3y =.
13.1.96
【解析】有放回的拿取,是一个二项分布模型,其中0.02=p ,100n =
则()11000.020.98 1.96x D np p =-=⨯⨯= 14.1
【解析】()23πsin 3cos 042f x x x x ⎛⎫⎡
⎤=+-∈ ⎪⎢⎥⎣
⎦⎝⎭,
令cos x t =且[]01t ∈,
则当t =时,()f x 取最大值1. 15.
2+1
n n 【解析】设{}n a 首项为1a ,公差为d .
则3123a a d =+=
求得11a =,1d =,则n a n =,()12
n n n S +=
16.6
【解析】28y x =则4p =,焦点为()20F ,
,准线:2l x =-, 如图,M 为F 、N 中点,
故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =
又由定义ME MF =, 且MN NF =, ∴6
NF NM MF =+=
17.
【解析】(1)依题得:2
1cos sin 8sin
84(1cos )22
B B B B -==⋅=-. ∵22sin cos 1B B +=, ∴2216(1cos )cos 1B B -+=, ∴(17cos 15)(cos 1)0B B --=, ∴15
cos 17
B =
, (2)由⑴可知8sin 17
B =

∵2ABC S =△, ∴1
sin 22ac B ⋅=, ∴18
2217
ac ⋅=, ∴17
2ac =
, ∵15cos 17
B =
, ∴22215217
a c
b a
c +-=,
∴22215a c b +-=, ∴22()215a c ac b +--=, ∴2361715b --=, ∴2b =.
18.
【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B
“新养殖法的箱产量不低于50kg ”为事件C
而()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯
(2) 箱产量50kg <
箱产量50kg ≥
中/华资*源%库旧养殖法 62 38 新养殖法
34
66
由计算可得2K 的观测值为 ∵15.705 6.635>
∴()2 6.6350.001P K ≈≥
∴有99%以上的把握产量的养殖方法有关.
(3)150.2÷=,()0.20.0040.0200.0440.032-++=
80.0320.06817÷=
,8
5 2.3517
⨯≈ 50 2.3552.35+=,∴中位数为52.35.
19.【解析】
(1)令PA 中点为F ,连结EF ,BF ,CE .
∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴1
2
EF AD ∥.
又∵90BAD ABC ∠=∠=︒,∴BC AD ∥. 又∵12AB BC AD ==
,∴1
2
BC AD ∥,∴EF BC ∥. ∴四边形BCEF 为平行四边形,∴CE BF ∥. 又∵BF PAB ⊂面,∴CE PAB 面∥
(2)以AD 中点O 为原点,如图建立空间直角坐标系.
设1AB BC ==,则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,,
(00P ,.
M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=︒,
∴MBM '△为等腰直角三角形.
∵POC △为直角三角形,OC OP =,∴60PCO ∠=︒.
设MM a '=,CM '=
,1OM '=.∴100M ⎛⎫'- ⎪ ⎪⎝⎭
,,.
BM a a '==⇒=.∴11OM '==.
∴100M ⎛⎫'- ⎪ ⎪⎝⎭,,10M ⎛- ⎝⎭
2611AM ⎛⎫=- ⎪ ⎪⎝⎭
,,,(100)AB =,,.设平面ABM 的法向量11(0)m y z =,,.
116
0y z +
=,∴(062)m =-,, (020)AD =,,,(100)AB =,,.设平面ABD 的法向量为2(00)n z =,,,
(001)n =,,.
∴10
cos ,m n m n m n
⋅<>=
=
⋅. ∴二面角M AB D --的余弦值为10
. 20.
【解析】 ⑴设()P x y ,,易知(0)N x ,
(0)NP y =,又1022NM NP ⎛== ⎪⎝
⎭,
∴1
2M x y ⎛

⎪⎝

,,又M 在椭圆上. ∴2
2
122x += ⎪⎝⎭
,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠,
由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()
2
1OP OQ OP OP OQ OP ⋅-=⋅-=,
∴2
13OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=. 设直线OQ :3Q y y x =
⋅-,
因为直线l 与OQ l 垂直. ∴3l Q
k y =
故直线l 方程为3
()P P Q
y x x y y =
-+, 令0y =,得3()P Q P y y x x -=-, 1
3
P Q P y y x x -⋅=-, ∴1
3
P Q P x y y x =-⋅+,
∵33P Q P y y x =+,
∴1
(33)13
P P x x x =-++=-,
若0Q y =,则33P x -=,1P x =-,1P y =±, 直线OQ 方程为0y =,直线l 方程为1x =-, 直线l 过点(10)-,,为椭圆C 的左焦点.
21.
【解析】 ⑴ 因为()()ln 0f x x ax a x =--≥,0x >,所以ln 0ax a x --≥.
令()ln g x ax a x =--,则()10g =,()11
ax g x a x x
-'=-
=
, 当0a ≤时,()0g x '<,()g x 单调递减,但()10g =,1x >时,
()0g x <;
当0a >时,令()0g x '=,得1
x a
=. 当10x a <<
时,()0g x '<,()g x 单调减;当1
x a
>时,()0g x '>,()g x 单调增.
若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调减,()110g g a ⎛⎫
<= ⎪⎝⎭

若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调增,()110g g a ⎛⎫<= ⎪⎝⎭
; 若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭
,()0g x ≥. 综上,1a =.
⑵()2ln f x x x x x =--,()22ln f x x x '=--,0x >.
令()22ln h x x x =--,则()1212x h x x x -'=-
=,0x >. 令()0h x '=得12x =
, 当102x <<时,()0h x '<,()h x 单调递减;当12
x >时,()0h x '>,()h x 单调递增.
所以,()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭
. 因为()
22e 2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭
,, 所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点. 设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭
,上的零点分别为02x x ,,因为()f x '在102⎛⎫ ⎪⎝⎭
,上单调减, 所以当00x x <<时,()0f x '>,()f x 单调增;当012
x x <<时,()0f x '<,()f x 单调减.因此,0x 是()f x 的极大值点.
因为,()f x '在12⎛⎫+∞ ⎪⎝⎭
,上单调增,所以当212x x <<时,()0f x '<,()f x 单调减,2x x >时,()f x 单调增,因此2x 是()f x 的极小值点.
所以,()f x 有唯一的极大值点0x .
由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()
24220e e e e f x f ---->=+>. 因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,则
又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014
f x <. 因此,()201e 4f x -<<
. 22.
【解析】⑴设()()00M P ρθρθ,
,, 则0||OM OP ρρ==,.
解得4cos ρθ=,化为直角坐标系方程为
()2224x y -+=.()0x ≠
⑵连接AC ,易知AOC △为正三角形.
||OA 为定值.
∴当高最大时,AOB S △面积最大,
如图,过圆心C 作AO 垂线,交AO 于H 点
交圆C 于B 点,
此时AOB S △最大
23.
【解析】⑴由柯西不等式得:()()()()225555334a b a b a a b b a b +++=+=≥⋅⋅
当且仅当55ab ba =,即1a b ==时取等号.
⑵∵332a b +=
∴()()
222a b a ab b +-+=
∴()()232a b b ab α⎡⎤++-=⎣⎦ ∴()()3
32a b ab a b +-+= ∴()()
3
23a b ab a b +-=+ 由均值不等式可得:()()32
232a b a b ab a b +-+⎛⎫= ⎪+⎝⎭≤
∴()()3
2232a b a b a b +-+⎛⎫ ⎪+⎝⎭
≤ ∴()()33324a b a b ++-≤ ∴()3124
a b +≤ ∴2a b +≤ 当且仅当1a b ==时等号成立.。

相关文档
最新文档