新初中数学概率分类汇编含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学概率分类汇编含答案
一、选择题
1.某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出
的点数是偶数的频率为m
n
,则下列说法正确的是 ( )
A.m
n
一定等于
1
2
B.
m
n
一定不等于
1
2
C.m
n
一定大于
1
2
D.投掷的次数很多时,
m
n
稳定在
1
2
附近
【答案】D
【解析】
某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是
偶数的频率为m
n
,
则投掷的次数很多时m
n
稳定在12附近,
故选D.
点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.
2.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A.1
5
B.
2
5
C.
3
5
D.
4
5
【答案】C
【解析】
【分析】
【详解】
解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因
此可知使与图中阴影部分构成轴对称图形的概率为
3 35
5÷=
故选C
3.下列诗句所描述的事件中,是不可能事件的是()
A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰
【答案】D
【解析】
【分析】
不可能事件是指在一定条件下,一定不发生的事件.
【详解】
A、是必然事件,故选项错误;
B、是随机事件,故选项错误;
C、是随机事件,故选项错误;
D、是不可能事件,故选项正确.
故选D.
【点睛】
此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()
A.1
3
B.
4
9
C.
1
9
D.
2
3
【答案】A
【解析】
【分析】
将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.
【详解】
将三个小区分别记为A、B、C,根据题意列表如下:
由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,
所以他们恰好抽到同一个小区的概率为31 = 93
.
故选:A.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
5.(2018•六安模拟)下列成语所描述的是必然事件的是()
A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针
【答案】B
【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.
6.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6
y
x
=图象的概率是()
A.1
2
B.
1
3
C.
1
4
D.
1
8
【答案】B
【解析】
【分析】
根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.
【详解】
Q点(),m n在函数6
y
x
=的图象上,
6
mn
∴=.
列表如下:
mn的值为6的概率是
41 123
=.
故选:B.
【点睛】
本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表
找出mn=6的概率是解题的关键.
7.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )
A.1
2
B.
1
3
C.
2
3
D.
1
6
【答案】A
【解析】
【分析】
用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】
解:画树状图如下:
则总共有12种情况,其中有6种情况是两个球颜色相同的,
故其概率为61 122
.
故答案为A.
【点睛】
本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.
8.下列判断正确的是()
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
【答案】C
【解析】
【分析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D、“a是实数,|a|≥0”是必然事件,故此选项错误.
故选C.
【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()
A.1
6
B.
1
12
C.
1
3
D.
1
4
【答案】D
【解析】
【分析】
【详解】
解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:
∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84
故选D.
10.下表显示的是某种大豆在相同条件下的发芽试验结果:
每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850
发芽的频率m
n
0.9600.9400.9550.9500.9480.9520.950
下面有三个推断:
①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是
0.955;
②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;
③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.
其中推断合理的是()
A.①②③B.①②C.①③D.②③
【答案】D
【解析】
【分析】
利用频率估计概率,大量反复试验下频率稳定值即为概率可解题.
【详解】
解:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955,此推断错误,
②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95,此结论正确,
③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒,此结论正确,
故选D.
【点睛】
本题考查了利用频率估计概率, 大量反复试验下频率稳定值即为概率,属于简单题,熟悉概念是解题关键.
11.下列事件中,属于不可能事件的是()
A.某个数的绝对值大于0 B.某个数的相反数等于它本身
C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形
【答案】C
【解析】
【分析】
直接利用随机事件以及确定事件的定义分析得出答案.
【详解】
A、某个数的绝对值大于0,是随机事件,故此选项错误;
B、某个数的相反数等于它本身,是随机事件,故此选项错误;
C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;
D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.
故答案选C.
【点睛】
本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.
12.下列事件中,属于随机事件的是( ). A .凸多边形的内角和为500︒ B .凸多边形的外角和为360︒
C .四边形绕它的对角线交点旋转180︒能与它本身重合
D .任何一个三角形的中位线都平行于这个三角形的第三边 【答案】C 【解析】 【分析】
随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答. 【详解】
解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;
B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;
C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;
D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件. 故选:C . 【点睛】
本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
13.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )
A .两个转盘转出蓝色的概率一样大
B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了
C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同
D .游戏者配成紫色的概率为
16
【答案】D 【解析】
A 、A 盘转出蓝色的概率为
1
2、B 盘转出蓝色的概率为13
,此选项错误; B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误; C 、由于A 、B 两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误; D 、画树状图如下:
由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为1
6
, 故选D .
14.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6
y=x
上的概率为( ) A .
118
B .
112
C .
19 D .
16
【答案】C 【解析】 画树状图如下:
∵一共有36种等可能结果,点P 落在双曲线6
y=x
上的有(1,6),(2,3),(3,2),(6,1),
∴点P落在双曲线
6
y=
x
上的概率为:
41
=
369
.故选C.
15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()
A.
1
16
B.
7
16
C.
1
4
D.
1
8
【答案】C
【解析】
【分析】
从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.
【详解】
解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,
从转盘中找出蓝色区域的扇形有4份,
又因为转盘总的等分成了16份,
因此,获得签字笔的概率为:
41 164
=,
故答案为C.
【点睛】
本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.
16.下列说法:
①“明天降雨的概率是50%”表示明天有半天都在降雨;
②无理数是开方开不尽的数;
③若a为实数,则0
a<是不可能事件;
④16的平方根是4±164
=±;
其中正确的个数有()
A .1个
B .2个
C .3个
D .4个
【答案】A 【解析】 【分析】
①根据概率的定义即可判断;
②根据无理数的概念即可判断;
③根据不可能事件的概念即可判断;
④根据平方根的表示方法即可判断. 【详解】
①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;
②无理数是无限不循环小数,不只包含开方开不尽的数,故错误; ③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;
④16的平方根是4±,用式子表示是4±,故错误; 综上,正确的只有③, 故选:A . 【点睛】
本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.
17.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( ) A .红球比白球多 B .白球比红球多
C .红球,白球一样多
D .无法估计
【答案】A 【解析】
根据题意可得5位同学摸到红球的频率为85976357
505010
++++==,由此可得盒子里的
红球比白球多.故选A .
18.下列事件是必然发生事件的是( ) A .打开电视机,正在转播足球比赛 B .小麦的亩产量一定为1000公斤
C .在只装有5个红球的袋中摸出1球,是红球
D .农历十五的晚上一定能看到圆月
【解析】
试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.
A.打开电视机,正在转播足球比赛是随机事件;
B.小麦的亩产量一定为1000公斤是随机事件;
C.在只装有5个红球的袋中摸出1球,是红球是必然事件;
D.农历十五的晚上一定能看到圆月是随机事件.
故选C.
考点: 随机事件.
19.下列说法正确的是( )
A.打开电视机,正在播放“张家界新闻”是必然事件
B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨
C.两组数据平均数相同,则方差大的更稳定
D.数据5,6,7,7,8的中位数与众数均为7
【答案】D
【解析】
【分析】
根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】
A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;
B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;
C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;
D,数据5,6,7,7,8的中位数与众数均为7,正确,
故选D.
【点睛】
本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.
20.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()
A.易建联罚球投篮2次,一定全部命中
B.易建联罚球投篮2次,不一定全部命中
C.易建联罚球投篮1次,命中的可能性较大
D.易建联罚球投篮1次,不命中的可能性较小
【答案】A
【解析】
【分析】
根据概率的意义对各选项分析判断后利用排除法求解.
解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;
B、易建联罚球投篮2次,不一定全部命中,故本选项正确;
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.。