八年级上册数学 轴对称填空选择单元测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学轴对称填空选择单元测试卷(含答案解析)
一、八年级数学全等三角形填空题(难)
1.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E ,F,AB=11,AC=5,则BE=______________.
【答案】3
【解析】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF,所以
AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.
点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.
2.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为 .
41.
【解析】
作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD ,
即∠BAD=∠CAD′,
在△BAD 与△CAD′中,
BA CA BAD CAD AD AD =⎧⎪∠=∠'⎨⎪='⎩
, ∴△BAD ≌△CAD′(SAS),
∴BD=CD′.
∠DAD′=90°
由勾股定理得22()=32=42AD AD +'
∠D′DA+∠ADC=90°
由勾股定理得22()=932=41DC DD +'+
∴41, 41.
3.在Rt △ABC 中,∠C =90°,∠A 的平分线AD 分对边BD ,DC 的长度比为3:2,且BC =20cm ,则点D 到AB 的距离是_____cm .
【答案】8
【解析】
【分析】
根据题意画出图形,过点D 作DE ⊥AB 于点E ,由角平分线的性质可知DE =CD ,根据角平分线AD 分对边BC 为BD :DC =3:2,且BC =10cm 即可得出结论.
【详解】
解:如图所示,过点D 作DE ⊥AB 于点E ,
∵AD 是∠BAC 的平分线,∠C =90°,
∴DE =CD .
∵BD :DC =3:2,且BC =10cm ,
∴CD =20×25
=8(cm ).
故答案为:8.
【点睛】
本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.
4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和36,求△EDF的面积________.
【答案】6
【解析】
【分析】
作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.
【详解】
作DM=DE交AC于M,作DN⊥AC,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DN,
∵DE=DG,
∴DG=DM,
∴Rt△DEF≌Rt△DMN(HL),
∵DG=DM, DN⊥AC,
∴MN=NG,
∴△DMN≌△DNG,
∵△ADG和△AED的面积分别为48和36,
∴S△MDG=S△ADG-S△ADM=48-36=12,
∴S△DEF=1
2S△MDG=
1
2
12=6,
故答案为:6
【点睛】
本题考查了角平分线的性质及全等三角形的判定及性质,正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求是解题关键.
5.如图,△ABE ,△BCD 均为等边三角形,点A ,B ,C 在同一条直线上,连接
AD ,EC ,AD 与EB 相交于点M ,BD 与EC 相交于点N ,下列说法正确的有:___________ ①AD=EC ;②BM=BN ;③MN ∥AC ;④
EM=MB .
【答案】①②③
【解析】
∵△ABE ,△BCD 均为等边三角形,
∴AB=BE ,BC=BD ,∠ABE=∠CBD=60°,
∴∠ABD=∠EBC ,
在△ABD 和△EBC 中
AB BE ABD EBC BD BC =⎧⎪∠=∠⎨⎪=⎩
∴△ABD ≌△EBC(SAS),
∴AD=EC ,故①正确;
∴∠DAB=∠BEC ,
又由上可知∠ABE=∠CBD=60°,
∴∠EBD=60°,
在△ABM 和△EBN 中
MAB NEB AB BE
ABE EBN ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ABM ≌△EBN(ASA),
∴BM=BN ,故②正确;
∴△BMN 为等边三角形,
∴∠NMB=∠ABM=60°,
∴MN∥AC,故③正确;
若EM=MB,则AM平分∠EAB,
则∠DAB=30°,而由条件无法得出这一条件,
故④不正确;
综上可知正确的有①②③,
故答案为①②③.
点睛:本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即
SSS、SAS、AAS、ASA和HL)和性质(即全等三角形的对应边相等,对应角相等).
6.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:
①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.
【答案】①③
【解析】
【分析】
根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.
【详解】
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴∠EAP=1
2
∠BAC=45°,AP=
1
2
BC=CP.
①在△AEP与△CFP中,
∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,
∴△AEP≌△CFP,
∴AE=CF.正确;
②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;
③∵△AEP≌△CFP,同理可证△APF≌△BPE.
∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=1
2
S△ABC,即2S四边形AEPF=S△ABC;正确;
④根据等腰直角三角形的性质,2PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,2PE=AP,在其它位置时EF≠AP,故④错误;
故答案为:①③.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.
7.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,
∠DEC=30°,HF=3
2
,则EC=______
【答案】6
【解析】
【分析】
延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.
【详解】
如图,延长AF交CE于P,
∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,
∴∠ABH=∠PAC,
∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,
∴∠HEK=∠FAH,
∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,
∴∠AHF=∠EPF,
∴∠AHB=∠APC,
在△ABH与△APC中,
ABE PAC
AB AC
AHB APC
∠∠



⎪∠∠





∴△ABH≌△APC(ASA),
∴AH=CP,
在△AHF与△EPF中,
90
AHF EPF
AFH EFP
AF EF
∠∠


∠∠︒




==


∴△AHF≌△EPF(AAS),
∴AH=EP,∠CED=∠HAF,
∴EC=2AH,
∵∠DEC=30°,
∴∠HAF=30°,
∴AH=2FH=2×
3
2
=3,
∴EC=2AH=6.
【点睛】
本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.
8.如图,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,点D是AB的中点,E, F在射线AC与射线CB上运动,且满足AE=CF,∠EDF=90°;当点E运动到与点C的距离为1时,则△DEF的面积为___________.
【答案】
5
2

13
2
【解析】
解:①E在线段AC上.在△ADE和△CDF中,
∵AD=CD,∠A=∠DCF,AE=CF,∴△ADE≌△CDF(SAS),∴同理△CDE≌△BDF,∴四边形CEDF面积是△ABC面积的一半.∵CE=1,∴CF=4﹣1=3,∴△CEF的面积
=
1
2
CE•CF=
3
2
,∴△DEF的面积=1
2
×2×2﹣
3
2
=
5
2

②E'在AC延长线
上.∵AE'=CF',AC=BC=4,∠ACB=90°,∴CE'=BF',∠ACD=∠CBD=45°,CD=AD=BD=22
∴∠DCE '=∠DBF '=135°.在△CDE '和△BDF '中,
∵CD =BD ,∠DCE ′=DBF ′,CE ′=BF ′,∴△CDE '≌△BDF '(SAS ),∴DE '=DF ',∠CDE '=∠BDF '.∵∠CDE '+∠BDE '=90°,∴∠BDE '+∠BDF '=90°,即
∠E 'DF '=90°.∵DE '2=CE '2+CD 2﹣2CD •CE 'cos135°=1+8+2×22×22
=13,∴S △E 'DF '=12DE '2=132.故答案为132或52

点睛:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE ≌△CDF 和△CDE ≌△BCF 是解题的关键.
9.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.
【答案】169
【解析】
解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;
∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即
∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512 =169. 故答案为:169.
点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.
10.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm ,则DC=_______
【答案】2cm
【解析】
试题解析:
解:连接AD,
∵ED是AB的垂直平分线,
∴BD=AD=4c m,
∴∠BAD=∠B=30°,
∵∠C=90°,
∴∠BAC=90°-∠B=90°-30°=60°,∴∠DAC=60°-30°=30°,
在Rt△ACD中,
∴DC=1
2
AD==
1
2
× 4=2c m.
故答案为2c m.
点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.
二、八年级数学全等三角形选择题(难)
11.如图,把ΔABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN 上,直线MN∥AB.在ΔABC中,若∠AOB=125°,则∠ACB的度数为()
A.70°B.65°C.60°D.85°
【答案】A
【解析】
【分析】
利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,得出O为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.
【详解】
如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.
∵MN∥AB,∴OD=OE=OF(平行线间的距离处处相等).
如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.
由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点.
∵∠AOB=125°,∴∠OAB+∠OBA=180°-125°=55°,
∴∠CAB+∠CBA=2×55°=110°,∴∠ACB=180°-110°=70°.
故选A.
【点睛】
本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD=OE=OF.
12.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC 上任意一点,连接EC.下列结论:①△AEC△ADB;②EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD=时,四边形AECB的周长为10524
++;⑤当
BD=3
2
B时,ED=5AB;其中正确的有()
A.5个 B.4个 C.3 个 D.2个
【答案】B
【解析】解:
∵∠BAC=∠EAD=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△AEC≌△ADB,故①正确;∵△AEC≌△ADB,∴∠ACE=∠ABD=45°,∵∠ACB=45°,∴J IAO ECB=90°,∴EC⊥BC,故②正确;
∵四边形ADCE的面积=△ADC的面积+△ACE的面积=△ADC的面积+△ABD的面积=△ABC
的面积=4×4÷2=8.故③正确; ∵BD =2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =
252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;
当BD =32BC 时,CD =12BC ,∴DE =22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
=102BC =52AB .故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
13.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )
A .3:4
B .3:5
C .4:5
D .2:3
【答案】B
【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S △ACD :S △ABD =CD :BD=
12×32×3:12×32
×5=3:5.
故选:B .
点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此
题的关键.
14.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,
BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;
④∠BCE+∠BCD=180°.其中正确的是()
A.①②③B.①②④C.①③④D.②③④
【答案】C
【解析】
已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,
BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由
∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得
∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.
点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.
15.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;
②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()
A.①②④B.①②③C.①②④⑤D.①②③⑤
【答案】D
【解析】
试题解析:①利用公式:∠CDA=1
2
∠ABC=45°,①正确;
②如图:延长GD与AC交于点P',
由三线合一可知CG=CP',
∵∠ADC=45°,DG⊥CF,
∴∠EDA=∠CDA=45°,
∴∠ADP=∠ADF,
∴△ADP'≌△ADF(ASA),
∴AF=AP'=AC+CP'=AC+CG,故②正确;
③如图:
∵∠EDA=∠CDA,
∠CAD=∠EAD,
从而△CAD≌△EAD,
故DC=DE,③正确;
④∵BF⊥CG,GD⊥CF,
∴E为△CGF垂心,
∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形,
∴2CD,故④错误;
⑤如图:作ME⊥CE交CF于点M,
则△CEM为等腰直角三角形,从而CD=DM,CM=2CD,EM=EC,∵∠MFE=∠CGE,
∠CEG=∠EMF=135°,
∴△EMF ≌△CEG (AAS ),
∴GE=MF ,
∴CF=CM+MF=2CD+GE , 故⑤正确;
故选D
点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.
16.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,
AQ PQ =,PR PS =,下面三个结论:
①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).
A .①②
B .②③
C .①③
D .①②③
【答案】A
【解析】
连接AP ,
由题意得,90ARP ASP ∠=∠=︒,
在Rt APR 和Rt APS 中,
AP AP PR PS =⎧⎨=⎩
, ∴△APR ≌()APS HL ,
∴AS AR =,故①正确.
BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,
在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,
∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,
∴PQ AB ∥,故②正确;
在Rt BRP 和Rt CSP 中,只有PR PS =,
不满足三角形全等的条件,故③错误.
故选A .
点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.
17.如图,等腰直角△ABC 中,∠BAC=90︒,AD ⊥BC 于D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM .下列结论:
①AE=AF ;②AM ⊥EF ;③AF=DF ;④DF=DN ,其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】 试题解析:∵∠BAC=90°,AC=AB ,AD ⊥BC ,
∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD ,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE=
12
∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE ,故①正确;
∵M 为EF 的中点,
∴AM ⊥EF ,故②正确;
过点F 作FH ⊥AB 于点H ,
∵BE 平分∠ABC ,且AD ⊥BC ,
∴FD=FH <FA ,故③错误;
∵AM ⊥EF ,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN ,
在△FBD 和△NAD 中
{FBD DAN
BD AD
BDF ADN
∠∠∠∠=== ∴△FBD ≌△NAD ,
∴DF=DN ,故④正确;
故选C .
18.如图,在等腰直角△ABC 中,∠ACB=90°,点O 为斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P ,则下列结论:
①图中全等三角形有三对;②△ABC 的面积等于四边形CDOE 面积的
倍;
③DE 2+2CD•CE=2OA 2;④AD 2+BE 2=2OP•OC .正确的有(
)个.
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】 结论(1)正确.因为图中全等的三角形有3对;
结论(2)错误.由全等三角形的性质可以判断;
结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.
结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.
【详解】
结论(1)正确,理由如下:
图中全等的三角形有3对,分别为△AOC ≌△BOC ,△AOD ≌△COE ,△COD ≌△BOE .
由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.
∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.
在△AOD与△COE中,
∴△AOD≌△COE(ASA),
同理可证:△COD≌△BOE.
结论(2)错误.理由如下:
∵△AOD≌△COE,
∴S△AOD=S△COE,
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC
即△ABC的面积等于四边形CDOE的面积的2倍.
结论(3)正确,理由如下:
∵△AOD≌△COE,
∴CE=AD,
∴CD+CE=CD+AD=AC=OA,
∴(CD+CE)2=CD2+CE2+2CD•CE=DE2+2CD•CE=2OA2;
结论(4)正确,理由如下:
∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.
在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.
∵△AOD≌△COE,∴OD=OE,
又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴,
即OP•OC=OE2.
∴DE2=2OE2=2OP•OC,
∴AD2+BE2=2OP•OC.
综上所述,正确的结论有3个,
故选C.
【点睛】
本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.
19.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于
点M和N,再分别以M,N为圆心,大于1
2
MN的长为半径画弧,两弧交于点P,连结AP并延长交
BC于点D,则下列说法中正确的个数是( )
①AD平分∠BAC;②作图依据是S.A.S;③∠ADC=60°;④点D在AB的垂直平分线上
A.1个B.2个C.3个D.4个
【答案】C
【解析】
①根据作图的过程可以判定AD是∠BAC的∠平分线;
②根据作图的过程可以判定出AD的依据;
③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC的度数;
④利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB的中垂线上.
解:如图所示,
①根据作图的过程可知,AD是∠BAC的∠平分线;
故①正确;
②根据作图的过程可知,作出AD的依据是SSS;
故②错误;
③∵在△ABC中,∠C=90°,∠B=30°,
∴∠CBA=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2=1
2
∠CAB=30°,
∴∠3=90°-∠2=60°,即∠ADC=60°.故③正确;
④∵∠1=∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.
故④正确;
故选C.
“点睛”此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC 的度数是解题的关键.
20.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,DBC DCB ∠=∠,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:
①CDE △≌BDF ;②CE AB AE =+;③BDC BAC ∠=∠;④DAF CBD ∠=∠. 其中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】 BD=CD,AD 是角平分线,所以FD=DE,∠DFB =∠DEC =90°,所以CDE ≌BDF ;①正确.由全等得BF=CE ,因为FA=AE,FB=AB+FA ,所以CE=AB+AE , ②正确.由全等知,
∠DCE=∠FBD,所以∠BAC=∠BDC. ③正确. ∴DBF DCE ∠=∠,
∴A 、B 、C 、D 四点共圆,
∴DAF CBD ∠=∠,④正确.
故选D.
21.如图,在四边形ABCD 中,对角线AC 平分∠BAD,AB >AD ,下列结论中正确的是( )
A .A
B ﹣AD >CB ﹣CD
B .AB ﹣AD=CB ﹣CD
C .AB ﹣A
D <CB ﹣CD
D .AB ﹣AD 与CB ﹣CD 的大小关系不确定
【答案】A
【解析】
如图,在AB 上截取AE=AD ,连接CE .
∵AC 平分∠BAD ,
∴∠BAC=∠DAC ,
又AC 是公共边,
∴△AEC ≌△ADC (SAS ),
∴AE=AD ,CE=CD ,
∴AB-AD=AB-AE=BE ,BC-CD=BC-CE ,
∵在△BCE 中,BE >BC-CE ,
∴AB-AD >CB-CD .
故选A .
22.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④
【答案】B
【解析】
【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;
③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;
④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.
【详解】
①正确,理由如下:
∵ACB DCE α∠=∠=,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BC E,
又∵CA=CB,CD=CE,
∴ACD BCE ≅△△(SAS),
∴AD=BE,
故①正确;
②正确,理由如下:
由①知,ACD BCE ≅△△,
∴∠CAD=∠CBE,
∵∠DOB 为ABO 的外角,
∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,
∴∠CBA+∠BAC=180°-α,
即∠DOB=180°-α,
故②正确;
③错误,理由如下:
∵点M 、N 分别是线段AD 、BE 的中点,
∴AM=
12AD,BN= 12
BE, 又∵由①知,AD=BE,
∴AM=BN,
又∵∠CAD=∠CBE,C A=CB,
∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,
∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,
∴MCN △为等腰三角形且∠MCN=α,
∴MCN △不是等边三角形,
故③错误;
④正确,理由如下:
如图所示,在AD 上取一点P 使得DP=EO,连接CP ,
由①知,ACD BCE ≅△△,
∴∠CEO=∠CD P ,
又∵CE=CD,EO=DP ,
∴CEO
CDP ≅(SAS),
∴∠COE=∠CPD,CP=CO,
∴∠CPO=∠COP ,
∴∠COP=∠COE,
即OC 平分∠AOE,
故④正确;
故答案为:B.
【点睛】
本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.
23.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作 EF∥AD,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连结DE 、 EH 、DH 、FH .下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23
AE AB =,则313
DHC
EDH S
S =.其中结论正确的有( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】 分析:①根据题意可知∠ACD=45°,则GF=FC ,则EG=EF-GF=CD-FC=DF ;
②由SAS 证明△EHF ≌△DHC 即可;
③根据△EHF ≌△DHC ,得到∠HEF=∠HDC ,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;
④若AE AB =23
,则AE=2BE ,可以证明△EGH ≌△DFH ,则∠EHG=∠DHF 且EH=DH ,则∠DHE=90°,△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,设HM=x ,则
DM=5x ,26x ,CD=6x ,则S △DHC =
12×HM×CD=3x 2,S △EDH =12
×DH 2=13x 2. 详解:①∵四边形ABCD 为正方形,EF ∥AD ,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°, ∴△CFG 为等腰直角三角形,
∴GF=FC ,
∵EG=EF−GF ,DF=CD−FC ,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=1
2
∠GFC=45°=∠HCD,
在△EHF和△DHC中,
EF=CD;∠EFH=∠DCH;FH=CH,
∴△EHF≌△DHC(SAS),故②正确;
③∵△EHF≌△DHC(已证),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;
④∵AE
AB
=
2
3

∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
EG=DF;∠EGH=∠HFD;GH=FH,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
如图,过H点作HM⊥CD于M,
设HM=x,则26x,CD=6x,
则S△DHC=1
2
×HM×CD=3x2,S△EDH=
1
2
×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确;
故选D.
点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.
24.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
A.1 B.1或3 C.1或7 D.3或7
【答案】C
【解析】
【分析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t的值为1或7秒时.△ABP和△DCE全等.
故选C.
【点睛】
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
25.下列两个三角形中,一定全等的是( )
A.两个等边三角形
B.有一个角是40︒,腰相等的两个等腰三角形
C.有一条边相等,有一个内角相等的两个等腰三角形
D.有一个角是100︒,底相等的两个等腰三角形
【答案】D
【解析】
【分析】
根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【详解】
解:A、当两个等边三角形的对应边不相等时,这两个等边三角形也不会全等,故本选项错误;
B、当该角不是对应角时,这两个等腰三角形也不会全等,故本选项错误;
C、当两个等腰三角形的对应边与对应角不相等时,这两个等腰三角形也不会全等,故本选项错误;
D、等腰三角形的100°角只能是顶角,则两个底角是40°,它们对应相等,所以由全等三角形的判定定理ASA或AAS证得它们全等,故本选项正确;
故选D.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
26.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F
分别是边BC、CD延长线上的点,∠EAF=
1
2
∠BAD,若DF=1,BE=5,则线段EF的长为()
A.3 B.4 C.5 D.6
【答案】B
【解析】
【分析】
在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.
【详解】
在BE上截取BG=DF,
∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,
∴∠B=∠ADF,
在△ADF与△ABG中
AB AD
B ADF
BG DF
=


∠=∠

⎪=


∴△ADF≌△ABG(SAS),
∴AG=AF,∠FAD=∠GAB,
∵∠EAF=
1
2
∠BAD,
∴∠FAE=∠GAE,
在△AEG与△AEF中
AG AF FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩

∴△AEG ≌△AEF (SAS )
∴EF =EG =BE ﹣BG =BE ﹣DF =4.
故选:B .
【点睛】
考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.
27.具备下列条件的两个三角形,可以证明它们全等的是( ).
A .一边和这一边上的高对应相等
B .两边和第三边上的中线对应相等
C .两边和其中一边的对角对应相等
D .直角三角形的斜边对应相等
【答案】B
【解析】
【分析】
根据判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL 分别进行分析.
【详解】
解:A 、一边和这边上的高对应相等,无法得出它们全等,故此选项错误;
B 、两边和第三边上的中线对应相等,通过如图所示方式(倍长中线法)可以证明它们全等(△AB
C ≌△A ′B ′C ′),故此选项正确. .
C 、两边和其中一边的对角对应相等,无法利用ASS 得出它们全等,故此选项错误;
D 、直角三角形的斜边对应相等,无法得出它们全等,故此选项错误.
故选:B .
【点睛】
本题考查三角形全等的判定方法,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
28.如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS .下列结论:①点P 在∠A 的角平分线上;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .其中,正确的有( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上,故①正确;
由①可知,PB =PC ,∠B =∠C ,PS =PR ,∴△BPR ≌△CPS ,∴AS =AR ,故②正确;
∵AQ =PQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确;
由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,故④也正确,∵①②③④都正确,故选D .
点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.
29.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有(

A .4个
B .3个
C .2个
D .1个
【答案】A
【解析】 试题解析:∵BF ∥AC ,∴∠C=∠CBF , ∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC , ∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②③正确,
在△CDE 与△DBF 中,{C CBF
CD BD EDC BDF
∠=∠=∠=∠,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正
确;
∵AE=2BF ,∴AC=3BF ,故④正确.
故选A .
考点:1.全等三角形的判定与性质;2.角平分线的性质;3.相似三角形的判定与性质.
30.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握。

相关文档
最新文档