最新21装配生产线任务平衡问题的遗传算法MATLAB源代码汇总

合集下载

利用MATLAB编制的遗传算法代码

利用MATLAB编制的遗传算法代码

function gaTSPCityNum=30;[dislist,Clist]=tsp(CityNum);inn=100; %初始种群大小¡gnmax=1000; %最大概率pc=0.8; %交叉概率pm=0.8; %变异概率%产生初始种群for i=1:inns(i,:)=randperm(CityNum);end[f,p]=objf(s,dislist);gn=1;while gn<gnmax+1for j=1:2:innseln=sel(s,p); %选择操作scro=cro(s,seln,pc); %交叉操作scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);smnew(j,:)=mut(scnew(j,:),pm); %变异操作smnew(j+1,:)=mut(scnew(j+1,:),pm);ends=smnew; %产生了新的种群[f,p]=objf(s,dislist); %计算新种群的适应度%记录当前代最好和平均的适应度[fmax,nmax]=max(f);ymean(gn)=1000/mean(f);ymax(gn)=1000/fmax;%记录当前代的最佳个体x=s(nmax,:);drawTSP(Clist,x,ymax(gn),gn,0);gn=gn+1;%pause;endgn=gn-1;figure(2);plot(ymax,'r'); hold on;plot(ymean,'b');grid;title('ËÑË÷¹ý³Ì');legend('×îÓŽâ','ƽ¾ù½â');end%------------------------------------------------%计算适应度函数function [f,p]=objf(s,dislist);inn=size(s,1); %读取种群大小¡for i=1:innf(i)=CalDist(dislist,s(i,:)); %计算函数值,即适应度endf=1000./f';%计算选择概率fsum=0;for i=1:innfsum=fsum+f(i)^15;endfor i=1:innps(i)=f(i)^15/fsum;end%计算累积概率p(1)=ps(1);for i=2:innp(i)=p(i-1)+ps(i);endp=p';end%--------------------------------------------------function pcc=pro(pc);test(1:100)=0;l=round(100*pc);test(1:l)=1;n=round(rand*99)+1;pcc=test(n);end%--------------------------------------------------%“选择”操作function seln=sel(s,p);inn=size(p,1);%从种群中选择两个个体for i=1:2r=rand; %产生一个随机数prand=p-r;j=1;while prand(j)<0j=j+1;endseln(i)=j; %选中个体的序号endend%------------------------------------------------%“交叉”操作function scro=cro(s,seln,pc);bn=size(s,2);pcc=pro(pc); %根据交叉概率决定是否进行交叉操作,1则是,0则否scro(1,:)=s(seln(1),:);scro(2,:)=s(seln(2),:);if pcc==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个交叉位 c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);middle=scro(1,chb1+1:chb2);scro(1,chb1+1:chb2)=scro(2,chb1+1:chb2);scro(2,chb1+1:chb2)=middle;for i=1:chb1while find(scro(1,chb1+1:chb2)==scro(1,i))zhi=find(scro(1,chb1+1:chb2)==scro(1,i));y=scro(2,chb1+zhi);scro(1,i)=y;endwhile find(scro(2,chb1+1:chb2)==scro(2,i))zhi=find(scro(2,chb1+1:chb2)==scro(2,i));y=scro(1,chb1+zhi);scro(2,i)=y;endendfor i=chb2+1:bnwhile find(scro(1,1:chb2)==scro(1,i))zhi=find(scro(1,1:chb2)==scro(1,i));y=scro(2,zhi);scro(1,i)=y;endwhile find(scro(2,1:chb2)==scro(2,i))zhi=find(scro(2,1:chb2)==scro(2,i));y=scro(1,zhi);scro(2,i)=y;endendendend%--------------------------------------------------%“变异”操作function snnew=mut(snew,pm);bn=size(snew,2);snnew=snew;pmm=pro(pm); %¸根据变异概率决定是否进行变异操作,1则是,0则否if pmm==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个变异位 c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);x=snew(chb1+1:chb2);snnew(chb1+1:chb2)=fliplr(x); endend。

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序遗传算法是一种模拟自然进化过程的算法,通过遗传代数操作来搜索最优解。

它是一种优化算法,可以用于解决复杂问题,例如函数优化、组合优化、机器学习等。

在Matlab 中,遗传算法可以通过使用内置函数进行实现,也可以编写自己的遗传算法函数。

以下是一个完整的遗传算法函数Matlab程序的示例:function [x_best, f_best] = GA(fit_func, nvars)% fit_func: 适应度函数句柄% nvars: 变量个数% 遗传算法参数设置pop_size = 100; % 种群大小prob_crossover = 0.8; % 交叉概率prob_mutation = 0.02; % 变异概率max_gen = 1000; % 最大迭代次数% 初始化种群pop = rand(pop_size, nvars);for i = 1:max_gen% 计算适应度for j = 1:pop_sizefitness(j) = feval(fit_func, pop(j,:));end% 找到最优个体[f_best, best_idx] = max(fitness);x_best = pop(best_idx,:);% 交叉操作for j = 1:2:pop_sizeif rand < prob_crossover% 随机选择父代idx_parent1 = randi(pop_size);idx_parent2 = randi(pop_size);parent1 = pop(idx_parent1,:);parent2 = pop(idx_parent2,:);% 交叉idx_crossover = randi(nvars-1);child1 = [parent1(1:idx_crossover) parent2(idx_crossover+1:end)];child2 = [parent2(1:idx_crossover) parent1(idx_crossover+1:end)];% 更新种群pop(j,:) = child1;pop(j+1,:) = child2;endend% 变异操作for j = 1:pop_sizeif rand < prob_mutation% 随机选择变异个体idx_mutation = randi(nvars);pop(j,idx_mutation) = rand;endendendend在上述程序中,遗传算法的参数通过设定变量的值进行设置,包括种群大小、交叉概率、变异概率和最大迭代次数等。

MATLAB课程遗传算法实验报告及源代码

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷考试科目:考生姓名:考生学号:学院:专业:考生成绩:任课老师(签名)考试日期:年月日午时至时《MATLAB 教程》试题:A 、利用MATLAB 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。

要求设计遗传算法对该问题求解。

ae h kB 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。

C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河?D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。

以上四题任选一题进行实验,并写出实验报告。

选择题目:B 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。

一、问题分析(10分)这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。

实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。

在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。

二、实验原理与数学模型(20分)(1)试验原理:用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。

其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。

每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。

matlab遗传算法代码

matlab遗传算法代码

matlab遗传算法代码
1 、算法概述
遗传算法(Genetic Algorithms,GA)是一种仿生学优化算法,它借用遗传学中物
竞天择的进化规则,模拟“自然选择”与“遗传进化”得出选择最优解的过程。

其基本原
理是对现有的种群中的各个个体,将其表示成某种形式的编码,然后根据自变量与约束条件,利用杂交、变异等操作,产生新一代解的种群,不断重复这一过程,最终求出收敛到
最优解的种群。

2、遗传算法的作用
遗传算法的主要作用在于优化多元函数,能够在大量的变量影响目标函数值的情况下
寻求最优解。

和其它现有的数值优化技术比较,如梯度下降法等,遗传算法更能适应“凸”和“非凸”都能解决,不受约束条件与搜索空间的影响较大,又叫做“智能搜索法”。


计算机视觉等计算机技术领域,经常用遗传算法来对一系列特征参数进行搜索和调节,成
功优化提高了系统的正确处理率。

3、matlab遗传算法的实现
Matlab的遗传算法应用是基于GA Toolbox工具箱,它提供了一个功能强大的、可扩
展的包装器,可用于构建遗传算法模型。

(1)编写最优化函数:
使用和设置最优化表达式或函数、变量;
(2)设置参数编码:
设置变量的编码,比如选择0-1二进制、0-10十进制;
(3)选择遗传算法的方法
选择遗传算法的方法,可以在多个选择中选择,比如变异、杂交等;
(4)设置运算参数:
设置每代的种群数、最大进化的世代数;
(5)运行遗传算法:
根据设定的参数运行遗传算法,算出收敛到最优解的种群;
(6)获得最优解:
获得收敛到最优解的条件下的最优解,得出最优解所在位置等参数,完成整个优化搜索。

遗传算法及其MATLAB程序

遗传算法及其MATLAB程序

遗传算法及其MATLAB实现主要内容遗传算法简介遗传算法的MATLAB实现应用举例一、遗传算法简介遗传算法(Genetic Algorithm,GA)最先是由美国Mic-hgan大学的John Holland于1975年提出的。

遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。

它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。

遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核心内容。

遗传算法的基本步骤:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从一组随机产生的称为“种群(Population)”的初始解开始搜索过程。

种群中的每个个体是问题的一个解,称为“染色体(chromos ome)”。

染色体是一串符号,比如一个二进制字符串。

这些染色体在后续迭代中不断进化,称为遗传。

在每一代中用“适值(fitness)”来测量染色体的好坏,生成的下一代染色体称为后代(offspring)。

后代是由前一代染色体通过交叉(crossover)或者变异(mutation)运算形成的。

在新一代形成过程中,根据适度的大小选择部分后代,淘汰部分后代。

从而保持种群大小是常数。

适值高的染色体被选中的概率较高,这样经过若干代之后,算法收敛于最好的染色体,它很可能就是问题的最优解或次优解。

主要步骤如下所示:(1)编码:GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合便构成了不同的点。

(2)初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了—个群体。

GA以这N个串结构数据作为初始点开始迭代。

遗传算法Matlab源代码

遗传算法Matlab源代码

function [X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSize,options,pCross,pMutation,pInversion)% [X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSize,options,pCross,pMutation,pInversion)% Finds a maximum of a function of several variables.% fga solves problems of the form:% max F(X) subject to: LB <= X <= UB (LB=bounds(:,1),UB=bounds(:,2))% X - 最优个体对应自变量值% MaxFval - 最优个体对应函数值% BestPop - 最优的群体即为最优的染色体群% Trace - 每代最佳个体所对应的目标函数值% FUN - 目标函数% bounds - 自变量范围% MaxEranum - 种群的代数,取50--500(默认200)% PopSize - 每一代种群的规模;此可取50--200(默认100)% pCross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pMutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2)% options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编码,option(2)设定求解精度(默认1e-4)T1=clock;%检验初始参数if nargin<2, error('FMAXGA requires at least three input arguments'); endif nargin==2, MaxEranum=150;PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==3, PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==4, options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==5, pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==6, pMutation=0.1;pInversion=0.25;endif nargin==7, pInversion=0.25;endif (options(1)==0|options(1)==1)&find((bounds(:,1)-bounds(:,2))>0)error('数据输入错误,请重新输入:');end% 定义全局变量global m n NewPop children1 children2 VarNum% 初始化种群和变量precision = options(2);bits = ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间VarNum = size(bounds,1);[Pop] = InitPop(PopSize,bounds,bits,options);%初始化种群[m,n] = size(Pop);fit = zeros(1,m);NewPop = zeros(m,n);children1 = zeros(1,n);children2 = zeros(1,n);pm0 = pMutation;BestPop = zeros(MaxEranum,n);%分配初始解空间BestPop,TraceTrace = zeros(1,MaxEranum);Lb = ones(PopSize,1)*bounds(:,1)';Ub = ones(PopSize,1)*bounds(:,2)';%二进制编码采用多点交叉和均匀交叉,并逐步增大均匀交叉概率%浮点编码采用离散交叉(前期)、算术交叉(中期)、AEA重组(后期)OptsCrossOver = [ones(1,MaxEranum)*options(1);...round(unidrnd(2*(MaxEranum-[1:MaxEranum]))/MaxEranum)]';%浮点编码时采用两种自适应变异和一种随机变异(自适应变异发生概率为随机变异发生的2倍)OptsMutation = [ones(1,MaxEranum)*options(1);unidrnd(5,1,MaxEranum)]';if options(1)==3D=zeros(n);CityPosition=bounds;D = sqrt((CityPosition(:, ones(1,n)) - CityPosition(:, ones(1,n))').^2 +...(CityPosition(:,2*ones(1,n)) - CityPosition(:,2*ones(1,n))').^2 );end%==========================================================================% 进化主程序%%==========================================================================eranum = 1;H=waitbar(0,'Please wait...');while(eranum<=MaxEranum)for j=1:mif options(1)==1%eval(['[fit(j)]=' FUN '(Pop(j,:));']);%但执行字符串速度比直接计算函数值慢fit(j)=feval(FUN,Pop(j,:));%计算适应度elseif options(1)==0%eval(['[fit(j)]=' FUN '(b2f(Pop(j,:),bounds,bits));']);fit(j)=feval(FUN,(b2f(Pop(j,:),bounds,bits)));elsefit(j)=-feval(FUN,Pop(j,:),D);endend[Maxfit,fitIn]=max(fit);%得到每一代最大适应值Meanfit(eranum)=mean(fit);BestPop(eranum,:)=Pop(fitIn,:);Trace(eranum)=Maxfit;if options(1)==1Pop=(Pop-Lb)./(Ub-Lb);%将定义域映射到[0,1]:[Lb,Ub]-->[0,1] ,Pop-->(Pop-Lb)./(Ub-Lb) endswitch round(unifrnd(0,eranum/MaxEranum))%进化前期尽量使用实行锦标赛选择,后期逐步增大非线性排名选择case {0}[selectpop]=TournamentSelect(Pop,fit,bits);%锦标赛选择case {1}[selectpop]=NonlinearRankSelect(Pop,fit,bits);%非线性排名选择end[CrossOverPop]=CrossOver(selectpop,pCross,OptsCrossOver(eranum,:));%交叉[MutationPop]=Mutation(CrossOverPop,fit,pMutation,VarNum,OptsMutation(eranum,:)); %变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位%更新种群if options(1)==1Pop=Lb+InversionPop.*(Ub-Lb);%还原PopelsePop=InversionPop;endpMutation=pm0+(eranum^3)*(pCross/2-pm0)/(eranum^4); %逐步增大变异率至1/2交叉率percent=num2str(round(100*eranum/MaxEranum));waitbar(eranum/MaxEranum,H,['Evolution complete ',percent,'%']);eranum=eranum+1;endclose(H);% 格式化输出进化结果和解的变化情况t=1:MaxEranum;plot(t,Trace,t,Meanfit);legend('解的变化','种群的变化');title('函数优化的遗传算法');xlabel('进化世代数');ylabel('每一代最优适应度');[MaxFval,MaxFvalIn]=max(Trace);if options(1)==1|options(1)==3X=BestPop(MaxFvalIn,:);elseif options(1)==0X=b2f(BestPop(MaxFvalIn,:),bounds,bits);endhold on;plot(MaxFvalIn,MaxFval,'*');text(MaxFvalIn+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf(' Best generation:\n %d\n\n Best X:\n %s\n\n MaxFval\n %f\n',...MaxFvalIn,num2str(X),MaxFval);disp(str1);% -计时T2=clock;elapsed_time=T2-T1;if elapsed_time(6)<0elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)<0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1;end。

遗传算法matlab代码

遗传算法matlab代码
figure(1);%打开第一个窗口
fplot(f,[xmin,xmax]);%隐函数画图
grid on;hold on;
plot(x,fit,'k*');%作图,画初始种群的适应度图像
title('(a)染色体的初始位置');%标题
xlabel('x');ylabel('f(x)');%标记轴
close all;
clc;%清屏
tic;%计时器开始计时
n=20;ger=100;pc=0.65;pm=0.05;%初始化参数
%以上为经验值,可以更改。
% 生成初始种群
v=init_population(n,22); %得到初始种群,22串长,生成20*22的0-1矩阵
[N,L]=size(v); %得到初始规模行,列
v=fliplr(v); %实现左右翻转颠倒
[s,c]=size(v); %c代表串长。求行,列
aux=0:1:c-1; %21维向量
aux=ones(s,1)*aux;%权值向量矩阵
x1=sum((v.*2.^aux)');%权值 %注意转置 %sum是求列和
x=xymin+(xymax-xymin)*x1./(2^c-1); %最大值4194303;
disp(sprintf('Number of generations:%d',ger));
disp(sprintf('Population size:%d',N));
disp(sprintf('Crossover probability:%.3f',pc));

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。

遗传算法matlab程序代码

遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。

在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。

标准遗传算法MATLAB代码

标准遗传算法MATLAB代码

%用遗传算法进行简单函数的优化,可以显示中间过程clearbn=22; %个体串长度inn=50; %初始种群大小gnmax=200; %最大代数pc=0.8; %交叉概率pm=0.05; %变异概率%产生初始种群s=round(rand(inn,bn));gnf1=5;gnf2=20;%计算适应度,返回适应度f和累积概率p[f,p]=objf(s);gn=1;while gn<gnmax+1xp=-1:0.01:2;yp=ft(xp);for d=1:innxi=n2to10(s(d,:));xdi(d)=-1.0+xi*3/(power(2,bn)-1);endyi=ft(xdi);plot(xp,yp,'b-',xdi,yi,'g*');strt=['当前代数gn=' num2str(gn)];text(-0.75,1,strt);text(-0.75,3.5,'* 当前种群','Color','g');if gn<gnf1pause;endhold on;for j=1:2:inn%选择操作seln=sel(s,p);xs1=n2to10(s(seln(1),:));xds1=-1.0+xs1*3/(power(2,bn)-1);ys1=ft(xds1);xs2=n2to10(s(seln(2),:));xds2=-1.0+xs2*3/(power(2,bn)-1);ys2=ft(xds2);hold on;drawnow;plot(xds1,ys1,'r*',xds2,ys2,'r*');%交叉操作scro=cro(s,seln,pc);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mut(scnew(j,:),pm);smnew(j+1,:)=mut(scnew(j+1,:),pm);enddrawnow;text(-0.75,3.3,'* 选择后','Color','r');if gn<gnf1pause;endfor d=1:innxc=n2to10(scnew(d,:));xdc(d)=-1.0+xc*3/(power(2,bn)-1); endyc=ft(xdc);drawnow;plot(xdc,yc,'m*');text(-0.75,3.1,'* 交叉后','Color','m');if gn<gnf1pause;endhold on;for d=1:innxm=n2to10(smnew(d,:));xdm(d)=-1.0+xm*3/(power(2,bn)-1); endym=ft(xdm);drawnow;plot(xdm,ym,'c*');text(-0.75,2.9,'* 变异后','Color','c');if gn<gnf2pause;endhold off;s=smnew; %产生了新的种群%计算新种群的适应度[f,p]=objf(s);%记录当前代最好和平均的适应度[fmax,nmax]=max(f);fmean=mean(f);ymax(gn)=fmax;ymean(gn)=fmean;%记录当前代的最佳个体x=n2to10(s(nmax,:));xx=-1.0+x*3/(power(2,bn)-1);xmax(gn)=xx;gn=gn+1;endgn=gn-1;figure(2);subplot(2,1,1);plot(1:gn,[ymax;ymean]);title('历代适应度变化','fonts',10);legend('最大适应度','平均适应度');string1=['最终适应度',num2str(ymax(gn))]; gtext(string1);subplot(2,1,2);plot(1:gn,xmax,'r-');legend('自变量');string2=['最终自变量',num2str(xmax(gn))]; gtext(string2);。

遗传算法matlab源代码

遗传算法matlab源代码

方案一的程序编码函数主文件:function[Xp,LC1,LC2,LC3]=CLBGA8(M,Pm) %%%陈璐斌编程,解决VRP问题(带时间窗)%%输入参数%M遗传进化迭代次数%Pm变异概率%%输出参数%Xp最优个体%LC1目标收敛曲线%LC2平均适应度收敛曲线%LC3最优适应度收敛曲线%%%变量初始化Xp=zeros(1,5);LC1=zeros(1,M);LC2=zeros(1,M);LC3=zeros(1,M);Best=inf;%%编码方式-第一步:产生初始种群N=10;%N 种群规模farm=cell(1,N);%存储种群的细胞结构k=1;while (N-k>=0)G=randperm(5);%产生5个客户的全排列farm{k}=G;k=k+1;end%%%进化迭代计数器counter=1;while counter<=M%%第二步:交叉%交叉采用双亲双子单点交叉N=10;%种群规模newfarm=cell(1,2*N-4);%存储子代的细胞结构Ser=randperm(N);%两两随机配对表生成for i=1:(N-2)%避免交叉概率为1 A=farm{Ser(i)};B=farm{Ser(i+1)};%取出父代P0=unidrnd(5);%随机选择交叉点aa=zeros(1,5);bb=zeros(1,5);A_=A;B_=B;for ii=1:5-P0aa(ii)=B(P0+ii);endfor ii=1:5-P0for iiii=1:5if(B(P0+ii)==A_(iiii))A_(iiii)=0;endendendfor iii=6-P0:5for iiii=1:5if(A_(iiii)~=0)aa(iii)=A_(iiii);A_(iiii)=0;breakendendendfor ii=1:5-P0bb(ii)=A(P0+ii);endfor ii=1:5-P0for iiii=1:5if(A(P0+ii)==B_(iiii))B_(iiii)=0;endendendfor iii=6-P0:5for iiii=1:5if(B_(iiii)~=0)bb(iii)=B_(iiii);B_(iiii)=0;breakendendend%产生子代newfarm{2*i-1}=aa;newfarm{2*i}=bb;endFARM=[farm,newfarm];%新旧种群合并%%第三步:选择复制%%计算当前种群适应度并存储N=10;SYZ=zeros(1,3*N-4);syz=zeros(1,3*N-4);for i=1:(3*N-4)x=FARM{i};SYZ(i)=clb8(x);end%%选择复制,较优的N个个体复制到下一代k=1;while k<=(3*N-4)maxSYZ=max(SYZ);posSYZ=find(SYZ==maxSYZ);POS=posSYZ(1);k=k+1;farm{k}=FARM{POS};syz(k)=SYZ(POS);SYZ(POS)=0;end%记录和更新,更新最优个体,记录收敛曲线数据maxsyz=max(syz);meansyz=mean(syz);pos=find(syz==maxsyz);LC2(counter+1)=meansyz;if maxsyzBest=maxsyz;Xp=farm{pos(1)};endLC3(counter+1)=Best;d=[0,6.4,3.2,3.9,3.7,2;6.4,0,2.9,2.1,4.5,4.1;3.2,2.9,0,1.5,3.3,1.2;3.9,2.1,1.5,0,3.6,2.6;3.7,4.5,3.3,3.6 ,0,3.8;...2.0,4.1,1.2,2.6,3.8,0;];%距离矩阵t=[0,0.16,0.08,0.1,0.09,0.05;0.16,0,0.07,0.05,0.11,0.1;0.08,0.07,0,0.04,0.08,0.03;...0.1,0.05,0.04,0,0.09,0.07;0.09,0.11,0.08,0.09,0,0.10;0.05,0.1,0.03,0.07,0.1,0;];%行驶时间矩阵w=[0.15,0.2,0.18,0.25,0.22];%服务时间矩阵%%时间窗向量early=[0.15,0.3,0.7,0.4,0.7];xx=x;%取出染色体j=1;%分工点初始化%%取距离向量d1,d2d1=zeros(1,6);d1(1)=d(1,xx(1)+1);for i=1:4d1(i+1)=d(xx(i)+1,xx(i+1)+1);endd1(6)=d(xx(5)+1,1);%%时间窗计算T=t(1,xx(1)+1);pun1=0;if T<early(xx(1))pun1=early(xx(1))-T;T=early(xx(1));endT=T+w(xx(1));for i=2:5T=T+t(xx(i-1)+1,xx(i)+1);if T<early(xx(i))pun1=pun1+early(xx(i))-T;T=early(xx(i));endT=T+w(xx(5));endF=sum(10.*d1)+sum(10.*d2)+20*pun1; LC1(counter+1)=F;%%第四步:变异N=10;for i=1:Nif Pm>randAA=farm{i};POS1=unidrnd(5);POS2=unidrnd(5);temp=AA(POS1);AA(POS1)=AA(POS2);AA(POS2)=temp;farm{i}=AA;endendcounter=counter+1;end%%第五步:绘制收敛曲线图figure(2);plot(LC1);xlabel('迭代次数');ylabel('目标的值');title('目标的收敛曲线');figure(3);plot(LC2);xlabel('迭代次数');ylabel('适应度函数的平均值');title('平均适应度函数的收敛曲线');plot(LC3);xlabel('迭代次数');ylabel('适应度函数的最优值');title('最优适应度函数的收敛曲线');适应度文件:%%计算载重量和时间窗%%适应度函数计算function Fitness=clb8(x)d=[0,6.4,3.2,3.9,3.7,2;6.4,0,2.9,2.1,4.5,4.1;3.2,2.9,0,1.5,3.3,1.2;3.9,2.1,1.5,0,3.6,2.6;3.7,4.5,3.3,3.6 ,0,3.8;...2.0,4.1,1.2,2.6,3.8,0;];%距离矩阵t=[0,0.16,0.08,0.1,0.09,0.05;0.16,0,0.07,0.05,0.11,0.1;0.08,0.07,0,0.04,0.08,0.03;...0.1,0.05,0.04,0,0.09,0.07;0.09,0.11,0.08,0.09,0,0.10;0.05,0.1,0.03,0.07,0.1,0;];%行驶时间矩阵w=[0.15,0.2,0.18,0.25,0.22];%服务时间矩阵%%时间窗向量early=[0.15,0.3,0.7,0.4,0.7];xx=x;%取出染色体j=1;%分工点初始化%%取距离向量d1,d2d1=zeros(1,6);d1(1)=d(1,xx(1)+1);for i=1:4d1(i+1)=d(xx(i)+1,xx(i+1)+1);endd1(6)=d(xx(5)+1,1);%%时间窗计算T=t(1,xx(1)+1);pun1=0;if T<early(xx(1))pun1=early(xx(1))-T;T=early(xx(1));endT=T+w(xx(1));T=T+t(xx(i-1)+1,xx(i)+1);if T<early(xx(i))pun1=pun1+early(xx(i))-T;T=early(xx(i));endT=T+w(xx(5));endF=sum(10.*d1)+sum(10.*d2)+20*pun1;Fitness=1/F;计算时间文件:function[T]=TOTALT(Xp1)Xp=Xp1;t=[0,0.16,0.08,0.1,0.09,0.05;0.16,0,0.07,0.05,0.11,0.1;0.08,0.07,0,0.04,0.08,0.03;...0.1,0.05,0.04,0,0.09,0.07;0.09,0.11,0.08,0.09,0,0.10;0.05,0.1,0.03,0.07,0.1,0;];%行驶时间矩阵w=[0.15,0.2,0.18,0.25,0.22];%服务时间矩阵%%时间窗向量early=[0.15,0.3,0.7,0.4,0.7];T=t(1,Xp(1)+1);if T<early(Xp(1))T=early(Xp(1));endT=T+w(Xp(1));for i=2:5T=T+t(Xp(i-1)+1,Xp(i)+1);if T<early(Xp(i))T=early(Xp(1));endT=T+w(Xp(i));endT=T+t(1,Xp(5)+1);方案二的程序编码主函数文件:function[Xp,LC1,LC2,LC3]=CLBGA9(M,Pm)%%%陈璐斌编程,解决VRP问题(带时间窗)%%输入参数%M遗传进化迭代次数%Pm变异概率%%输出参数%Xp最优个体%LC1子目标2收敛曲线%LC2平均适应度收敛曲线%LC3最优适应度收敛曲线%%%变量初始化Xp=zeros(1,6);LC1=zeros(1,M);LC2=zeros(1,M);LC3=zeros(1,M);Best=inf;%%编码方式-第一步:产生初始种群N=10;%N 种群规模%Q=[2.4,3.3,2.1,2.7,2.3,1.6,2.0,1.2,3.6,1.9];%需求矩阵farm=cell(1,N);%存储种群的细胞结构k=1;while (N-k>=0)G=randperm(6);%产生6个客户的全排列farm{k}=G;k=k+1;end%%%进化迭代计数器counter=1;while counter<=M%%第二步:交叉%交叉采用双亲双子单点交叉N=10;%种群规模newfarm=cell(1,2*N-4);%存储子代的细胞结构Ser=randperm(N);%两两随机配对表生成for i=1:(N-2)%避免交叉概率为1A=farm{Ser(i)};B=farm{Ser(i+1)};%取出父代P0=unidrnd(6);%随机选择交叉点aa=zeros(1,6);bb=zeros(1,6);A_=A;B_=B;for ii=1:6-P0aa(ii)=B(P0+ii);endfor ii=1:6-P0for iiii=1:6if(B(P0+ii)==A_(iiii))A_(iiii)=0;endendendfor iii=7-P0:6for iiii=1:6if(A_(iiii)~=0)aa(iii)=A_(iiii);A_(iiii)=0;breakendendendfor ii=1:6-P0bb(ii)=A(P0+ii);endfor ii=1:6-P0for iiii=1:6if(A(P0+ii)==B_(iiii))B_(iiii)=0;endendendfor iii=7-P0:6for iiii=1:6if(B_(iiii)~=0)bb(iii)=B_(iiii);B_(iiii)=0;breakendendend%产生子代newfarm{2*i-1}=aa;newfarm{2*i}=bb;endFARM=[farm,newfarm];%新旧种群合并%%第三步:选择复制%%计算当前种群适应度并存储N=10;SYZ=zeros(1,3*N-4);syz=zeros(1,3*N-4);for i=1:(3*N-4)x=FARM{i};SYZ(i)=clb9(x);end%%选择复制,较优的N个个体复制到下一代k=1;while k<=(3*N-4)maxSYZ=max(SYZ);posSYZ=find(SYZ==maxSYZ);POS=posSYZ(1);k=k+1;farm{k}=FARM{POS};syz(k)=SYZ(POS);SYZ(POS)=0;end%记录和更新,更新最优个体,记录收敛曲线数据maxsyz=max(syz);meansyz=mean(syz);pos=find(syz==maxsyz);LC2(counter+1)=meansyz;if maxsyzBest=maxsyz;Xp=farm{pos(1)};endLC3(counter+1)=Best;d=[0,6.4,3.2,3.9,3.7,35,2;6.4,0,2.9,2.1,4.5,32.5,4.1;3.2,2.9,0,1.5,3.3,35.7,1.2;3.9,2.1,1.5,0,3.6,34.5,2.6;...3.7,4.5,3.3,3.6,0,37,3.8;35,32.5,35.7,34.5,37,0,38.5;2,4.1,1.2,2.6,3.8,38.5,0];%距离矩阵t=[0,0.16,0.08,0.1,0.1,0.88,0.05;0.16,0,0.07,0.05,0.11,0.81,0.1;0.08,0.07,0,0.04,0.08,0.9,0.03;...0.1,0.05,0.04,0,0.09,0.86,0.07;0.1,0.11,0.08,0.09,0,0.92,0.1;0.88,0.81,0.9,0.86,0.92,0,0.96;...0.05,0.1,0.03,0.07,0.1,0.96,0;];%行驶时间矩阵w=[0.15,0.2,0.18,0.25,0.2,0.22];%服务时间矩阵%%时间窗向量early=[0.15,0.3,0.7,0.4,0.7,0.6];xx=x;%取出染色体j=1;%分工点初始化%%取距离向量d1,d2d1=zeros(1,7);d1(1)=d(1,xx(1)+1);for i=1:5d1(i+1)=d(xx(i)+1,xx(i+1)+1);endd1(7)=d(xx(6)+1,1);%%时间窗计算T=t(1,xx(1)+1);pun1=0;if T<early(xx(1))pun1=early(xx(1))-T;T=early(xx(1));endT=T+w(xx(1));for i=2:6T=T+t(xx(i-1)+1,xx(i)+1);if T<early(xx(i))pun1=pun1+early(xx(i))-T;T=early(xx(i));endT=T+w(xx(6));endF=sum(10.*d1) +20*pun1;LC1(counter+1)=F;%%第四步:变异N=10;for i=1:Nif Pm>randAA=farm{i};POS1=unidrnd(6);POS2=unidrnd(6);temp=AA(POS1);AA(POS1)=AA(POS2);AA(POS2)=temp;farm{i}=AA;endendcounter=counter+1;end%%第五步:绘制收敛曲线图figure(2);plot(LC1);xlabel('迭代次数');ylabel('目标的值');title('目标的收敛曲线');figure(3);plot(LC2);xlabel('迭代次数');ylabel('适应度函数的平均值');title('平均适应度函数的收敛曲线');figure(4);plot(LC3);xlabel('迭代次数');ylabel('适应度函数的最优值');title('最优适应度函数的收敛曲线');适应度文件:%%计算载重量和时间窗%%适应度函数计算function Fitness=clb9(x)d=[0,6.4,3.2,3.9,3.7,35,2;6.4,0,2.9,2.1,4.5,32.5,4.1;3.2,2.9,0,1.5,3.3,35.7,1.2;3.9,2.1,1.5,0,3.6,34.5,2.6;...3.7,4.5,3.3,3.6,0,37,3.8;35,32.5,35.7,34.5,37,0,38.5;2,4.1,1.2,2.6,3.8,38.5,0];%距离矩阵t=[0,0.16,0.08,0.1,0.1,0.88,0.05;0.16,0,0.07,0.05,0.11,0.81,0.1;0.08,0.07,0,0.04,0.08,0.9,0.03;...0.1,0.05,0.04,0,0.09,0.86,0.07;0.1,0.11,0.08,0.09,0,0.92,0.1;0.88,0.81,0.9,0.86,0.92,0,0.96;...0.05,0.1,0.03,0.07,0.1,0.96,0;];%行驶时间矩阵w=[0.15,0.2,0.18,0.25,0.2,0.22];%服务时间矩阵%%时间窗向量early=[0.15,0.3,0.7,0.4,0.7,0.6];late=[2.5,3.4,3.3,2.7,2.5,4.5];xx=x;%取出染色体j=1;%分工点初始化%%取距离向量d1,d2d1=zeros(1,7);d1(1)=d(1,xx(1)+1);for i=1:5d1(i+1)=d(xx(i)+1,xx(i+1)+1);endd1(7)=d(xx(6)+1,1);%%时间窗计算T=t(1,xx(1)+1);pun1=0;if T<early(xx(1))pun1=early(xx(1))-T;T=early(xx(1));endT=T+w(xx(1));for i=2:6T=T+t(xx(i-1)+1,xx(i)+1);if T<early(xx(i))pun1=pun1+early(xx(i))-T;T=early(xx(i));endT=T+w(xx(6));endF=sum(10.*d1) +20*pun1;Fitness=1/F;计算时间文件:function[T]=TOTALT2(Xp1)Xp=Xp1;t=[0,0.16,0.08,0.1,0.1,0.88,0.05;0.16,0,0.07,0.05,0.11,0.81,0.1;0.08,0.07,0,0.04,0.08,0.9,0.03;...0.1,0.05,0.04,0,0.09,0.86,0.07;0.1,0.11,0.08,0.09,0,0.92,0.1;0.88,0.81,0.9,0.86,0.92,0,0.96;... 0.05,0.1,0.03,0.07,0.1,0.96,0;];%行驶时间矩阵w=[0.15,0.2,0.18,0.25,0.2,0.22];%服务时间矩阵%%时间窗向量early=[0.15,0.3,0.7,0.4,0.7,0.6];T=t(1,Xp(1)+1);if T<early(Xp(1))T=early(Xp(1));endT=T+w(Xp(1));for i=2:6T=T+t(Xp(i-1)+1,Xp(i)+1);if T<early(Xp(i))T=early(Xp(1));endT=T+w(Xp(i));endT=T+t(1,Xp(6)+1)。

遗传算法matlab函数的源程序

遗传算法matlab函数的源程序
chi(j,i)=rand();
end
end
end
%确定下一代父代个体
%确定实际子代个体数值
chi_fact=zeros(x_num,chi_num*3);
for j=1:x_num
chi_fact(j,:)=x_range(j,1)+(x_range(j,2)-x_range(j,1))*chi(j,:);
par=chi(:,chi_ada_no(1:par_num));
end ');
par_fac_exc(:,1)=x_range(:,1)+(x_range(:,2)-x_range(:,1)).*par(:,1);%父代个体最优函数值
par_fun_exc=fun(par_fac_exc);
%输出父代样本实际值
par_fact=zeros(x_num,par_num);
for i=1:x_num
par_fact(i,:)=x_range(i,1)+(x_range(i,2)-x_range(i,1))*par(i,:);
if chi_ran(3)<0.5
chi(j,i)=chi_ran(1)*par(j,chi_sel1)+(1-chi_ran(1))*par(j,chi_sel2);
else
chi(j,i)=chi_ran(2)*par(j,chi_sel1)+(1-chi_ran(2))*par(j,chi_sel2);
%例子2:
%fun=@(x) sum(x.*x-cos(18*x))+5;
%x_range=[-1,1;-1,1;-1,1;-1,1;-1,1];

遗传算法matlab程序

遗传算法matlab程序

遗传算法matlab程序编码>> function ret=Code(lenchrom,bound)%本函数将变量编码成染色体,用于随机初始化一个种群% lenchrom input : 染色体长度% bound input : 变量的取值范围% ret output: 染色体的编码值flag=0;while flag==0pick=rand(1,length(lenchrom));ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret 中flag=test(lenchrom,bound,ret); %检验染色体的可行性end交叉操作function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)%本函数完成交叉操作% pcorss input : 交叉概率% lenchrom input : 染色体的长度% chrom input : 染色体群% sizepop input : 种群规模% ret output : 交叉后的染色体for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue 控制)% 随机选择两个染色体进行交叉pick=rand(1,2);while prod(pick)==0pick=rand(1,2);endindex=ceil(pick.*sizepop);% 交叉概率决定是否进行交叉pick=rand;while pick==0pick=rand;endif pick>pcrosscontinue;endflag=0;while flag==0% 随机选择交叉位pick=rand;while pick==0pick=rand;endpos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同pick=rand; %交叉开始v1=chrom(index(1),pos);v2=chrom(index(2),pos);chrom(index(1),pos)=pick*v2+(1-pick)*v1;chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性if flag1*flag2==0flag=0;else flag=1;end %如果两个染色体不是都可行,则重新交叉endendret=chrom;解码function ret=Decode(lenchrom,bound,code,opts)% 本函数对染色体进行解码% lenchrom input : 染色体长度% bound input : 变量取值范围% code input :编码值% opts input : 解码方法标签% ret output: 染色体的解码值switch optscase 'binary' % binary codingfor i=length(lenchrom):-1:1data(i)=bitand(code,2^lenchrom(i)-1); %并低十位,然后将低十位转换成十进制数存在data(i)里面code=(code-data(i))/(2^lenchrom(i)); %低十位清零,然后右移十位endret=bound(:,1)'+data./(2.^lenchrom-1).*(bound(:,2)-bound(:,1))'; %分段解码,以实数向量的形式存入ret中case 'grey' % grey codingfor i=sum(lenchrom):-1:2code=bitset(code,i-1,bitxor(bitget(code,i),bitget(code,i-1)));endfor i=length(lenchrom):-1:1data(i)=bitand(code,2^lenchrom(i)-1);code=(code-data(i))/(2^lenchrom(i));endret=bound(:,1)'+data./(2.^lenchrom-1).*(bound(:,2)-bound(:,1))'; %分段解码,以实数向量的形式存入ret中case 'float' % float codingret=code; %解码结果就是编码结果(实数向量),存入ret中end适应度函数function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)%该函数用来计算适应度值%x input 个体%inputnum input 输入层节点数%outputnum input 隐含层节点数%net input 网络%inputn input 训练输入数据%outputn input 训练输出数据%error output 个体适应度值%提取w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*out putnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hid dennum+hiddennum*outputnum+outputnum);%网络进化参数net.trainParam.epochs=20;net.trainParam.lr=0.1;net.trainParam.goal=0.00001;net.trainParam.show=100;net.trainParam.showWindow=0;%网络权值赋值net.iw{1,1}=reshape(w1,hiddennum,inputnum);net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;。

遗传算法GA的MATLAB代码

遗传算法GA的MATLAB代码

MATLAB实现算法代码:GA(遗传算法)——整数编码function [BestGene,aa] = GA(MaxGeneration,GeneSize,GeneNum,pcross,pmute,minGene,maxGene)Parent = Init(GeneSize,GeneNum,minGene,maxGene);[BestGene,Parent] = KeepBest(Parent);aa = [];for i = 1:MaxGeneration[i 1/value(BestGene)]Child = chose(Parent);Child = cross(Child,pcross);Child = mute(Child,pmute,maxGene);[BestGene,Parent] = KeepBest(Child);aa = [aa;value(BestGene)];endfunction GeneInit = Init(GeneSize,GeneNum,minGene,maxGene)GeneInit = [];for i = 1:GeneSizex = []; x = ceil(rand(1,GeneNum).*(maxGene-minGene)) + minGene;GeneInit = [GeneInit;x];endGeneInit = [GeneInit;x];function Child = chose(Parent)GeneSize = size(Parent,1);for i = 1:GeneSizex = Parent(i,:);val(i) = value(x);endValSum = sum(val);val = val / ValSum;for i = 2:GeneSizeval(i) = val(i) + val(i-1);endfor i = 1:GeneSizerandval = rand;if randval <= val(1)Child(i,:) = Parent(1,:);endfor j = 2:GeneSizeif randval > val(j-1) && randval <= val(j)Child(i,:) = Parent(j,:);break;endendendChild(end,:) = Parent(end,:);function Child = cross(Parent,pcross)[GeneSize,GeneNum] = size(Parent);GeneSize = GeneSize - 1;Child = Parent;for i = 1:GeneSize/2if rand < pcrossflag = 0;while( flag==0 )randval1 = floor((GeneNum-1)*rand) + 1;randval2 = floor((GeneNum-1)*rand) + 1;if randval1 ~= randval2flag = 1;endendtemp = Child(2*i-1,randval1:randval2);Child(2*i-1,randval1:randval2) = Child(2*i,randval1:randval2);Child(2*i,randval1:randval2) = temp;endendfunction Child = mute(Parent,pmute,maxGene)[GeneSize,GeneNum] = size(Parent);GeneSize = GeneSize - 1;Child = Parent;for i = 1:GeneSizeif rand < pmuterandval = ceil((GeneNum-1)*rand) + 1;Child(i,randval) = maxGene(randval) - Child(i,randval) + 1;endendfunction [BestGene,Parent] = KeepBest(Child)[GeneSize,GeneNum] = size(Child);for i = 1:GeneSizex = Child(i,:);val(i) = value(x);endBigVal = val(1);flag = 1;for i = 2:GeneSizeif BigVal < val(i)BigVal = val(i);flag = i;endendBestGene = Child(flag,:); Parent = Child;Parent(1,:) = BestGene; Parent(end,:) = BestGene;。

遗传算法的matlab代码

遗传算法的matlab代码

遗传算法的matlab代码摘要:遗传算法是一种基于自然选择和遗传学原理的优化算法。

本文将介绍如何在MATLAB中实现遗传算法,并使用一个简单的例子来说明其应用。

1. 引言遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。

它模拟了自然界中生物的进化过程,通过不断地搜索、适应和优化,最终找到问题的最优解。

MATLAB是一种广泛使用的编程语言和软件环境,它提供了丰富的数学计算和可视化工具,使得在MATLAB中实现遗传算法变得相对简单。

2. 遗传算法的基本原理遗传算法主要包括以下几个步骤:1) 初始化:随机生成一组候选解(称为种qun)。

2) 选择:从种qun中按照一定的概率选择出优秀的个体进行繁殖。

3) 交叉:从选择出的个体中随机选择两个进行交叉操作,生成新的后代。

4) 变异:对后代进行变异操作,以增大种qun的多样性。

5) 迭代:重复进行选择、交叉和变异操作,直到达到预设的迭代次数或满足其他终止条件。

3. MATLAB实现遗传算法在MATLAB中实现遗传算法,可以使用自带的gaoptimset和ga函数。

下面是一个简单的例子,说明如何在MATLAB中实现遗传算法。

```matlab```% 定义目标函数fitnessFunction = @(x) x(1)^2 + x(2)^2; % 最小化目标函数```% 定义变量范围lb = [-10, -10]; % 变量下界ub = [10, 10]; % 变量上界```% 初始化参数populationSize = 100; % 种qun大小maxIterations = 500; % 最da迭代次数crossoverRate = 0.8; % 交叉概率mutationRate = 0.1; % 变异概率elitismRate = 0.1; % 精英策略概率```% 初始化种qunpopulation = ga(fitnessFunction, lb, ub, populationSize, maxIterations, elitismRate, crossoverRate, mutationRate);```% 可视化结果figure;plot(population.Fitness,'r');hold on;plot(population.Gen,'g');xlabel('Generation');ylabel('Fitness');title('遗传算法进化过程');```4. 结果分析通过上述代码,我们可以在MATLAB中实现一个简单的遗传算法。

遗传算法matlab代码

遗传算法matlab代码

function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]') end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。

(完整版)遗传算法matlab实现源程序

(完整版)遗传算法matlab实现源程序

附页:一.遗传算法源程序:clc; clear;population;%评价目标函数值for uim=1:popsizevector=population(uim,:);obj(uim)=hanshu(hromlength,vector,phen);end%obj%min(obj)clear uim;objmin=min(obj);for sequ=1:popsizeif obj(sequ)==objminopti=population(sequ,:);endendclear sequ;fmax=22000;%==for gen=1:maxgen%选择操作%将求最小值的函数转化为适应度函数for indivi=1:popsizeobj1(indivi)=1/obj(indivi);endclear indivi;%适应度函数累加总合total=0;for indivi=1:popsizetotal=total+obj1(indivi);endclear indivi;%每条染色体被选中的几率for indivi=1:popsizefitness1(indivi)=obj1(indivi)/total;endclear indivi;%各条染色体被选中的范围for indivi=1:popsizefitness(indivi)=0;for j=1:indivifitness(indivi)=fitness(indivi)+fitness1(j);endendclear j;fitness;%选择适应度高的个体for ranseti=1:popsizeran=rand;while (ran>1||ran<0)ran=rand;endran;if ran〈=fitness(1)newpopulation(ranseti,:)=population(1,:);elsefor fet=2:popsizeif (ran〉fitness(fet—1))&&(ran<=fitness(fet))newpopulation(ranseti,:)=population(fet,:);endendendendclear ran;newpopulation;%交叉for int=1:2:popsize-1popmoth=newpopulation(int,:);popfath=newpopulation(int+1,:);popcross(int,:)=popmoth;popcross(int+1,:)=popfath;randnum=rand;if(randnum〈 P>cpoint1=round(rand*hromlength);cpoint2=round(rand*hromlength);while (cpoint2==cpoint1)cpoint2=round(rand*hromlength);endif cpoint1>cpoint2tem=cpoint1;cpoint1=cpoint2;cpoint2=tem;endcpoint1;cpoint2;for term=cpoint1+1:cpoint2for ss=1:hromlengthif popcross(int,ss)==popfath(term)tem1=popcross(int,ss);popcross(int,ss)=popcross(int,term);popcross(int,term)=tem1;endendclear tem1;endfor term=cpoint1+1:cpoint2for ss=1:hromlengthif popcross(int+1,ss)==popmoth(term)tem1=popcross(int+1,ss);popcross(int+1,ss)=popcross(int+1,term);popcross(int+1,term)=tem1;endendclear tem1;endendclear term;endclear randnum;popcross;%变异操作newpop=popcross;for int=1:popsizerandnum=rand;if randnumcpoint12=round(rand*hromlength);cpoint22=round(rand*hromlength);if (cpoint12==0)cpoint12=1;endif (cpoint22==0)cpoint22=1;endwhile (cpoint22==cpoint12)cpoint22=round(rand*hromlength);if cpoint22==0;cpoint22=1;endendtemp=newpop(int,cpoint12);newpop(int,cpoint12)=newpop(int,cpoint22);newpop(int,cpoint22)=temp;。

遗传算法matlab程序代码

遗传算法matlab程序代码

function [R,Rlength]= GA_TSP(xyCity,dCity,Population,nPopulation,pCrossover,percent,pMutation,generation,nR,rr,rang eCity,rR,moffspring,record,pi,Shock,maxShock)clear allA=load('d.txt');AxyCity=[A(1,:);A(2,:)]; %x,y为各地点坐标xyCityfigure(1)grid onhold onscatter(xyCity(1,:),xyCity(2,:),'b+')grid onnCity=50;nCityfor i=1:nCity %计算城市间距离for j=1:nCitydCity(i,j)=abs(xyCity(1,i)-xyCity(1,j))+abs(xyCity(2,i)-xyCity(2,j));endend %计算城市间距离xyCity; %显示城市坐标dCity %显示城市距离矩阵%初始种群k=input('取点操作结束'); %取点时对操作保护disp('-------------------')nPopulation=input('种群个体数量:'); %输入种群个体数量if size(nPopulation,1)==0nPopulation=50; %默认值endfor i=1:nPopulationPopulation(i,:)=randperm(nCity-1); %产生随机个体endPopulation %显示初始种群pCrossover=input('交叉概率:'); %输入交叉概率percent=input('交叉部分占整体的百分比:'); %输入交叉比率pMutation=input('突变概率:'); %输入突变概率nRemain=input('最优个体保留最大数量:');pi(1)=input('选择操作最优个体被保护概率:');%输入最优个体被保护概率pi(2)=input('交叉操作最优个体被保护概率:');pi(3)=input('突变操作最优个体被保护概率:');maxShock=input('最大突变概率:');if size(pCrossover,1)==0pCrossover=0.85;endif size(percent,1)==0percent=0.5;endif size(pMutation,1)==0pMutation=0.05;endShock=0;rr=0;Rlength=0;counter1=0;counter2=0;R=zeros(1,nCity-1);[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);R0=R;record(1,:)=R;rR(1)=Rlength;Rlength0=Rlength;generation=input('算法终止条件A.最多迭代次数:');%输入算法终止条件if size(generation,1)==0generation=200;endnR=input('算法终止条件B.最短路径连续保持不变代数:');if size(nR,1)==0nR=10;endwhile counter1<generation&counter2<nRif counter2<nR*1/5Shock=0;elseif counter2<nR*2/5Shock=maxShock*1/4-pMutation;elseif counter2<nR*3/5Shock=maxShock*2/4-pMutation;elseif counter2<nR*4/5Shock=maxShock*3/4-pMutation;elseShock=maxShock-pMutation;endcounter1newPopulationoffspring=crossover(newPopulation,nCity,pCrossover,percent,nPopulation,rr,pi,nRemain);offspringmoffspring=Mutation(offspring,nCity,pMutation,nPopulation,rr,pi,nRemain,Shock);[newPopulation,R,Rlength,counter2,rr]=select(moffspring,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);counter1=counter1+1;rR(counter1+1)=Rlength;record(counter1+1,:)=R;endR0;Rlength0;R;Rlength;minR=min(rR);disp('最短路经出现代数:')rr=find(rR==minR)disp('最短路经:')record(rr,:);mR=record(rr(1,1),:)disp('终止条件一:')counter1disp('终止条件二:')counter2disp('最短路经长度:')minRdisp('最初路经长度:')rR(1)figure(2)plotaiwa(xyCity,mR,nCity)figure(3)i=1:counter1+1;plot(i,rR(i))grid onfunction[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain)Distance=zeros(nPopulation,1); %零化路径长度Fitness=zeros(nPopulation,1); %零化适应概率Sum=0; %路径长度for i=1:nPopulation %计算个体路径长度for j=1:nCity-2Distance(i)=Distance(i)+dCity(Population(i,j),Population(i,j+1));end %对路径长度调整,增加起始点到路径首尾点的距离Distance(i)=Distance(i)+dCity(Population(i,1),nCity)+dCity(Population(i,nCity-1),nCity);Sum=Sum+Distance(i); %累计总路径长度end %计算个体路径长度if Rlength==min(Distance)counter2=counter2+1;elsecounter2=0;endRlength=min(Distance); %更新最短路径长度Rlength;rr=find(Distance==Rlength);R=Population(rr(1,1),:); %更新最短路径for i=1:nPopulationFitness(i)=(max(Distance)-Distance(i)+0.001)/(nPopulation*(max(Distance)+0.001)-Sum); %适应概率=个体/总和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21装配生产线任务平衡问题的遗传算法
M A T L A B源代码
装配生产线任务平衡问题的遗传算法MATLAB源代码下面的源码实现了装配生产线任务平衡优化问题(ALB问题)的遗传算法,算法主要参考下面这篇文献,并对其进行了改进。

陈永卿,潘刚,李平.基于混合遗传算法的装配线平衡[J].机电工程,2008,25(4):60-62.。

function
[BestX,BestY,BestZ,AllFarm,LC1,LC2,LC3,LC4,LC5]=GSAALB(M,N,Pm,Pd,K,t0, alpha,TaskP,TaskT,TaskV,RT,RV)
% GreenSim团队——专业级算法设计&代写程序
% 欢迎访问GreenSim团队主页→/greensim
%% 装配生产线任务平衡问题的遗传算法
%% 输入参数列表
% M------------遗传算法进化代数
% N------------种群规模,取偶数
% Pm-----------变异概率调节参数
% Pd-----------变异程度调节参数,0<Pd<1,越大,变异的基因位越多
% K------------同一温度下状态跳转次数
% T0-----------初始温度
% Alpha--------降温系数
% Beta---------浓度均衡系数
% TaskP--------任务优先矩阵,n×n矩阵,Pij=1表示任务i需在j之前完成,Pij=0时任务i和j没有优先关系
% TaskT--------任务时间属性,n×1向量
% TaskV--------任务体积属性,n×1向量
% RT-----------时间节拍约束
% RV-----------工位体积约束
%% 输出参数列表
% BestX--------最好个体的编码
% BestY--------最好个体对应的装配方案
% BestZ--------最好个体的目标函数值
% LC1----------最优个体适应值的收敛曲线,M×1
% LC2----------种群平均适应值的收敛曲线,M×1
% LC3----------工位个数收敛曲线,M×1
% LC4----------时间利用率及平衡度综合度量参数收敛曲线,M×1
% LC5----------空间利用率及平衡度综合度量参数收敛曲线,M×1
% AllFarm------各代种群的集合,M×1的细胞结构
%% -----------------------初始化----------------------------------
n=size(TaskP,1);
[AA,BB]=QJHJ(TaskP);%调用子函数,建立每一个任务的前任务集和后任务集
farm=Initialization(N,TaskP,AA,BB);%调用子函数,种群初始化
%输出参数初始化
BestX=zeros(1,n);
BestY=zeros(1,n);
BestZ=0;
LC1=zeros(M,1);
LC2=zeros(M,1);
LC3=zeros(M,1);
LC4=zeros(M,1);
LC5=zeros(M,1);
AllFarm=cell(M,1);
%控制参数初始化
m=1;%迭代计数器
t=t0;%温度指示器
BestPos=1;%初始时任意指定被保护个体
%% -----------------------迭代过程---------------------------------
while m<=M%设置停止条件
%% ----------------------变异退火算子------------------------------
for i=1:N
if rand>Pm&&i~=BestPos
%如果随机数大于变异概率门限值,并且不属于保护个体,就对其实施变异
I=farm(i,:);%取出该个体
k=1;
while k<=K%每一个温度下的状态转移次数
%调用变异子函数
J=Mutation(I,Pd,AA,BB);
%调用计算适应值子函数
[YI,ZI,FI,TGWI,VGWI,f1I,f2I]=Fitness(I,TaskT,TaskV,RT,RV);
[YJ,ZJ,FJ,TGWJ,VGWJ,f1J,f2J]=Fitness(J,TaskT,TaskV,RT,RV);
if FJ>FI
farm(i,:)=J;
elseif rand<exp((FJ-FI)/(FI*t))
farm(i,:)=J;
else
farm(i,:)=I;
end
k=k+1;
end
end
end
%% -----------------------交叉算子---------------------------------
newfarm=zeros(size(farm));
Ser=randperm(N);%用这个函数保证随机配对
for i=1:2:(N-1)
FA=farm(Ser(i),:);
FB=farm(Ser(i+1),:);
[SA,SB]=CrossOver(FA,FB);
newfarm(i,:)=SA;
newfarm(i+1,:)=SB;
end
%新旧种群合并
FARM=[farm;newfarm];
%% -----------------------选择复制---------------------------------
FIT_Y=zeros(2*N,n);
FIT_Z=zeros(2*N,1);
FIT_F=zeros(2*N,1);
FIT_f1=zeros(2*N,1);
FIT_f2=zeros(2*N,1);
fit_Y=zeros(N,n);
fit_Z=zeros(N,1);
fit_F=zeros(N,1);
fit_f1=zeros(N,1);
fit_f2=zeros(N,1);
for i=1:(2*N)
XX=FARM(i,:);
[Y,Z,F,TGW,VGW,f1,f2]=Fitness(XX,TaskT,TaskV,RT,RV); FIT_Y(i,:)=Y;
FIT_Z(i)=Z;
FIT_F(i)=F;
FIT_f1(i)=f1;
FIT_f2(i)=f2;
end
Ser=randperm(2*N);
for i=1:N
ff1=FIT_F(Ser(2*i-1));
ff2=FIT_F(Ser(2*i));
if ff1>=ff2
farm(i,:)=FARM(Ser(2*i-1),:);
fit_Y(i,:)=FIT_Y(Ser(2*i-1),:);
fit_Z(i)=FIT_Z(Ser(2*i-1));
fit_F(i)=FIT_F(Ser(2*i-1));
fit_f1(i)=FIT_f1(Ser(2*i-1));
fit_f2(i)=FIT_f2(Ser(2*i-1));
else
farm(i,:)=FARM(Ser(2*i),:);
fit_Y(i,:)=FIT_Y(Ser(2*i),:);
fit_Z(i)=FIT_Z(Ser(2*i));
fit_F(i)=FIT_F(Ser(2*i));
fit_f1(i)=FIT_f1(Ser(2*i));
fit_f2(i)=FIT_f2(Ser(2*i));
end
end
%% -----------------------记录与更新------------------------------- maxF=max(fit_F);
meanF=mean(fit_F);
LC1(m)=maxF;
LC2(m)=meanF;
pos=find(fit_F==maxF);
BestPos=pos(1);
BestX=farm(BestPos,:);
BestY=fit_Y(BestPos,:);
BestZ=fit_Z(BestPos);
LC3(m)=fit_Z(BestPos);
LC4(m)=fit_f1(BestPos);
LC5(m)=fit_f2(BestPos);
AllFarm{m}=farm;
disp(m);
m=m+1;
t=t*alpha;
end
源代码运行结果展示。

相关文档
最新文档