高中物理必修第3册第十章 静电场中的能量试卷达标训练题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修第3册第十章 静电场中的能量试卷达标训练题(Word 版 含答
案)
一、第十章 静电场中的能量选择题易错题培优(难)
1.如图所示,分别在M 、N 两点固定放置两个点电荷+Q 和-2Q ,以MN 连线的中点O 为圆心的圆周上有A 、B 、C 、D 四点,COD 与MN 垂直,规定无穷远处电势为零,下列说法正确的是( )
A .A 点场强与
B 点场强相等 B .
C 点场强与
D 点场强相等 C .O 点电势等于零 D .C 点和D 点电势相等 【答案】D 【解析】 【分析】 【详解】
A 、由于2Q >Q ,A 点处电场线比
B 点处电场线疏,A 点场强小于B 点场强;故A 错误. B 、由于电场线关于MN 对称,
C 、
D 两点电场线疏密程度相同,则C 点场强等于D 点场强,但方向与两个电荷的连线不平行,故电场强度的方向不同,故电场强度大小相等,但方向不相同;故B 错误.
C 、根据等量异种电荷的对称性可知过O 点的中垂线与电场线垂直,中垂线为等势线,O 点的电势为零,现在是不等量的异种电荷,过O 点中垂线不再是等势线,O 点电势不为零,由U E d =⋅可知左侧的平均场强小,电势降低的慢,则零电势点在O 点右侧;C 错误.
D 、沿着电场线电势逐渐降低,结合电场分布的上下对称可知0C D ϕϕ=>;D 正确. 故选D . 【点睛】
本题考查判断电势、场强大小的能力,往往画出电场线,抓住电场线分布的特点进行判断.
2.如图所示,匀强电场中有一个以O 为圆心、半径为R 的圆,电场方向与圆所在平面平行,圆上有三点A 、B 、C ,其中A 与C 的连线为直径,∠A =30°。

有两个完全相同的带正电粒子,带电量均为q (q >0),以相同的初动能E k 从A 点先后沿不同方向抛出,它们分别运动到B 、C 两点。

若粒子运动到B 、C 两点时的动能分别为E kB =2E k 、E kC =3E k ,不计粒子的重力和粒子间的相互作用,则匀强电场的场强大小为
A .k E qR
B .2k E qR
C .3
k
E D .23
k
E 【答案】D 【解析】 【分析】 【详解】
从A 点到B 点应用动能定理有:2-AB k k k qU E E E == 从A 点到C 点应用动能定理有:32-AC k k k qU E E E == 所以2AC AB U U =
做出等势面和电场线如图所示:
则从A 点到B 点应用动能定理有:,3k k R
qEd qE AD E qE E ===即 解得23
3k
E E qR
=。

选项D 正确,A 、B 、C 错误。

3.如图所示,在纸面内有一直角三角形ABC ,P 1为AB 的中点, P 2为AP 1的中点,BC =2 cm ,∠A = 30°.纸面内有一匀强电场,电子在A 点的电势能为-5 eV ,在C 点的电势能为19 eV ,在P 2点的电势能为3 eV .下列说法正确的是
A .A 点的电势为-5 V
B .B 点的电势为-19 V
C .该电场的电场强度方向由B 点指向A 点
D .该电场的电场强度大小为800 V/m 【答案】D 【解析】 【分析】 【详解】 A .由公式p
E q
ϕ=
可知,
pA A 5eV
5V E q
e
ϕ-=
=
=- 故A 错误.
B .A 到P 2的电势差为
2A 5(3)V 8V P U ϕϕ=-=--=
B A 4548V 27V U ϕϕ=-=-⨯=-
故B 错误.
C .A 点到B 点电势均匀降落,设P 1与B 的中点为P 3,该点电势为:
3
A 3538V 19V P U ϕϕ=-=-⨯=-
C p 19eV
19V C E q
e
ϕ=
=
=-- P 3点与C 为等势点,连接两点的直线为等势线,如图虚线P 3C 所示.由几何关系知,P 3C 与
AB 垂直,所以AB 为电场线,又因为电场线方向由电势高指向电势低,所以该电场的电场强度方向是由A 点指向B 点,故C 错误.
D
.P3与C为等势点,该电场的电场强度方向是由A点指向B点,所以场强为:
28
V/cm800V/m 1
U
E
AP
===
故D正确.
4.如上图所示,有四个等量异种电荷,放在正方形的四个顶点处,A、B、C、D为正方形四个边的中点,O为正方形的中心,下列说法中正确的是
A.A、C两个点的电场强度方向相反
B.将一带正电的试探电荷匀速从B点沿直线移动到D点,电场力做功为零
C.O点电场强度为零
D.将一带正电的试探电荷匀速从A点沿直线移动到C点,试探电荷具有的电势能增大【答案】B
【解析】
【分析】
【详解】
A. 设正方形边长为L,每个电荷的电量大小为Q,对A点研究,两个正电荷在A点的合场强为零,根据平行四边形法则,两个负电荷在A点的合场强方向水平向右.则A点的电场强度方向水平向右.对C点研究,两个负电荷在C点的合场强为零,根据平行四边形法则,两个正电荷在C点的合场强方向水平向右,所以A、C两个点的电场强度方向相同.故A错误;
B.在上面两个等量异种电荷的电场中,B、D连线是一条等势线.在下面两个等量异种电荷的电场中,B、D连线是也一条等势线,所以B、D两点的电势相等,将一带正电的试探电荷从B点沿直线移动到D点,电场力做功为零,故B正确.
C.两个正电荷在O点的合场强水平向右,两个负电荷在O点的合场强也水平向右,所以O 点电场强度不等于零,方向水平向右.故C错误.
D .根据电场的叠加原理可知,AC连线上场强方向水平向右,则将一带正电的试探电荷匀速从A点沿直线移动到C点,电场力做正功,则试探电荷具有的电势能减小,故D错误;
故选B.
【点睛】
本题的关键是要掌握等量异种电荷的电场线和等势面分布特点,熟练运用电场的叠加原理
分析复合场中电势与电场强度的分布情况;注意场强叠加是矢量叠加,电势叠加是代数叠加.
5.一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子和,从电容器的点(如图)以相同的水平速度射入两平行板之间.测得和与电容极板的撞击点到入射点之间的水平距离之比为1:2.若不计重力,则和的比荷之比是
A.1:2 B.1:8 C.2:1 D.4:1
【答案】D
【解析】
两带电粒子都做类平抛运动,水平方向匀速运动,有,垂直金属板方向做初速度为零的匀加速直线运动,有,电荷在电场中受的力为,根据牛顿第二定律有,整理得,因为两粒子在同一电场中运动,E相同,初速度相同,
侧位移相同,所以比荷与水平位移的平方成反比.所以比荷之比为,D正确.
【易错提醒】表达式的整理过程易出现问题.
【学科网备考提示】带电粒子在电场中的加速和偏转是高考的重点考查内容.
6.如图所示,平行板电容器与直流电源、理想二极管(正向电阻为零可以视为短路,反向电阻无穷大可以视为断路)连接,电源负极接地。

初始电容器不带电,闭合开关稳定后,一带电油滴位于电容器中的P点且处于静止状态。

下列说法正确的是( )
A.减小极板间的正对面积,带电油滴会向下运动
B.将上极板上移,则P点的电势升高E
C.将下极板下移,则带电油滴在P点的电势能增大
D.无论哪个极板上移还是下移,带电油滴都不可能向下运动
【答案】D
【解析】
由题意可知考查电容器动态分析问题,根据电容、电压、场强、电量相互关系分析可得。

【详解】
A .由4S C kd επ=
Q C U
= U E d = 三式 联立可得4kQ E S πε= 减小极板间的正对面积,由4S
C kd επ=
可知电容减小,假设电压不变由Q C U
= 可知电量减小,电容器放电,因二极管的单向导电性,可知Q 不变,S 减小,由4kQ
E S
πε= 可知场强E 增大,电场力增大,带电油滴向上运动,故A 错误;
B .将上极板上移,由4S
C kd επ=可知电容减小,假设电压不变由Q C U
= 可知电量减小,
电容器放电,因二极管的单向导电性,可知Q 不变,由4kQ
E S
πε= 可知场强E 不变,P 到下极板的距离不变,则P 点的电势不变,故B 错误;
C .将下极板下移,由4S
C kd επ=可知电容减小,假设电压不变由Q C U
= 可知电量减小,
电容器放电,因二极管的单向导电性,可知Q 不变,由4kQ
E S
πε= 可知场强E 不变,P 到下极板的距离变大,则P 点的电势升高,油滴带负电,所以油滴在P 点的电势能减小,故C 错误。

D .两极板距离增大时,电容减小,假设电压不变由Q
C U
=
可知电量减小,电容器放电,因二极管的单向导电性,电容不变,场强不变,油滴静止,当两板距离减小时,电容增大,场强增大,电场力增大,带电油滴向上运动,故D 正确。

【点睛】
二极管具有单向导电性,电容器不能反向放电,则电量不会减小。

由4kQ
E S
πε=
,可以确定电场强度变化,进一步确定电场力、电势能的变化。

同一正电荷放在电势越高处电势能越大,同一负电荷放在电势越高处电势能越小。

7.静电场中,一带电粒子仅在电场力的作用下自M 点由静止开始运动,N 为粒子运动轨迹上的另外一点,则
A .运动过程中,粒子的速度大小可能先增大后减小
B .在M 、N 两点间,粒子的轨迹一定与某条电场线重合
C .粒子在M 点的电势能不低于其在N 点的电势能
D .粒子在N 点所受电场力的方向一定与粒子轨迹在该点的切线平行 【答案】AC
【分析】 【详解】
A .若电场中由同种电荷形成即由A 点释放负电荷,则先加速后减速,故A 正确;
B .若电场线为曲线,粒子轨迹不与电场线重合,故B 错误.
C .由于N 点速度大于等于零,故N 点动能大于等于M 点动能,由能量守恒可知,N 点电势能小于等于M 点电势能,故C 正确
D .粒子可能做曲线运动,故D 错误;
8.如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为
A a 、
B a ,电势能分别为PA E 、PB E .下列说法正确的是( )
A .电子一定从A 向
B 运动
B .若A a >B a ,则Q 靠近M 端且为正电荷
C .无论Q 为正电荷还是负电荷一定有PA E <PB E
D .B 点电势可能高于A 点电势 【答案】BC 【解析】
由于不知道电子速度变化,由运动轨迹图不能判断电子向那个方向运动,故A 错误;若a A >a B ,则A 点离点电荷Q 更近即Q 靠近M 端;又由运动轨迹可知,电场力方向指向凹的一侧即左侧,所以,在MN 上电场方向向右,那么Q 靠近M 端且为正电荷,故B 正确;由B 可知,电子所受电场力方向指向左侧,那么,若电子从A 向B 运动,则电场力做负功,电势能增加;若电子从B 向A 运动,则电场力做正功,电势能减小,所以,一定有E pA <E pB 求解过程与Q 所带电荷无关,只与电场线方向相关,故C 正确;由B 可知,电场线方向由M 指向N ,那么A 点电势高于B 点,故D 错误;故选BC .
9.如右图所示,P 、Q 为两个等量的异种电荷,以靠近P 点的O 点为原点,沿两电荷的连线建立x 轴,沿直线向右为x 轴正方向,一带正电的粒子从O 点由静止开始在电场力作用下运动到A 点,已知A 点与O 点关于PQ 两电荷连线的中点对称,粒子的重力忽略不计,在从O 到A 的运动过程中,下列关于粒子的运动速度v 和加速度a 随时间t 的变化,粒子的动能E k 和运动径迹上电势φ随位移x 的变化图线肯定错误的是( )
A .A
B .B
C .C
D .D
【答案】ABD 【解析】 【详解】
等量异种电荷的电场线如图所示.
沿两点电荷连线从O 到A ,电场强度先变小后变大,一带正电的粒子从O 点由静止开始在电场力作用下运动到A 点的过程中,电场力一直做正功,粒子的速度一直在增大.电场力先变小后变大,则加速度先变小后变大.v-t 图象切线的斜率先变小后变大,该图是不可能的,故A 符合题意.根据沿着电场线方向电势逐渐降低,电场强度为E x
ϕ
=
,E 先减小
后增大,所以φ-x 图象切线的斜率先减小后增大,则B 图不可能,故B 符合题意;加速度先变小后变大,方向不变,C 图是可能的,故C 不符合题意.粒子的动能 E k =qEx ,电场强度先变小后变大,则E k -x 切线的斜率先变小后变大,则D 图不可能.故D 符合题意.则选ABD . 【点睛】
该题要掌握等量异种电荷的电场线的特点,结合物理规律分析图象切线斜率如何变化是解答的关键,不能只定性分析,那样会认为BD 是正确的.
10.如图,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,上面放一质量为m 的带正电小球,小球与弹簧不连接,施加外力F 将小球向下压至某位置静止.现撤去F ,使小球沿竖直方向运动,在小球由静止到离开弹簧的过程中,重力、电场力对小球所做的功分别为W 1和W 2,小球离开弹簧时的速度为v ,不计空气阻力,则上述过程中
A .小球的重力势能增加-W 1
B .弹簧对小球做的功为
12mv 2
-W 2-W 1 C .小球的机械能增加W 1+
12
mv 2 D .小球与弹簧组成的系统机械能守恒 【答案】AB 【解析】
A 、重力对小球做功为W 1,重力势能增加-W 1;故A 正确.
B 、电场力做了W 2的正功,则电势能减小W 2;故B 正确.
C 、根据动能定理得,2
121=
2
W W W mv ++弹,因为除重力以外其它力做功等于小球机械能的增量,则机械能的增量为2
211=
2
W W mv W +-弹;故C 错误.D 、对小球和弹簧组成的系统,由于有电场力做功,则系统机械能不守恒.故D 错误.故选AB .
【点睛】解决本题的关键掌握功能关系,知道重力做功等于重力势能的减小量,电场力做功等于电势能的减小量,除重力以外其它力做功等于机械能的增量.
11.如图所示,绝缘水平面上O 处放质量为m 、电荷量为q 的带负电荷的小物体.劲度系数为k 的绝缘轻弹簧的一端固定在墙上,另一端与小物体接触(未固定),弹簧水平且无形变.O 点左侧有竖直向下的匀强电场,电场强度为2mg
E q
=
.用水平力F 缓慢向右推动物体,在弹性限度内弹簧被压缩了x 0,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为4x 0,物体与水平面间的动摩擦因数为µ,重力加速度为g .则( )
A .撤去F 后,物体回到O 点时速度最大
B .撤去F 后,物体刚运动时的加速度大小为0
kx g m
μ- C 03gx μ D .撤去F 后系统产生的内能为4µmgx 0
【答案】BC 【解析】 【详解】
A. 撤去F 后,物体回到O 之前水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,加速度先减小后增大,物体先做变加速运动,再做变减速运动,当弹簧的弹力与滑动摩擦力的合力大小相等、方向相反时,加速度为零,速度最大。

故A 错误。

B. 撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,由牛顿第二定律得:物体的加速度为
00
kx mg kx F f a g m m m
μμ--=
==- 故B 正确。

C. 物块进入电场区域后,受到的电场力:
1
22
mg F qE q mg q ==⋅
= 所以在竖直方向上,物块受到的支持力:
1122
N F mg F mg mg mg '
=-=-=
此时物体受到的摩擦力:
1
0.52
N f F mg mg μμμ''==⋅=
物块此时的加速度:
0.5f a g m
μ'
'
==
物块进入电场的区域后竖直方向的摩擦力不变,物块做匀减速直线运动,位移为:
x =4x 0-x 0=3x 0
由运动学的公式:
22
02ax v v -=-
可得物体离开弹簧时速率为:
0v ==故C 正确。

D. 物块进入电场前受到的摩擦力:f mg μ= ,物块进入电场区域后受到的摩擦力:
0.5f mg μ'= ,所以撤去F 后系统产生的内能为:
00•• 2.5Q f x f x mgx μ=+'=
故D 错误。

12.如图所示,光滑的水平轨道AB 与半径为R 的光滑的半圆形轨道BCD 相切于B 点,AB 水平轨道部分存在水平向右的匀强电场,半圆形轨道在竖直平面内,B 为最低点,D 为最
高点。

一质量为m、带正电的小球从距B点x的位置在电场力的作用下由静止开始沿AB 向右运动,恰能通过最高点,则()
A.其他条件不变,R越大,x越大
B.其他条件不变,m越大,x越大
C.m与R同时增大,电场力做功增大
D.R越大,小球经过B点后瞬间对轨道的压力越大
【答案】ABC
【解析】
【详解】
AB.小球在BCD部分做圆周运动,在D点,有:
mg=m
2
D
v
R

从A到D过程,由动能定理有:
qEx-2mgR=1
2
mv D2,②
由①②得:
2
5
qEx
R
mg ,③
可知,R越大,x越大。

m越大,x越大,故AB符合题意;
C.从A到D过程,由动能定理有:
W-2mgR=1
2
mv D2,⑥
由①⑥解得:电场力做功W=5
2
mgR,可知m与R同时增大,电场力做功越多,故C符合
题意;
D.小球由B到D的过程中,由动能定理有:
-2mgR=1
2
mv D2-
1
2
mv B2,v B5gR
在B点有:
F N-mg=m
2
B
v
R

解得:F N=6mg,则知小球经过B点瞬间轨道对小球的支持力与R无关,则小球经过B点后瞬间对轨道的压力也与R无关,故D不符合题意。

13.如图,实线为等量异种点电荷周围的电场线,虚线是以正点电荷为中心的圆,M点是两点电荷连线的中点,N点在虚线上.若将一试探正点电荷沿逆时针方向从M点经虚线移
动到N点,则()
A.电荷所受电场力逐渐减小
B.电荷所受电场力大小不变
C.电荷将克服电场力做功
D.电荷的电势能保持不变
【答案】AC
【解析】
【详解】
A、B、由电场线的分布情况可知,N处电场线比M处电场线疏,则N处电场强度比M处电场强度小,由电场力公式F=qE可知正点电荷从虚线上M点移动到N点,电场力逐渐减小,故A正确,B错误.C、D、根据顺着电场线方向电势降低,知虚线上各点的电势比正电荷处的电势低,根据U=Ed知:N与正电荷间的电势差小于M与正电荷的电势差,所以N点的电势高于M点的电势,从M点到N点,电势逐渐升高,正电荷的电势能逐渐增大,则电场力做负功,故C正确,D错误.故选AC.
【点睛】
解答本题关键掌握等量异号点电荷电场线分布情况,知道电场线的物理意义:疏密表示电场强势相对大小,方向反映电势的高低.运用公式U=Ed定性分析电势差的大小.
14.在x轴上有两个点电荷q1、q2,其静电场的电势φ在x轴上分布如图所示。

下列说法正确有()
A.q1和q2带有同种电荷B.x1处的电场强度为零
C.负电荷从x1移到x2,受到的电场力减小D.负电荷从x1移到x2,电场力做正功
【答案】CD
【解析】
【分析】
【详解】
A.由图可知无穷远处电势为零,又有电势为正的地方,故存在正电荷;又有电势为负的地方,故也存在负电荷,所以q1和q2带有异种电荷,选项A错误;
B.电场强度等于图中曲线斜率,x1处的斜率不为零,故电场强度不为零,选项B错误;
C .负电荷从x 1移到x 2,曲线斜率减小,即场强度减小,所以受到的电场力减小,选项C 正确;
D .负电荷从x 1移到x 2,电势增大,电势能减小,电场力做正功,选项D 正确。

故选CD 。

15.如图所示,一个竖直放置的平行板电容器,充电后,左板上电荷量为-Q ,板间可看成匀强电场.一个带电荷量为-q 的油滴,从O 点以速度v 射入板间,v 的方向与电场线成θ角,已知油滴的质量为m ,测得油滴到达运动轨迹的最高点时,它的速度大小又为v ,并恰好垂直打到平行板上,则以下说法中正确的是()
A .油滴最后打在左板上
B .最高点处(设为N )与O 点的电势差为22sin 2NO mv U q
θ=
C .板间的电场强度1sin mg cos E q θθ
+=
()
D .如果两板间距离变小,O 到右板的距离不变,则最高点处(设为N )的位置不变 【答案】BD 【解析】 【分析】 【详解】
A .因油滴到达最高点N 时速度大小为v ,方向水平,对O →N 过程用动能定理有
W G +W 电=0
所以电场力一定做正功,油滴带负电,则最高位置一定在O 点的右上方,即垂直打到右板上,A 错误.
B .对油滴,在水平方向,由动能定理得
qU NO =mgh
在竖直方向上油滴做初速为v sin θ的竖直上抛运动,则有
(v sin θ)2=2gh

22sin 2NO
mv U q
θ=
故B 正确.
C .油滴由O N →的运动时间为
sin v t g
θ
=
水平方向的位移
2cos (1cos )sin 22v v v d t g
θθθ--==
电场强度大小
sin (1cos )
U mg E d q θ
θ=
=- 故C 错误.
D .因最高点N 与出发点O 的电势差
22sin 2NO
mv U q
θ=
与场强无关,故改变电场强度而O 点到右板的距离不变,N 点的位置不变,则D 正确. 故选BD . 【点睛】
本题考查了动能定理的应用,考查了求电场强度大小问题,运用运动的合成与分解观点分析清楚油滴的运动过程是解题的前提与关键,应用动能定理、运动学公式与匀强电场场强与电势差的关系可以解题.
二、第十章 静电场中的能量解答题易错题培优(难)
16.如图甲所示,真空中的电极被连续不断均匀地发出电子(设电子的初速度为零),经加速电场加速,由小孔穿出,沿两个彼此绝缘且靠近的水平金属板A 、B 间的中线射入偏转电场,A 、B 两板距离为d 、A 、B 板长为L ,AB 两板间加周期性变化的电场,
AB U 如图乙所示,周期为T ,加速电压为2
12
2mL U eT
=,其中m 为电子质量、e 为电子电量,L 为A 、B 板长,T 为偏转电场的周期,不计电子的重力,不计电子间的相互作用力,且所有电子都能离开偏转电场,求: (1)电子从加速电场1U 飞出后的水平速度0v 大小?
(2)0t =时刻射入偏转电场的电子离开偏转电场时距A 、B 间中线的距离y ;
(3)在足够长的时间内从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比。

【答案】(1) 02L v T =;(2) 2
08eU T md
;(3) 31.7%
【解析】 【分析】 【详解】
(1)加速电场加速。

由动能定理得
2
1012
qU mv =
解得
02L v T
=
(2)电子在偏转电场里水平方向匀速运动,水平方向有
0L v t =
所以运动时间
2
T t = 则0t =时刻射入偏转电场的电子,在竖直方向匀加速运动,竖直方向有
22
2001812()22eU eU T T md y at md
=⨯⨯=
= (3)由上问可知电子在电场中的运动时间均为2
T
t =,设电子在0U 时加速度大小为1a ,03U 时加速度大小为2a ,由牛顿第二定律得:
01U e ma d ⋅
=,023U
e ma d
⋅= 在0
2
T
时间内,设1t 时刻射入电场中的电子偏转位移刚好为0,则: 2
21111121112222T T a t a t t a t ⎡⎤⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦
解得
14
T t =
在0
2T
时间内,04
T
时间内射入电场中的电子均可从中垂线上方飞出。

2
T T 这段时间内,设能够从中垂线上方飞出粒子的时间间隔为2t ,2t T t =-时刻射入的
电子刚好偏转位移为0,则有
2
22222212112222T T a t a t t a t ⎡⎤⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦
解得
223
t T -=
所以
12334t t t T ⎛⎫
-∆=+= ⎪ ⎪⎝⎭
所以从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比
33
100%31.7%t T η∆-=
=⨯≈
17.在一柱形区域内有匀强电场,柱的横截面积是以O 为圆心,半径为R 的圆,AB 为圆的直径,如图所示。

质量为m ,电荷量为q (q >0)的带电粒子在纸面内自A 点先后以不同的速度进入电场,速度方向与电场的方向垂直。

已知刚进入电场时速度为零的粒子,自圆周上的C 点以速率v 0穿出电场,AC 与AB 的夹角θ=60°。

运动中粒子仅受电场力作用。

(1)求电场强度的大小;
(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大? (3)为使粒子穿过电场前后动量变化量的大小为mv 0,该粒子进入电场时的速度应为多大?
【答案】(1) 2
2mv E qR
=;(2)0
1
24v v ;(3)0或0
232
v v
【解析】 【分析】 【详解】
(1)由题意知在A 点速度为零的粒子会沿着电场线方向运动,由于q >0,故电场线由A 指向C ,根据几何关系可知:
AC
x R
所以根据动能定理有:
20102
AC
qEx mv
解得:
20
2mv E qR
=;
(2)根据题意可知要使粒子动能增量最大则沿电场线方向移动距离最多,做AC 垂线并且与圆相切,切点为D ,即粒子要从D 点射出时沿电场线方向移动距离最多,粒子在电场中做类平抛运动,根据几何关系有
1sin 60
x R v t
21cos60
2
y
R R at 而电场力提供加速度有
qE ma =
联立各式解得粒子进入电场时的速度:
1
24
v v ; (3)因为粒子在电场中做类平抛运动,粒子穿过电场前后动量变化量大小为mv 0,即在电场方向上速度变化为v 0 ,过C 点做AC 垂线会与圆周交于B 点,故由题意可知粒子会从C 点或B 点射出。

当从B 点射出时由几何关系有
223BC
x R
v t
2212
AC
x R
at 电场力提供加速度有
qE ma =
联立解得0
2
3v v ;当粒子从C 点射出时初速度为0。

另解:
由题意知,初速度为0时,动量增量的大小为0mv ,此即问题的一个解。

自A 点以不同的速率垂直于电场方向射入电场的粒子,动量变化都相同,自B 点射出电场的粒子,其动量变化量也恒为0mv ,由几何关系及运动学规律可得,此时入射速率为
03v v =
18.如图所示,在水平方向的匀强电场中有一表面光滑、与水平面成θ角的绝缘直杆AC ,其下端(C 端)距地面高度为h .有一质量m =0.5kg 的带电小环套在直杆上,正以某一速度 0v 沿杆匀速下滑,小环离杆后正好通过C 端的正下方P 点处.(g 取10m/s 2)
(1)若θ=45°,试判断小环的电性,并求出小环受到的电场力大小; (2)若θ=45°,h =0.8m ,求小环在直杆上匀速运动的速度大小0v ;
(3)若保持h 不变,改变θ角(0<θ<90°)及小环的电荷量,使小环仍能匀速下滑,离杆后正好通过C 端的正下方P 点处,试推出初速度0v 与θ角间的定量关系式. 【答案】(1) 负电 5N (2)2m/s (3)02
gh
v θ= 【解析】 【详解】
(1)小环沿杆匀速下滑,合力为零,小环所受的电场力水平向右,则小球带负电。

小环匀速下滑合力为零,电场力
tan 455N F mg =︒=
(2)小环离开杆后做类平抛运动,由牛顿第二定律
2mg ma =
平行于杆的方向做匀速直线运动,则有
0sin 45x v t h ==︒
垂直于杆的方向做匀加速直线运动,则有
2
1cos 452
y at h =
=︒ 得02m/s v = (3)有牛顿第二定律得
cos mg
ma θ
= 平行于杆的方向做匀速直线运动,则有
0sin h v t θ=
垂直于杆的方向做匀加速直线运动,则有
21cos 2
h at θ=
解以上方程得
0tan 2
gh
v θ=
19.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为
37︒。

该区间存在与轨道平面平行的水平向左的匀强电场。

一质量为m 、带正电的小球在
轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求: (1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。

【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】
(1)由题意可知 :。

相关文档
最新文档