【精选】八年级数学上册轴对称解答题检测题(WORD版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精选】八年级数学上册轴对称解答题检测题(WORD 版含答案)
一、八年级数学 轴对称解答题压轴题(难)
1.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.
(1)求边AD 的长;
(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.
【答案】(1)6;(2)y=-3x+10(1≤x <
103);(2)1769
或32 【解析】
【分析】
(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;
(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;
(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可.
【详解】
(1)如下图,过点D 作BC 的垂线,交BC 于点H
∵∠C=45°,DH ⊥BC
∴△DHC 是等腰直角三角形
∵四边形ABCD 是梯形,∠B=90°
∴四边形ABHD 是矩形,∴DH=AB=8
∴HC=8
∴BH=BC -HC=6
∴AD=6
(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G
∵EF ∥AD,∴EF ∥BC
∴∠EFP=∠C=45°
∵EP ⊥PF
∴△EPF 是等腰直角三角形
同理,还可得△NPM 和△DGF 也是等腰直角三角形
∵AE=x
∴DG=x=GF,∴EF=AD+GF=6+x
∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162
x + 同理,PR=
12y ∵AB=8,∴EB=8-x
∵EB=QR
∴8-x=
()11622
x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103
当点N 与点B 重合时,x 可取得最小值
则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1
∴1≤x <103
(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=
83=AE
∴188176662339
ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:
与(2)相同,可得y=3x -10
则当y=2时,x=4,即AE=4
∴()16644322
ABCD S =
⨯++⨯=梯形 【点睛】
本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.
2.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).
(1)∠A=______度;
(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;
(3)当△APQ 为等边三角形时,直接写出t 的值.
【答案】(1)60;(2)
103或203
;(3)5或20 【解析】
(1)根据等边三角形的性质即可解答;
(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;
(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.
【详解】
解:(1)60°.
(2)∵∠A=60°,
当∠APQ=90°时,∠AQP=90°-60°=30°.
∴QA=2PA .
即2022 2.t t -=⨯
解得 10.3
t = 当∠AQP=90°时,∠APQ=90°-60°=30°.
∴PA=2QA .
即2(202)2.t t -=
解得 20.3
t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为
102033或. (3)①由题意得:AP=2t ,AQ=20-2t
∵∠A=60°
∴当AQ=AP 时,△APQ 为等边三角形
∴2t=20-2t ,解得t=5
②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20
综上,当△APQ 为等边三角形时,t=5或20.
【点睛】
本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.
3.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.
理解:
(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;
(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;
在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);
(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.
【答案】(1)36°;(2)见详解;(3)18°或42°
【解析】
【分析】
(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.
(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;
(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;
【详解】
解:(1)∵AB=AC ,
∴∠ABC=∠C ,
∵BD=BC=AD ,
∴∠A=∠ABD ,∠C=∠BDC ,
设∠A=∠ABD=x ,则∠BDC=2x ,∠C=°180-2
x 可得°180-22
x x = ∴x=36°
则∠A=36°;
(2)如图所示:
(3)如图所示:
①当AD=AE时,
∵2x+x=27°+27°,
∴x=18°;
②当AD=DE时,
∵27°+27°+2x+x=180°,
∴x=42°;
综上所述,∠C为18°或42°的角.
【点睛】
本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
4.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)
(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.
【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-3
4
∠C或∠ABC=3∠C
或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.
【解析】
试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.
(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.
试题解析:(1)如图①②(共有2种不同的分割法).
(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.
在△DBC中,
①若∠C是顶角,如图,则∠CBD=∠CDB=90°-1
2
x,∠A=180°-x-y.
故∠ADB=180°-∠CDB=90°+1
2
x>90°,此时只能有∠A=∠ABD,
即180°-x-y=y-
1
90
2
x
⎛⎫
-
⎪⎝⎭
,
∴3x+4y=540°,∴∠ABC=135°-3
4
∠C.
②若∠C是底角,
第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.
若AB=AD,则2x=y-x,此时有y=3x,
∴∠ABC=3∠C.
若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.
若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.
第二种情况:如图,
当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=
BD,∴∠A=∠ABD=1
2
∠BDC=1
2
∠C<∠C,这与题设∠C是最小角矛盾.
∴当∠C是底角时,BD=BC不成立.
综上所述,∠ABC与∠C之间的关系是∠ABC=135°-3
4
∠C或∠ABC=3∠C或∠ABC=
180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.
点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.
5.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).
(1)求证:∠BAD=∠EDC;
(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.
【答案】(1)见解析;(2)见解析
【解析】
【分析】
(1)根据等边三角形的性质,得出∠BAC =∠ACB =60°,然后根据三角形的内角和和外角性质,进行计算即可.
(2)根据轴对称的性质,可得DM=DA ,然后结合(1)可得∠MDC =∠BAD ,然后根据三角形的内角和,求出∠ADM=60°即可.
【详解】
解:(1)如图1,
∵△ABC 是等边三角形,∴∠BAC =∠ACB =60°,
∴∠BAD =60°﹣∠DAE ,∠EDC =60°﹣∠E ,
又∵DE =DA ,
∴∠E =∠DAE ,
∴∠BAD =∠EDC .
(2)由轴对称可得,DM =DE ,∠EDC =∠MDC ,
∵DE =DA ,
∴DM =DA ,
由(1)可得,∠BAD =∠EDC ,
∴∠MDC =∠BAD ,
∵△ABD 中,∠BAD +∠ADB =180°﹣∠B =120°,
∴∠MDC +∠ADB =120°,
∴∠ADM =60°,
∴△ADM 是等边三角形,
∴AD =AM .
【点睛】
本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.
6.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.
(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.
以下是小宇同学给出如下正确的解法:
解:CD CE =.
理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,
…
请根据小宇同学的证明思路,写出该证明的剩余部分.
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
(3)若120AOB ∠=︒,60DCE ∠=︒.
①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.
②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.
【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=
【解析】
【分析】
(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到
=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得
12OM OC =,同理得到1 2
ON OC =,所以OE OD OC +=;方法二:以CO 为一边作
60
FCO
∠=︒,交O B于点F,通过ASA证明CDO CEF
∆∆
≌,得到
,
CD CE OD EF
==,所以OE OD OE EF OF OC
+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF
得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.
【详解】
解:(1)OC平分AOB
∠,145
∠=∠2=︒
∴,
390245,123
︒︒
∴∠=-∠=∴∠=∠=∠
OC FC
∴=
又456590︒
∠+∠=∠+∠=
在CDO
∆与CEF
∆中,
13
46
OC FC
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
()
CDO CEF ASA
∴∆∆
≌
CD CE
∴=
(2)如图2,过点C作CM OA
⊥,CN OB
⊥,垂足分别为M,N,
∴90
CMD CNE
∠=∠=︒,
又∵OC平分AOB
∠,
∴CM CN
=,
在四边形O DCE中,
12360
AOB DCE
∠+∠+∠+∠=︒,
又∵90
AOB DCE
∠=∠=︒,
∴12180
∠+∠=︒,
又∵13180
∠+∠=︒,
∴32
∠=∠,
在CMD
∆与CNE
∆中,
32
CMD CNE
CM CN
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴()
CMD CNE AAS
∆∆
≌,
∴CD CE
=.
(3)①(1)中的结论仍成立.OE OD OC
+=.
理由如下:
方法一:如图3(1),过点C作C M OA
⊥,CN OB
⊥,
垂足分别为M,N,
∴90
CMD CNE
∠=∠=︒,
又∵OC平分AOB
∠,
∴CM CN
=,
在四边形ODCE中,
12360
AOB DCE
∠+∠+∠+∠=︒,
又∵60120180
AOB DCE
∠+∠=︒+︒=︒,
∴12180
∠+∠=︒,
又∵23180
∠+∠=︒,
∴13
∠=∠,
在CMD
∆与CNE
∆中,
13
CMD CNE
CM CN
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴()
CMD CNE AAS
∆∆
≌,
∴,
CD CE DM EN
==.
∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在Rt CMO
∆中,
14
90590302
AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2
ON OC =, ∴1122
OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,
∵OC 平分AOB ∠,∴1260∠=∠=︒,
∴3180260FCO ∠=︒-∠-∠=︒,
∴13∠=∠,32FCO ∠=∠=∠,
∴COF ∆是等边三角形,
∴CO CF =,
∵4560DCE ∠=∠+∠=︒,
6560FCO ∠=∠+∠=︒,
∴46∠=∠,
在CDO ∆与CEF ∆中,
1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴()CDO CEF ASA ∆∆≌,
∴,CD CE OD EF ==.
∴OE OD OE EF OF OC +=+==.
②在图4中,(1)中的结论成立,OE OD OC -=.
如图,以OC 为一边,作∠OCF=60°与OB 交于F 点
∵∠AOB=120°,OC 为∠AOB 的角平分线
∴∠COB=∠COA=60°
又∵∠OCF=60°
∴△COF 为等边三角形
∴OC=OF
∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°
∴∠OCD=∠FCB
又∵∠COD=180°-∠COA=180°-60°=120°
∠CFE=180°-∠CFO=180°-60°=120°
∴∠COD=∠CFE
∴△COD≌△CFE(ASA)
∴CD=CE,OD=EF
∴OE=OF+EF=OC+OD
即OE-OD=OC
-=.
在图5中,(1)中的结论成立,OD OE OC
如图,以OC为一边,作∠OCG=60°与OA交于G点
∵∠AOB=120°,OC为∠AOB的角平分线
∴∠COB=∠COA=60°
又∵∠OCG=60°
∴△COG为等边三角形
∴OC=OG
∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE
又∵∠COE=180°-∠COB=180°-60°=120°
∠CGD=180°-∠CGO=180°-60°=120°
∴∠CGD=∠COE
∴△CGD≌△COE(ASA)
∴CD=CE,OE=DG
∴OD=OG+DG=OC+OE
即OD-OE=OC
【点睛】
本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.
7.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.
(1)如图①,当点E为AB的中点时,DE=;
(2)如图②,点E在运动过程中,DE与EC满足什么数量关系?请说明理由;
(3)如图③,F是AC的中点,连接EF.在AB边上是否存在点E,使得DE+EF值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)
【答案】(1)32)DE=CE,理由见解析;(3)这个最小值为7;
【解析】
【分析】
(1)如图①,过点E作EH⊥BC于H,由等边三角形的性质可得BE=DB=AE=2,由直角三
角形的性质可求BH=1,EH3
(2)如图②,过E作EF∥BC交AC于F,可证△AEF是等边三角形,AE=EF=AF=BD,由“SAS”可证△DBE≌△EFC,可得DE=CE;
(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H,由“SAS”可证△ACE'≌△AC'E',可得C'E'=CE',可得当点C',点
E',点F三点共线时,DE+EF的值最小,由勾股定理可求最小值.
【详解】
(1)如图①,过点E作EH⊥BC于H,
∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,
∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,
∴∠BEH =30°,
∴BH =1,EH 3=BH 3=,
∴DH =DB +BH =2+1=3,
∴DE 2293DH EH =+=+=23.
故答案为:23;
(2)DE =CE.理由如下:
如图②,过E 作EF ∥BC 交AC 于F .
∵△ABC 是等边三角形,
∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.
∵EF ∥BC ,
∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,
∴∠AEF =∠AFE =∠A =60°,
∴△AEF 是等边三角形,
∴AE =EF =AF ,
∴AB ﹣AE =AC ﹣AF ,
∴BE =CF.
∵∠ABC =∠ACB =∠AFE =60°,
∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,
∴△DBE ≌△EFC (SAS),
∴DE =CE ,
(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.
∵将△ABC 沿AB 翻折得到△ABC ',
∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',
∴△ACE '≌△AC 'E '(SAS),
∴C 'E '=CE ',
由(2)可知:DE '=CE ',
∴C 'E '=CE '=DE '.
∵DE +EF =C 'E +EF =C 'E '+EF ,
∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.
∵F 是AC 的中点,
∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,
∴AH =1,HF 3=AH 3=,
∴C 'H =4+1=5,
∴C 'F 22'253C H HF =+=+=27,
∴DE +EF 的最小值为27.
【点睛】
本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.
8.已知ABC 为等边三角形,E 为射线AC 上一点,D 为射线CB 上一点,AD DE =. (1)如图1,当点E 在AC 的延长线上且CD CE =时,AD 是ABC 的中线吗?请说明理由;
(2)如图2,当点E 在AC 的延长线上时,写出,,AB BD AE 之间的数量关系,请说明理由;
(3)如图3,当点D 在线段CB 的延长线上,点E 在线段AC 上时,请直接写出,,AB BD AE 的数量关系.
【答案】(1)AD 是ABC 的中线,理由详见解析;(2)AB BD AE +=,理由详见
=+.
解析;(3)AB AE BD
【解析】
【分析】
(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明
∠CAD=∠E =30°,即可解决问题.
(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.
【详解】
(1)解:如图1,结论:AD是△ABC的中线.理由如下:
∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠B=∠ACB=60°,
∵CD=CE,
∴∠CDE=∠E,
∵∠ACD=∠CDE+∠E=60°,
∴∠E=30°,
∵DA=DE,
∴∠DAC=∠E=30°,
∵∠BAC=60°,
∴∠DAB=∠CAD,
∵AB=AC,
∴BD=DC,
∴AD是△ABC的中线.
(2)结论:AB+BD=AE,理由如下:
如图2,在AB上取BH=BD,连接DH,
∵BH=BD,∠B=60°,
∴△BDH为等边三角形,AB-BH=BC-BD,
∴∠BHD=60°,BD=DH,AH=DC,
∵AD=DE,
∴∠E=∠CAD,
∴∠BAC-∠CAD=∠ACB-∠E
∴∠BAD=∠CDE,
∵∠BHD=60°,∠ACB=60°,
∴180°-∠BHD=180°-∠ACB,
∴∠AHD=∠DCE,
∴在△AHD和△DCE,
BAD CDE
AHD DCE
AD DE
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△AHD≌△DCE(AAS),
∴DH=CE,
∴BD=CE,
∴AE=AC+CE=AB+BD.
(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,
∵△ABC为等边三角形,
∴∠BAC=∠ABC=60°,
∴△AFE是等边三角形,
∴∠FAE=∠FEA=∠AFE=60°,
∴EF∥BC,
∴∠EDB=∠DEF,
∵AD=DE,
∴∠DEA=∠DAE,
∴∠DEF=∠DAF,
∵DF=DF,AF=EF,
在△AFD和△EFD中,
AD DE
DF DF
AF EF
=
⎧
⎪
=
⎨
⎪=
⎩
,
∴△AFD≌△EFD(SSS)
∴∠ADF=∠EDF,∠DAF=∠DEF,
∴∠FDB=∠EDF+∠EDB ,∠DFB=∠DAF+∠ADF ,
∵∠EDB=∠DEF ,
∴∠FDB=∠DFB ,
∴DB=BF ,
∵AB=AF+FB ,
∴AB=BD+AE .
【点睛】
本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.
9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .
(1)若10AC =,求HI 的长度;
(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.
【答案】(1)HI =5;(2)见解析.
【解析】
【分析】
(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明
PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12
AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论.
【详解】
解:如图1,作FP ∥BC 交AB 于点P ,
∵ABC
∆是等边三角形,
∴∠ABC=∠A=60°,
∵FP∥BC,
∴∠APF=∠ABC=60°, ∠PFI=∠BGI,
∴∠APF=∠A=60°,
∴APF
∆是等边三角形,
∴PF=AF,
∵FH AB
⊥,
∴AH=PH,
∵AF=BG,
∴PF=BG,
∴在PFI
∆和BGI
∆中,
PIF BIG
PFI BGI
PF BG
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴PFI BGI
∆≅∆,
∴PI=BI,
∴PI+PH=BI+AH=
1
2
AB,
∴HI=PI+PH =
1
2
AB=
1
10
2
⨯=5;
(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC是等边三角形,
∴AB=BC=AC,∠B=60°.
∵AE=BD,DQ=AB,
∴AE+AB=BD+DQ,
∴BE=BQ.
∵∠B=60°,
∴△BEQ为等边三角形,
∴∠B=∠Q=60°,BE=QE.
∵DQ=AB,
∴BC=DQ.
∴在△BCE和△QDE中,
BC DQ
B Q
BE QE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BCE≌△QDE(SAS),
∴EC=ED.
∴∠ECD=∠EDC.
【点睛】
本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.
10.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.
(1)如图1,若BP=4cm,则CD=;
(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;
(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)
【答案】(1)4cm;(2)PB=PC,理由见解析;(3)4
【解析】
【分析】
(1)根据AAS定理证明△ABP≌△PCD,可得BP=CD;
(2)延长线段AP、DC交于点E,分别证明△DPA≌△DPE、△APB≌△EPC,根据全等三角形的性质解答;
(3)根据等腰直角三角形的性质计算.【详解】
解:(1)∵BC=5cm,BP=4cm,
∴PC=1cm,
∴AB=PC,
∵DP⊥AP,
∴∠APD=90°,
∴∠APB+∠CPD=90°,
∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,
在△ABP和△PCD中,
B C
BAP CPD
AB PC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ABP≌△PCD,
∴BP=CD=4cm;
(2)PB=PC,
理由:如图2,延长线段AP、DC交于点E,
∵DP平分∠ADC,
∴∠ADP=∠EDP.
∵DP⊥AP,
∴∠DPA=∠DPE=90°,
在△DPA和△DPE中,
ADP EDP
DP DP
DPA DPE
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
,
∴△DPA≌△DPE(ASA),
∴PA=PE.
∵AB⊥BP,CM⊥CP,
∴∠ABP =∠ECP =Rt ∠.
在△APB 和△EPC 中,
ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩
,
∴△APB ≌△EPC (AAS ),
∴PB =PC ;
(3)∵△PDC 是等腰三角形,
∴△PCD 为等腰直角三角形,即∠DPC =45°,
又∵DP ⊥AP ,
∴∠APB =45°,
∴BP =AB =1cm ,
∴PC =BC ﹣BP =4cm ,
∴CD =CP =4cm ,
故答案为:4.
【点睛】
本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.。