城西初中2018-2019学年七年级下学期数学第一次月考试卷(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城西初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)已知是二元一次方程组的解,则2m﹣n的算术平方根是()
A.4
B.2
C.
D.±2
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:由题意得:,
解得;
∴= = =2;
故答案为:B.
【分析】将代入方程组,建立关于m、n的方程组,解方程组求出m、n的值,然后代入求出2m-n的算术平方根。
2.(2分)如图,在数轴上表示无理数的点落在()
A.线段AB上
B.线段BC上
C.线段CD上
D.线段DE上
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵=2≈2×1.414≈2.828,
∴2.8<2.828<2.9,
∴在线段CD上.
故答案为:C.
【分析】根据无理数大概的范围,即可得出答案.
3.(2分)二元一次方程7x+y=15有几组正整数解()
A.1组
B.2组
C.3组
D.4组
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:方程可变形为y=15﹣7x.
当x=1,2时,则对应的y=8,1.
故二元一次方程7x+y=15的正整数解有,,共2组.
故答案为:B
【分析】将原方程变形,用一个未知数表示另一个未知数可得x=,因为方程的解是正整数,所以15-y 能被7整除,于是可得15-y=14或7,于是正整数解由2组。
4.(2分)二元一次方程组的解为()
A.
B.
C.
D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:
①+②得:3x=6,
解得:x=2,
把x=2代入②得:2﹣y=3,
解得:y=﹣1,
即方程组的解是,
故答案为:B.
【分析】由题意将两个方程左右两边分别相加可求得x的值,再将求得的x的值代入其中一个方程可求得y的值,则方程组的解可得。
5.(2分)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒。
现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则的值可能是()
A. 2013
B. 2014
C. 2015
D. 2016
【答案】C
【考点】二元一次方程组的其他应用
【解析】【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得
,
两式相加得,m+n=5(x+y),
∵x、y都是正整数,
∴m+n是5的倍数,
∵2013、2014、2015、2016四个数中只有2015是5的倍数,
∴m+n的值可能是2015.
故答案为:C.
【分析】根据正方形纸板的数量为m张,长方形纸板的数量为n张,设未知数,列方程组,求出m+n=5(x+y),
再由x、y都是正整数,且m+n是5的倍数,分析即可得出答案。
6.(2分)利用加减消元法解方程组,下列做法正确的是()
A. 要消去z,先将①+②,再将①×2+③
B. 要消去z,先将①+②,再将①×3-③
C. 要消去y,先将①-③×2,再将②-③
D. 要消去y,先将①-②×2,再将②+③
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:利用加减消元法解方程组,要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③.
故答案为:A.
【分析】观察方程组的特点:若要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③,即可得出做法正确的选项。
7.(2分)用加减法解方程组中,消x用法,消y用法()
A. 加,加
B. 加,减
C. 减,加
D. 减,减
【答案】C
【考点】解二元一次方程
【解析】【解答】解:用加减法解方程组中,消x用减法,消y用加法,
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:x的系数相等,因此可将两方程相减消去x;而y的系数互为相反数,因此将两方程相加,可以消去y。
8.(2分)若,则y用只含x的代数式表示为()
A.y=2x+7
B.y=7﹣2x
C.y=﹣2x﹣5
D.y=2x﹣5
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:,
由①得:m=3﹣x,
代入②得:y=1+2(3﹣x),
整理得:y=7﹣2x.
故答案为:B.
【分析】由方程(1)变形可将m用含x、y的代数式表示,再将m代入方程(2)中整理可得关于x、y的方程,再将这个方程变形即可把y用含x的代数式表示出来。
9.(2分)在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是()
A.2个
B.3个
C.4个 D 5个
【答案】B
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:,, 2.101101110……,
∴无理数的个数为3个.
故答案为:B.
【分析】无理数:无限不循环小数,由此即可得出答案.
10.(2分)如果方程组与有相同的解,则a,b的值是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由已知得方程组,
解得,
代入,
得到,
解得.
【分析】先将只含x、y的的方程组成方程组,求出方程组的解,再将x、y的值代入另外的两个方程,建立关于a、b的方程组,解方程组,求出a、b的值。
11.(2分)已知关于x、y的方程组的解满足3x+2y=19,则m的值为()
A. 1
B.
C. 5
D. 7
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:,
①+②得x=7m,
①﹣②得y=﹣m,
依题意得3×7m+2×(﹣m)=19,
∴m=1.
故答案为:A.
【分析】观察方程组,可知:x的系数相等,y的系数互为相反数,因此将两方程相加求出x、将两方程相减求出y,再将x、y代入方程3x+2y=19,建立关于m的方程求解即可。
12.(2分)已知方程5m-2n=1,当m与n相等时,m与n的值分别是()
A.
B.
C.
D.
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:根据已知,得
解得
同理,解得
故答案为:D
【分析】根据m与n相等,故用m替换方程5m-2n=1 的n即可得出一个关于m的方程,求解得出m的值,进而得出答案。
二、填空题
13.(1分)如图,直线L1∥L2,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.
【答案】95°
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:如图,
∵直线l1∥l2,且∠1=45°,
∴∠3=∠1=45°,
∵在△AEF中,∠A=40°,
∴∠4=180°﹣∠3﹣∠A=95°,
∴∠2=∠4=95°,
故答案为:95°.
【分析】根据平行线的性质得出∠3=∠1=45°,利用三角形内角和定理求出∠4=180°﹣∠3﹣∠A=95°,根据对顶角相等求出∠2=∠4=95°。
14.(1分)如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.
【答案】50°
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠1=∠AGF,
∵∠AGF与∠EGB是对顶角,
∴∠EGB=∠AGF,
∴∠1=∠EGB,
∵∠1=50°,
∴∠EGB=50°.
故答案为:50°.
【分析】根据平行线性质得∠1=∠AGF,由对顶角定义得∠EGB=∠AGF,等量代换即可得出答案.
15.(1分)的立方根是________.
【答案】4
【考点】立方根及开立方
【解析】【解答】解:=64
∴的立方根为=4.
故答案为:4
【分析】先求出的值,再求出64的立方根。
16.(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:
∴
解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。
17.(3分)同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a ________c .若a∥b,b∥c,则a ________c .若a∥b,b⊥c,则a ________c.
【答案】∥;∥;⊥
【考点】平行公理及推论
【解析】【解答】解:∵a⊥b,b⊥c,
∴a∥c;
∵a∥b,b∥c,
∴a∥c;
∵a∥b,b⊥c,
∴a⊥c.
故答案为:∥;∥;⊥.
【分析】根据垂直同一条直线的两条直线平行可得a∥c;
根据平行于同一条直线的两条直线平行可得a∥c;
根据垂直同一条直线的两条直线平行逆推即可.
18.(3分)把下列各数填在相应的横线上
﹣8,π,﹣|﹣2|,,,﹣0.9,5.4,,0,﹣3.6,1.2020020002…(每两个2之间多一个0)整数________;负分数________;无理数________.
【答案】﹣8,,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【考点】实数及其分类
【解析】【解答】解:整数﹣8,﹣|﹣2|,,0;
负分数﹣0.9,﹣3.6;
无理数π,,1.2020020002…;
故答案为:﹣8,﹣|﹣2|,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【分析】考查无理数、有理数、整数、分数的定义。
无理数:无限不循环小数;除无理数之外的都是有理数。
另外,要记住:是无理数。
三、解答题
19.(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
20.(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
21.(5分)把下列各数表示在数轴上,并比较它们的大小(用“<”连接).
,0,,,
【答案】解:
【考点】实数在数轴上的表示,实数大小的比较
【解析】【分析】根据数轴上用原点表示0,原点右边的点表示正数,原点左边的点表示负数,即可一一将各个实数在数轴上找出表示该数的点,用实心的小原点作标记,并在原点上写出该点所表示的数,最后根据数轴上所表示的数,右边的总比左边的大即可得出得出答案。
22.(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1= ∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
23.(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:( …);
整数集合:( …);
负分数集合:( …);
无理数集合:( …).
【答案】解:正有理数集合:(3,, -(-2.28), 3.14 …);
整数集合:( 3,0,-∣-4∣ …);
负分数集合:(-2.4,- ,, …);
无理数集合:(, -2.1010010001…… …).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。
逐一填写即可。
24.(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。
25.(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.
26.(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.。