第五章大肠杆菌基因工程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决上述难题的一种有效策略是将重组质粒的扩增纳入可控制的 轨道
质粒拷贝数
质粒扩增时序的控制
pCP3拥有一个温度可诱导型的复制子 在28℃时,每个细胞的质粒拷贝数为60
PL MCS
在42℃时,拷贝数迅速增至300 - 600
在此温度下,受体细胞染色体上的CI基
pCP3
因表达的温度敏感型阻遏蛋白失活 Apr
核糖体结合位点
核糖体结合位点对外源基因表达的影响
SD序列与起始密码子之间的序列的影响:
SD序列下游的碱基若为AAAA或UUUU,翻译效率最高;而 CCCC或GGGG的翻译效率则分别是最高值的50%和25%。紧邻 AUG的前三个碱基成份对翻译起始也有影响,对于大肠杆菌b-半 乳糖苷酶的mRNA而言,在这个位置上最佳的碱基组合是UAU或 CUU,如果用UUC、UCA或AGG取代之,则酶的表达水平低20 倍
外源基因全合成 同步表达相关tRNA编码基因
密码子
密码子偏爱性对外源基因表达的影响
外源基因全合成
按照大肠杆菌密码子的偏爱性规律,设计更换外源基因中不适 宜的相应简并密码子,重组人胰岛素、干扰素以及生长激素在 大肠杆菌中的高效表达均采用了这种方法
密码子
密码子偏爱性对外源基因表达的影响
同步表达相关tRNA编码基因 对于那些含有不和谐密码子种类单一、出现频率较高、而本身分
ori
因此,用一种手段同时控制质粒拷
贝数和基因的表达
3 大肠杆菌基因工程菌的构建策略
包涵体型异源蛋白的表达 分泌型异源蛋白的表达 融合型异源蛋白的表达 寡聚型异源蛋白的表达 整合型异源蛋白的表达 蛋白酶抗性或缺陷型表达系统的构建
包涵体型异源蛋白的表达
包涵体及其性质
在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它 们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不 溶性的结构称为包涵体(Inclusion Bodies,IB)。富含蛋白质的包涵 体多见于生长在含有氨基酸类似物培养基的大肠杆菌细胞中,由这些 氨基酸类似物所合成的蛋白质往往会丧失其理化特性和生物功能,从 而集聚形成包涵体。由高效表达质粒构建的大肠杆菌工程菌大量合成 非天然性的同源或异源蛋白质,后者在一般情况下也以包涵体的形式 存在于细菌细胞内。除此之外,包涵体中还含有少量的DNA、RNA和 脂多糖等非蛋白分子
启动子
乳糖启动子Plac的可控性:
野生型的Plac上游附近拥有 代谢激活因子(CAP)结合 区,cAMP激活CAP,CAP 结合启动子控制区,进而促 进Plac介导的转录。葡萄糖 代谢使cAMP减少,也能阻 遏Plac介导的转录。因此, 基因工程中使用的乳糖启动 子均为抗葡萄糖代谢阻遏的 突变型,即Plac UV5
目前广泛用于外源基因表达的大肠杆菌表达型质粒上,均含有 与启动子来源相同的核糖体结合位点序列,序列和间隔是最佳的
密码子
生物体对密码子的偏爱性
不同的生物,甚至同种生物不同的蛋白质编码基因,对简并密码 子使用频率并不相同,具有一定的偏爱性,其决定因素是:
生物基因组中的碱基含量 在富含AT的生物(如单链DNA噬菌体 fX174)基因组中,密码子第三位上的U和A出现的频率较高;而在GC 丰富的生物(如链霉菌)基因组中,第三位上含有G或C的简并密码子 占90%以上的绝对优势
Ptrp 除去色氨酸
Ptrp
Ptrp
Otrp 或加3-吲哚丙烯酸 (IAA) 高效转录
Otrp 高效转录
Otrp
启动子的可控性
启动子
l噬菌体启动子PlL的可控性:
噬菌体启动子PL受CI阻遏蛋白阻 遏,很难直接诱导控制。在基因
Ptrp
工程中常使用温度敏感型的cI突变基因cI857控制PL。 cI857阻遏蛋 在42℃时失活脱落,PL便可介导 目的基因的表达。但在大型细菌
ATC GAA GGT CGC G1AA2GCT TCA GCT GGG ATC CGG TAC CGA TAT CAG ATC TCC CGG GGC GGC CGC
Tcr
蛋白酶抗性或缺陷型表达系统的构建
于一些终止作用较弱的终止子,通常 然而,这也是一个技术难题,尤其当目标蛋白分子中的Cys残基数目较高时,体外复性蛋白质的成功率相当低,一般不超过30%
核糖体结合位点
核糖体结合位点对外源基因表达的影响
SD序列的影响:
一般来说,mRNA与核糖体的结合程度越强,翻译的起始效 率就越高,而这种结合程度主要取决于SD序列与16S rRNA的碱 基互补性,其中以GGAG四个碱基序列尤为重要。对多数基因而 言,上述四个碱基中任何一个换成C或T,均会导致翻译效率大幅 度降低
缺乏对真核生物蛋白质的复性功能 缺乏对真核生物蛋白质的修饰加工系统 内源性蛋白酶降解空间构象不正确的异源蛋白 细胞周质内含有种类繁多的内毒素
2 外源基因在大肠杆菌中高效表达的原理
启动子 终止子 核糖体结合位点 密码子 质粒拷贝数
启动子
启动子最佳距离的探测
目的基因
E
E
A
启动子
目的基因
E
E
A 酶切开 Bal31酶解
启动子的筛选
启动子
采用鸟枪法战略,将合适大小的DNA片段 克隆到启动子探针质粒pKO1上 受体细胞染色体DNA上的galE、galT与质 粒上报告基因galk的表达产物联合作用, 可将培养基中的半乳糖酵解成红色素物质
Apr ori
pKO1
终止密码子 galK
转化galE+、galT+、galK-的大肠杆菌受体菌株
包涵体中的蛋白质就属于这两种状态,因此需要在体外进行人
终止子也可以象启动子那样,通过 稳定性大约是在细胞质中的10倍
生物基因组中的碱基含量 在富含AT的生物(如单链DNA噬菌体
ori
特殊的探针质粒从细菌或噬菌体基因
筛选Apr、Tcs的转化子
组DNA中克隆筛选
核糖体结合位点
外源基因在大肠杆菌细胞中的高效表达不仅取决于转录启动的 频率,而且在很大程度上还与mRNA的翻译起始效率密切相关。大 肠杆菌细胞中结构不同的mRNA分子具有不同的翻译效率,它们之 间的差别有时可高达数百倍。mRNA翻译的起始效率主要由其5‘ 端的结构序列所决定,称为核糖体结合位点(RBS)
核糖体结合位点
核糖体结合位点的结构
大肠杆菌核糖体结合位点包括下列四个特征结构要素: 位于翻译起始密码子上游的6-8个核苷酸序列5’ UAAGGAGG 3’, 即Shine-Dalgarno(SD)序列,它通过识别大肠杆菌核糖体小亚基 中的16S rRNA 3’端区域3’ AUUCCUCC 5’并与之专一性结合,将 mRNA定位于核糖体上,从而启动翻译; 翻译起始密码子,大肠杆菌绝大部分基因以AUG作为阅读框架的起 始位点,但有些基因也使用GUG或UUG作为翻译起始密码子; SD序列与翻译起始密码子之间的距离及碱基组成; 基因编码区5’ 端若干密码子的碱基序列
cAMP CAP
Plac 葡萄糖代谢
Plac
Plac UV5
高效转录
O cAMP浓度降低
基底水平转录
O 高效转录
O
启动子
启动子的可控性
色氨酸
色氨酸启动子Ptrp的可控性: 阻遏蛋白
基底水平转录
色氨酸启动子Ptrp受色氨酸-阻遏 蛋白复合物的阻遏,转录呈基底 状态。在培养系统中去除色氨酸 或者加入3-吲哚丙烯酸(IAA), 便可有效地解除阻遏抑制作用。 在正常的细菌培养体系中,除去 色氨酸是困难的,因此基因工程 中往往添加IAA诱导Ptrp介导的目 基因的表达
密码子与反密码子相互作用的自由能 中等强度规律 如GGG、CCC、GCG、GGC、AAA、UUU、AUA、UAU等使用少; 如GUG、CAC、UCG、AGC、ACA、UGU、AUC、UUG等使用多;
细胞内tRNA的含量
密码子
密码子偏爱性对外源基因表达的影响
由于原核生物和真核生物基因组中密码子的使用频率具有较大程 大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高 效翻译的一个重要因素是密码子的正确选择。一般而言,有两种策略 可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:
终止子
强终止子的选择与使用
目前外源基因表达质粒中常用的终 供应的限制,其产量远远不能满足日益增多的糖尿病人的临
因此,用一种手段同时控制质粒拷
基因工程菌遗传不稳定性的表现与机制
被酶美促国 裂F解D法A批止准为子安全是的基来因工自程受大体生肠物 杆菌rRNA操纵子上的
以包涵体形式表达目的蛋白的操作
rrnT T 以及T7噬菌体DNA上的Tf。对 融合蛋白表达质粒的构建原则:
启动子的可控性
启动子
乳糖启动子Plac的可控性:
野生型的Plac与其控制区Olac 偶联在一起,在没有诱导物 存在时,整个操纵子处于基 底水平表达;诱导物可以使
P 乳糖 异丙基-b-D-硫 代半乳糖苷(IPTG)
启动子Plac介导的转录大幅 提高
P
基底水平转录 阻遏蛋白
O 诱导
高效转录 O
启动子的可控性
过长转录物的产生在很大程度上会影响外源基因的表达,其原因如下: 转录产物越长,RNA聚合酶转录一分子mRNA所需的时间就相应增加,外源基因 本身的转录效率下降; 如果外源基因下游紧接有载体上的其它重要基因或DNA功能区域,如选择性标 记基因和复制子结构等,则RNA聚合酶在此处的转录可能干扰质粒的复制及其它生 物功能,甚至导致重组质粒的不稳定性; 过长的mRNA往往会产生大量无用的蛋白质,增加工程菌无谓的能量消耗; 更为严重的是,过长的转录物往往不能形成理想的二级结构,从而大大降低外源 基因编码产物的翻译效率
培养罐中迅速升温非常困难,因
Ptrp
此常使用一个双质粒控制系统,
用色氨酸间接控制目的基因表达
阻遏作用
cI857 PL
A
色氨酸 PL
A
目的基因 B
表达 B
终止子
强化转录终止的必要性
外源基因在强启动子的控制下表达,容易发生转录过头现象,即RNA聚合酶滑 过终止子结构继续转录质粒上邻近的DNA序列,形成长短不一的mRNA混合物
以分泌形式表达目的蛋白的优缺点 占90%以上的绝对优势
Apr
pCP1
可以采用二聚体终止子串联的特殊结 高温培养、表面活性剂(SDS)、药物(利福平)、染料(
DNA体内重组的基本原理
能量、物质的匮乏和外源基因表达产物的毒性诱导受体细胞
构,以增强其转录终止作用 (IAA)
随机的,仅适用于那些不含游离半胱氨酸残基的蛋白质的重折叠
子量又较大的外源基因而言,则选择相关tRNA编码基因同步克隆表达 的策略较为有利。例如,在人尿激酶原cDNA的412个密码子中,共含 有22个精氨酸密码子,其中7个AGG、2个AGA,而大肠杆菌受体细胞 中tRNAAGG和tRNAAGA的丰度较低。为了提高人尿激酶原cDNA在大肠 杆菌中的高效表达,将大肠杆菌的这两个tRNA编码基因克隆在另一个 高表达的质粒上。由此构建的大肠杆菌双质粒系统有效地解除了受体 细胞对外源基因高效表达的制约作用
第五章大肠杆菌基因工程
1 大肠杆菌作为表达外源基因受体菌的特征 大肠杆菌表达外源基因的优势
全基因组测序,共有4405个开放型阅读框架 基因克隆表达系统成熟完善 繁殖迅速、培养简单、操作方便、遗传稳定 被美国FDA批准为安全的基因工程受体生物
1 大肠杆菌作为表达外源基因受体菌的特征 大肠杆菌表达外源基因的劣势
质粒拷贝数
质粒拷贝数对细菌生长代谢的影响
目前实验室里广泛使用的表达型质粒在每个大肠杆菌细胞中可达 数百甚至上千个拷贝,质粒的扩增过程通常发生在受体细胞的对数生 长期内,而此时正是细菌生理代谢最旺盛的阶段。质粒分子的过度增 殖以及其后目的基因的高效表达势必会影响受体细胞的生长代谢,进 而导致重组质粒的不稳定性以及目的基因宏观表达水平的下降
含有外源启动子活性的重组克隆
启动子的构建
启动子
启动子
-35 区序列
PlL PrecA PtraA Ptrp Plac Ptac
TTGACA TTGATA TAGACA TTGACA TTTACA TTGACA
Ptac = 3 Ptrp = 11 Plac
-10 区序列
GATACT TATAAT TAATGT TTAACT TATAAT TATAAT
核糖体结合位点
核糖体结合位点对外源基因表达的影响
起始密码子及其后续若干密码子的影响:
大肠杆菌中的起始tRNA分子可以同时识别AUG、GUG和UUG 三种起始密码子,但其识别频率并不相同,通常GUG为AUG的50% 而UUG只及AUG的25%。除此之外,从AUG开始的前几个密码子碱 基序列也至关重要,至少这一序列不能与mRNA的5’ 端非编码区 形成茎环结构,否则便会严重干扰mRNA在核糖体上的准确定位
核糖体结合位点
核糖体结合位点对外源基因表达的影响
SD序列与起始密码子之间的距离的影响:
SD序列与起始密码子之间的精确距离保证了mRNA在核糖体 上定位后,翻译起始密码子AUG正好处于核糖体复合物结构中的P 位,这是翻译启动的前提条件。在很多情况下,SD序列位于AUG 之前大约七个碱基处,在此间隔中少一个碱基或多一个碱基,均 会导致翻译起始效率不同程度的降低
相关文档
最新文档