天体运动PPT课件
合集下载
地质大地球科学概论课件第2章 地球的天体运动
2 地球自转与时差和科里奥利现象
●科里奥利现象 沿南北向运动的流体,在北半球的运动方向总是
向右偏转,例如河流右岸冲刷较重,浮运木材向右岸 漂,在南半球则向左偏转。这种偏向力称为“科里奥 利力”。实际上并不存在这个力,而是流体因惯性保 持原来的运动方向,地面因地球自转改变了方向,所 以流体的方向发生偏转,看上去似乎流体受到一个力 的作用。应称为“科里奥利现象”。
2 地球自转与时差和科里奥利现象
●国际日期变更线 显然,必须规定一条东、西方的界线,这就是国
际日期变更线。人为规定在这条线的西侧最早见到日 出,东侧最晚见到日出,相差24小时。
从西向东跨越国际日期变更线要将日期退一日, 例如星期三变为星期二;反之要进一日。
今天在世界各地的人们的日常生活中,时间用各 自的地方时,日期用同一个日历。
ቤተ መጻሕፍቲ ባይዱ
2 地球自转与时差和科里奥利现象
●国际日期变更线 由于地球自转,世界各地进入新的一天的时间有
先有后。习惯上各地都以午夜0点作为新的一天的开 始。当北京为当地时间8点,伦敦为当地时间0点, 伦敦在北京西面,比北京晚见到日出,可以说伦敦时 间比北京时间晚8个小时。此时惠灵顿时间为12点, 惠灵顿在北京东面,可以说惠灵顿时间比北京时间早 4个小时。此时温哥华时间为16点,如果认为温哥华 在惠灵顿的东面,更早见到日出,那么温哥华时间比 北京时间早8个小时,是当天的下午;如果认为温哥 华在伦敦的西面,更晚见到日出,那么温哥华时间比 北京时间晚16个小时,是前一天的下午。
Outline Of Earth Science
地球科学概论
第二章 地球的天体运动
1 地理坐标系和大地测量 2 地球自转与时差和科里奥利现象 3 月球、潮汐和地球自转变慢 4 地球公转和米兰科维奇学说
天体运动三类问题ppt课件
已知该卫星从北纬15°的正上方,按图示方向第一次运
行到南纬15°的正上方时所用时间为1 h,则下列说法
正确的是( )
图1
A.该卫星与同步卫星的轨道半径之比为 1∶4
B.该卫星的运行速度一定大于第一宇宙速度
C.该卫星与同步卫星的加速度之比为3 16∶1 D.该卫星在轨道上运行的机械能一定小于同步卫星在轨道上运行的机械能
有以下“七个一定”的特点:
(1)轨道平面一定:轨道平面与 赤道平面 共面.
(2)周期一定:与地球自转周期 相同 ,即T= 24 h .
(3)角速度一定:与地球自转的角速度 相同 .
(4)高度一定:由G Mm =m
3 G4MπT2 2-R
R+h2 ≈3.6×107 m.
4π2 T2
(R+h)得地球同步卫星离地面的高度h=
n3 A. k2T
√ n3
B. k T
n2 C. k T
n D. kT
7.(多选)(2018·安徽省滁州市上学期期末)如图3为某双星系统A、B绕其连线上的
O点做匀速圆周运动的示意图,若A星的轨道半径大于B星的轨道半径,双星的
总质量M,双星间的距离为L,其运动周期为T,则
A.A的质量一定大于B的质量
例2 (多选)(2018·陕西省宝鸡市质检二)如图6所示,质量为m的人造地球卫星
与地心的距离为r时,引力势能可表示为Ep=-
GMm,其中G为引力常量,M为 r
地球质量,该卫星原来在半径为R1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭
圆轨道Ⅱ的变轨过程进入半径为R3的圆形轨道Ⅲ继续绕地球运动,其中P点为
例3 有a、b、c、d四颗卫星,a还未发射,在地球赤道上随地球一起转动,b
在地面附近近地轨道上正常运行,c是地球同步卫星,d是高空探测卫星,设地
高中物理教科版必修2课件:第三章 第1节 天体运动
一、地心说和日心说 1.地心说
托勒密 认为,地球位于宇宙的中心,是静止不动的,其他天 _______
体围绕地球转动。 2.日心说
波兰天文学家 哥白尼 在其著作《天球运行论》中提出了日 心说,他认为,地球和别的行星一样,围绕太阳运动,太阳固 定在这个体系的中心。
二、开普勒行星运动定律
内容 所有的行星围绕太阳运动的 开普勒第 轨道都是 椭圆 , 太阳处在所 一定律 有椭圆的一个焦点上 开普勒第 从太阳到行星的连线在相等 二定律 的时间内扫过相等的 面积 定律 公式或图示
r1 1 D. = r2 3 4 r3 r13 T12 r1 3 解析:由 2=k 知, 3= 2,则 = 4,与行星质量无关, T r2 T2 r2
故选 C。
答案:C
开普勒第三定律的应用
[典例] 自 1999 年以来,“神舟号”系列飞船陆续发射成功。 如图 315 所示,设某飞船沿半径为 R 的圆周绕地球运行,其周期 为 T,地球半径为 R0。如果飞船要返回地面,可在轨道 上某点 A 处将速率降到适当数值, 从而使飞船沿着以地 心为焦点的椭圆轨道运动, 椭圆与地球表面的 B 点相切 (如图所示)。求飞船由 A 点运动到 B 点所需的时间。
3.开普勒第三定律 (1)它揭示了周期与轨道半长轴之间的关系,椭圆轨道半长轴 越长的行星,其公转周期越大;反之,其公转周期越小,因此又 叫周期定律。 (2)该定律不仅适用于行星,也适用于其他天体。例如,绕某 一行星运动的不同卫星。 而天体的运动可近似看成匀速圆周运动, 开普勒第三定律既适用于做匀速圆周运动的天体,也适用于做椭 圆运动的天体。 r3 (3)表达式 2=k 中的常数 k, 只与中心天体的质量有关, 如研 T 究行星绕太阳运动时,常数 k 只与太阳的质量有关,研究卫星绕 地球运动时,常数 k 只与地球的质量有关。
天体运动课件ppt
未来的天体运动研究将更加注重数值模拟和理论分析,以更好地理解天体的运动规律和演化过程。
随着观测技术的不断进步,对天体的观测数据将更加精确和全面,有助于我们发现更多未知的天体现象。
天体运动研究将更加注重与其他学科的交叉融合,如物理学、化学、生物学等,以更全面地揭示宇宙的奥秘。
感谢观看
THANKS
02
天体运动的物理原理
总结词
描述任意两个质点之间相互吸引的力,与它们的质量成正比,与它们之间距离的平方成反比。
详细描述
万有引力定律是牛顿发现的自然规律,它指出任意两个质点之间都存在相互吸引的力,这个力的大小与它们的质量成正比,与它们之间距离的平方成反比。这个定律是解释天体运动规律的基础。
总结词
宇宙的演化
06
天体运动的未来探索
未来的探测任务将更加注重寻找生命的迹象,如氨基酸、核酸等有机分子,以及可能存在的微生物化石等。
通过对外太空生命的探测和研究,我们可以更深入地了解地球生命的起源和演化,以及宇宙中生命存在的可能性。
随着天体生学的发展,越来越多的天体被认为可能存在生命,如火星、木卫二和土卫六等。
银河系的结构
银河系是一个包含数千亿颗恒星的巨大星系,由恒星、星团、星云、星际物质和黑洞等组成。
银河系的自转
银河系是一个旋转的星系,具有一个中心旋转轴,整个星系围绕这个轴进行旋转。
星系的形成始于宇宙大爆炸后,气体和尘埃在引力的作用下聚集,形成了恒星、星团和星云等天体。
星系的形成
随着时间的推移,星系中的恒星、星团和星云等天体在不断地演化,形成了各种类型的星系,如旋涡星系、椭圆星系和不规则星系等。
描述行星绕太阳运动的规律,包括轨道定律、面积定律和周期定律。
要点一
新教科版高一物理必修二课件3.1 天体运动 (共25张PPT)
a
八大行星数据表
序
名称
公转周期
半径(亿千米)
1
水星
2
金星
3
地球
4
火星
5
木星
6 365.26天 686.98天
11.86年 29.46年 164.79年
在数值上,距离与周期可能存在什么关系呢? 通过数据怎么才能看出来呢?可能的猜想有很多:
0.5791 1.0820 1.4960 2.2794 7.7833 14.2698 45.0430
B、行星绕太阳运动时太阳位于行星轨道的中心处。
C、离太阳越近的行星运动周期越长。
D、所有行星的轨道的半长轴的三次方跟公转周期 的二次方的比值都相等。
2、地球绕太阳运动的轨道半长轴为 1.50×1011m,周期为365d;月球绕地球运 动的轨道半长轴为3.82×108m,周期为 27.3d,则对于绕太阳运动的行星,R3/T2的 值为( 2.5×1028)m3/s2;对于绕地球运动 的物体, R3/T2的值为( 7.5 ×1022 )m3/s2。
思考:
1.比值k与行星无关,你能猜想出它可能跟谁有关 吗? 2. 实际上,多数行星的轨道与圆十分接近,在中 学阶段的研究中能够按圆处理。开普勒三定律适用 于圆轨道时,应该怎样表述呢?
1.“k”一定与中心天体——太阳有关。实际上与 太阳的质量有关,推广一切类太阳系, K是一 个只与中心天体质量有关的物理量。 2.对于圆轨道:所有行星的轨道的半径的三次 方跟公转周期的二次方的比值都相等。
第一节 天体运动
太阳系
八大行星绕太阳运动的情景
学习目标:
1、了解“地心说”和“日心说”两种不同的观点
及发
展过程。
2、知道开普勒对行星运动的描述。
八大行星数据表
序
名称
公转周期
半径(亿千米)
1
水星
2
金星
3
地球
4
火星
5
木星
6 365.26天 686.98天
11.86年 29.46年 164.79年
在数值上,距离与周期可能存在什么关系呢? 通过数据怎么才能看出来呢?可能的猜想有很多:
0.5791 1.0820 1.4960 2.2794 7.7833 14.2698 45.0430
B、行星绕太阳运动时太阳位于行星轨道的中心处。
C、离太阳越近的行星运动周期越长。
D、所有行星的轨道的半长轴的三次方跟公转周期 的二次方的比值都相等。
2、地球绕太阳运动的轨道半长轴为 1.50×1011m,周期为365d;月球绕地球运 动的轨道半长轴为3.82×108m,周期为 27.3d,则对于绕太阳运动的行星,R3/T2的 值为( 2.5×1028)m3/s2;对于绕地球运动 的物体, R3/T2的值为( 7.5 ×1022 )m3/s2。
思考:
1.比值k与行星无关,你能猜想出它可能跟谁有关 吗? 2. 实际上,多数行星的轨道与圆十分接近,在中 学阶段的研究中能够按圆处理。开普勒三定律适用 于圆轨道时,应该怎样表述呢?
1.“k”一定与中心天体——太阳有关。实际上与 太阳的质量有关,推广一切类太阳系, K是一 个只与中心天体质量有关的物理量。 2.对于圆轨道:所有行星的轨道的半径的三次 方跟公转周期的二次方的比值都相等。
第一节 天体运动
太阳系
八大行星绕太阳运动的情景
学习目标:
1、了解“地心说”和“日心说”两种不同的观点
及发
展过程。
2、知道开普勒对行星运动的描述。
高考物理总复习课件天体运动
月球探测器
从20世纪50年代开始,人类发射了多个月球探 测器,实现了对月球的详细探测和着陆。
行星探测器
自20世纪60年代以来,人类已向多个行星发射 了探测器,如火星、金星、水星等,获取了大量 珍贵数据。
深空探测器
近年来,人类开始探索更遥远的宇宙空间,如发 射了探测太阳系边缘和系外行星的探测器。
射电望远镜在天文观测中作用
探测遥远天体
射电望远镜可观测到遥远星系和类星体发出的射电波,揭示宇宙早 期的信息。
研究星际物质
通过观测星际氢原子和羟基(OH)分子等射电源,可研究星际物 质的分布和性质。
搜寻地外文明信号
射电望远镜可用于搜寻地外文明发出的无线电信号,探索宇宙中是否 存在其他生命形式。
未来天文观测技术展望
巨型光学/红外望远镜
天体运动定义
天体在宇宙空间中所做的各种机 械运动。
天体运动分类
根据天体的不同,可分为恒星运 动、行星运动、卫星运动等。
牛顿万有引力定律
万有引力定律内容
任何两个质点都存在通过其连心线方向上的相互吸引的力。该引力大小与它们 质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质 种类无关。
射电望远镜
观测射电波段的望远镜,可穿透尘埃 和气体,但分辨率相对较低。
红外望远镜
观测红外波段的望远镜,可探测被尘 埃遮挡的天体,但受大气中水分和二 氧化碳吸收影响较大。
X射线和伽马射线望远镜
观测高能光子,可研究极端天体现象 ,如黑洞和中子星,但观测设备复杂 且昂贵。
空间探测器发展历程回顾
1 2 3
04
海洋地形
海洋地形和海岸线形 状对潮汐现象的幅度 和分布也有影响。
引力波探测技术进展
高中教育物理必修第二册《3.1 天体运动》教学课件
道是不同的.
(2)太阳不在椭圆的中心,而是在其中的一个焦点上,太阳的位置是
所有行星轨道的一个共同焦点.
(3)行星与太阳间的距离是不断变化的.
2.对开普勒第二定律的理解——确定行星运动的快慢
(1)行星离太阳越近时速度越大,在近日点速度最大;行星靠近太阳
时速度增大.
(2)行星离太阳越远时速度越小,在远日点速度最小;行星远离太阳
(1)行星的轨道是什么样的?
是椭圆.
(2)太阳的位置有什么特点?
在所有行星运动椭圆轨道的一个共同焦点上.
(3)行星在轨道上不同位置的速度大小有什么特点?
距离太阳越近,速率越大,反之越小.
(4)不同的行星绕太阳运行的周期是否相同?
不同.
归纳总结
1.对开普勒第一定律的理解——确定行星运动的轨道
(1)行星绕太阳运动的轨道严格来说不是圆而是椭圆,不同行星的轨
答案:BC
解析:根据开普勒第一定律的内容可以判定:行星绕太阳运动的轨道
是椭圆,有时远离太阳,有时靠近太阳,所以它离太阳的距离是变化的,
A错误,B正确;行星围绕着太阳运动,运动的轨道都是椭圆,所以某
个行星绕太阳运动的轨道一定是在某一固定的平面内,C正确,D错
误.
素养训练2 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒
时速度减小.
(3)“行星与太阳的连线在相等的时间内扫过的面积相等”是对同一
颗行星来说的,不同的行星之间则无法比较.
3.对开普勒第三定律的理解——确定行星运动的周期
r3
(1)公式: 2 =k,k是一个对所有行星都相同的物理量,由中心天体
T
太阳决定,与行星无关.
(2)椭圆轨道半长轴越长的行星,其公转周期越长;反之,则公转周
(2)太阳不在椭圆的中心,而是在其中的一个焦点上,太阳的位置是
所有行星轨道的一个共同焦点.
(3)行星与太阳间的距离是不断变化的.
2.对开普勒第二定律的理解——确定行星运动的快慢
(1)行星离太阳越近时速度越大,在近日点速度最大;行星靠近太阳
时速度增大.
(2)行星离太阳越远时速度越小,在远日点速度最小;行星远离太阳
(1)行星的轨道是什么样的?
是椭圆.
(2)太阳的位置有什么特点?
在所有行星运动椭圆轨道的一个共同焦点上.
(3)行星在轨道上不同位置的速度大小有什么特点?
距离太阳越近,速率越大,反之越小.
(4)不同的行星绕太阳运行的周期是否相同?
不同.
归纳总结
1.对开普勒第一定律的理解——确定行星运动的轨道
(1)行星绕太阳运动的轨道严格来说不是圆而是椭圆,不同行星的轨
答案:BC
解析:根据开普勒第一定律的内容可以判定:行星绕太阳运动的轨道
是椭圆,有时远离太阳,有时靠近太阳,所以它离太阳的距离是变化的,
A错误,B正确;行星围绕着太阳运动,运动的轨道都是椭圆,所以某
个行星绕太阳运动的轨道一定是在某一固定的平面内,C正确,D错
误.
素养训练2 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒
时速度减小.
(3)“行星与太阳的连线在相等的时间内扫过的面积相等”是对同一
颗行星来说的,不同的行星之间则无法比较.
3.对开普勒第三定律的理解——确定行星运动的周期
r3
(1)公式: 2 =k,k是一个对所有行星都相同的物理量,由中心天体
T
太阳决定,与行星无关.
(2)椭圆轨道半长轴越长的行星,其公转周期越长;反之,则公转周
高考物理一轮:5.1《万及引力定律及天体运动》ppt课件
高中化学课件
考点突破
考点一 对万有引力定律的理解及基本应用
1.对万有引力的进一步理解 (1)当两物体为均质球体或均质球层时,可以认为均质球体或均质球层的质 量集中于球心,r表示两球心间的距离,引力的方向沿两球心的连线。 (2)当两物体相隔甚远时,两物体可当做质点,则公式中r为两质点间的距离。 (3)当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出 两个物体上每个质点与另一个物体上所有质点的万有引力,然后求合力。
课标版 物理
第1讲 万有引力定律及天体运动
高中化学课件
教材研读
一、开普勒行星运动定律
定律
开普勒 第一定 律(轨道 定律)
开普勒 第二定 律(面积 定律)
开普勒 第三定 律(周期 定律)
内容
图示
所有行星绕太阳运动的轨道都是 ① 椭圆 ,太阳处于椭圆的一个 焦点上
对任意一个行星来说,它与太阳的 连线在③ 相等的时间 内扫过相等 的面积
4.两个物体之间的引力是一对作用力和反作用力,总是大小相等、方向相反。 高中化学课件
自测2 对于万有引力定律公式F=Gm 1m2 ,下列说法正确的是 ( )
r2
A.公式中G为引力常量,是人为规定的 B.r趋近于零时,万有引力趋近于无穷大 C.m1、m2之间的万有引力总是大小相等,与m1、m2的质量是否相等无关 D.m1、m2之间的万有引力总是大小相等、方向相反,是一对平衡力 答案 C G是比例系数,叫做引力常量,G值是通过实验测定的,不是人为
答案 D 据太阳对行星的引力提供行星运动所需的向心力得G Mr2m =m
vr2 =mω2r=m( 2T)2r=ma向,解得v= GrM ,ω= GrM3 ,T=2π GrM3,a向= GrM,2由题意
考点突破
考点一 对万有引力定律的理解及基本应用
1.对万有引力的进一步理解 (1)当两物体为均质球体或均质球层时,可以认为均质球体或均质球层的质 量集中于球心,r表示两球心间的距离,引力的方向沿两球心的连线。 (2)当两物体相隔甚远时,两物体可当做质点,则公式中r为两质点间的距离。 (3)当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出 两个物体上每个质点与另一个物体上所有质点的万有引力,然后求合力。
课标版 物理
第1讲 万有引力定律及天体运动
高中化学课件
教材研读
一、开普勒行星运动定律
定律
开普勒 第一定 律(轨道 定律)
开普勒 第二定 律(面积 定律)
开普勒 第三定 律(周期 定律)
内容
图示
所有行星绕太阳运动的轨道都是 ① 椭圆 ,太阳处于椭圆的一个 焦点上
对任意一个行星来说,它与太阳的 连线在③ 相等的时间 内扫过相等 的面积
4.两个物体之间的引力是一对作用力和反作用力,总是大小相等、方向相反。 高中化学课件
自测2 对于万有引力定律公式F=Gm 1m2 ,下列说法正确的是 ( )
r2
A.公式中G为引力常量,是人为规定的 B.r趋近于零时,万有引力趋近于无穷大 C.m1、m2之间的万有引力总是大小相等,与m1、m2的质量是否相等无关 D.m1、m2之间的万有引力总是大小相等、方向相反,是一对平衡力 答案 C G是比例系数,叫做引力常量,G值是通过实验测定的,不是人为
答案 D 据太阳对行星的引力提供行星运动所需的向心力得G Mr2m =m
vr2 =mω2r=m( 2T)2r=ma向,解得v= GrM ,ω= GrM3 ,T=2π GrM3,a向= GrM,2由题意
教科版高中物理必修二3.1《天体运动》ppt课件
【变式2】 哈雷彗星绕太阳运动的轨道是比较扁的椭圆,下列说法 中不正确的是 A.彗星在近日点的速率大于在远日点的速率 B.彗星在近日点的角速度大于在远日点的角速度 C.彗星运转周期为75年,则它的轨道的半长轴是地球公 转轨道半长轴的5 45倍 D.若彗星周期为75年,则它的半长轴是地球公转半径的 75倍 3 ( ).
答案
C
借题发挥 此题作了近似处理,因为在椭圆 上任取一小段,每一小段都可看成一个独立 的圆周上的一段圆弧,所不同的是曲率可能 不同而已.
【变式1】 据报道,美国计划于 2021年开始每年送15 000 名游客上太空旅 游.如图 3 - 1 - 1 所 示,当航天器围绕地 球做椭圆运行时,近 地 点 A 的 速 率 ________( 填 “ 大 于”“小于”或“等 于”)远地点B的速 率.
1 天体运动
1 .能简要地说出日心说、地心说的两种不同 观点. 2.知道开普勒对行星运动描述的三定律. 3 .体会科学家在宣传和追求科学真理时所表 现的坚定信念和献身精神
一、古代关于天体运动的两种学说 内容 地球 是宇宙的中心, 地 而且是静止不动的, 地球 心 太阳、月亮以及其他 说 太阳 行星都绕 运动 局限性 都把天体的运 动看得很神圣, 认为天体的运 匀速圆周 动必然是最完 美、最和谐的 太阳 是宇宙的中心, 运 日 且是静止不动的,地 动,而和丹麦 心 球和其他行星都绕 天文学家第谷 说 运动 的观测数据不
提示 由开普勒第二定律可知,由于在相等 的时间内,行星与太阳的连线扫过相等的面 积,显然相距较近时相等时间内经过的弧长 必须较长,因此运动速率较大.
三、行星运动的近似处理 圆 圆心 行星绕太阳运动的轨道十分接近 ,太 角速度 阳处在 . 线速度 匀速圆周 对某一行星来说,它绕太阳做圆周运动的 轨道半径 ) 不 变 , 即 行 星 做 (或 运动. 二次方 所有行星 的三次方跟它的公转轨 道周期的 的比值都相等.
高中物理【习题课 天体运动】教学优秀课件
2 2
向心力,即 F< ,所以 v2>v1。
1
卫星在椭圆轨道 2 上运行到远地点 P 时,根据机械能守恒可知此时的速率
v2'<v2,在 P 点卫星沿椭圆轨道 2 运行与沿着圆轨道 3 运行时所受的地球引力
2 '2
相等,但是卫星在椭圆轨道 2 上做近心运动,说明 F'>m ,卫星在圆轨道 3 上
化)
C.在b轨道上,P点速度比R点速度大
D.嫦娥一号在a、b轨道上正常运行时,通过同一点P时,加速度相等
答案 CD
解析 卫星在轨道a上的P点进入轨道b,需加速,使万有引力小于需要的向心
力而做离心运动,选项A错误;在Q点由d轨道转移到c轨道时,必须减速,使万
有引力大于需要的向心力而做近心运动,选项B错误;根据开普勒第二定律
解析 设地球的质量为 m 地,同步卫星的质量为 m1,在地球表面随地球做匀速
圆周运动的物体的质量为 m2,根据向心加速度和角速度的关系有
1
a1=1 r,a2=2 R,又 ω1=ω2,故 = ,选项 A 正确,B 错误;由万有引力定律和
2
2
2
1
地
牛顿第二定律得 G
正确。
2
2
线上的某一固定点做匀速圆周运动,这种结构叫作“双星”。
2.双星模型的特点
(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某一点。
1 2
(2)两星的向心力大小相等,由它们间的万有引力提供。对 m1:G 2 =m1ω2r1;
1 2
对 m2:G 2 =m2ω2r2。
(3)两星的运动周期、角速度都相同。
2
4π2 2 1
向心力,即 F< ,所以 v2>v1。
1
卫星在椭圆轨道 2 上运行到远地点 P 时,根据机械能守恒可知此时的速率
v2'<v2,在 P 点卫星沿椭圆轨道 2 运行与沿着圆轨道 3 运行时所受的地球引力
2 '2
相等,但是卫星在椭圆轨道 2 上做近心运动,说明 F'>m ,卫星在圆轨道 3 上
化)
C.在b轨道上,P点速度比R点速度大
D.嫦娥一号在a、b轨道上正常运行时,通过同一点P时,加速度相等
答案 CD
解析 卫星在轨道a上的P点进入轨道b,需加速,使万有引力小于需要的向心
力而做离心运动,选项A错误;在Q点由d轨道转移到c轨道时,必须减速,使万
有引力大于需要的向心力而做近心运动,选项B错误;根据开普勒第二定律
解析 设地球的质量为 m 地,同步卫星的质量为 m1,在地球表面随地球做匀速
圆周运动的物体的质量为 m2,根据向心加速度和角速度的关系有
1
a1=1 r,a2=2 R,又 ω1=ω2,故 = ,选项 A 正确,B 错误;由万有引力定律和
2
2
2
1
地
牛顿第二定律得 G
正确。
2
2
线上的某一固定点做匀速圆周运动,这种结构叫作“双星”。
2.双星模型的特点
(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某一点。
1 2
(2)两星的向心力大小相等,由它们间的万有引力提供。对 m1:G 2 =m1ω2r1;
1 2
对 m2:G 2 =m2ω2r2。
(3)两星的运动周期、角速度都相同。
2
4π2 2 1
高中物理精品课件:专题10 天体运动(A)
日点,M、N两点为轨道短轴的两个端点,运行的周期为T0,若只考虑海王 星和太阳之间的相互作用,则海王星在从P点经过M、Q两点到N点的运动过
程中
A.从P点到M点所用的时间等于T0 4
B.从Q点到N点阶段,机械能逐渐变大
√C.从P点到Q点阶段,速率逐渐变小
√D.从M点到N点阶段,万有引力对它先做负功后做正功
命题点一 开普勒三定律的理解和应用
1.行星绕太阳的运动通常按圆轨道处理.
2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.
3.开普勒第三定律
a3 T2
=k中,k值只与中心天体的质量有关,不同的中心天体k
值不同.该定律只能用在绕同一中心天体运行的星体之间.
例1 (多选)如图1,海王星绕太阳沿椭圆轨道运动,P点为近日点,Q点为远
A.甲是卫星1
B.乙星动能较小
√C.甲的机械能较大
D.无法比较两个卫星受到的向心力
图6
解析 答案
拓展点 地球同步卫星 同步卫星的六个“一定”
例5 如图7所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗
卫星均做圆周运动,a是地球同步卫星,则
√A.卫星a的角速度小于卫星c的角速度
B.卫星a的加速度大于卫星b的加速度
图1
解析 答案
变式1 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定 律可知 A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等
√C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
解析 答案
球质量的25倍,则它表面的重力加速度是地球表面重力加速度的
高中物理课件万有引力定律与天体运动
栏 目 开 关
相同,它们做匀速圆周运动的向心力由它们之间的万有引力提
供,所以两天体与它们的圆心总是在一条直线上.
设两者的圆心为 O 点,轨道半径分别为 R1 和 R2,如图所示.对两天体, 由万有引力定律可分别列出
GmL1m2 2=m1ω2R1
①
GmL1m2 2=m2ω2R2
②
所以R1=m2,所以v1=R1ω=R1=m2,
发现的第2 752号小行星命名为吴健雄星,该小行
星的半径为16 km.若将此小行星和地球均看成质量
本 分布均匀的球体,小行星密度与地球相同.已知地
课 栏 目
球半径R=6 400 km,地球表面重力加速度为g.这
个小行星表面的重力加速度为
B
开 关
(
)
A.400g
1 B.400g
C.20g
1 D.20g
关 3.适用条件
公式适用于_质__点__间的相互作用.当两物体间的距离远大于
物体本身的大小时,物体可视为质点;均匀的球体可视为
质点,r是_两__球__心__间的距离;对一个均匀球体与球外一个质
点的万有引力的求解也适用,其中r为球心到___质__点间的距
离.
课堂探究·突破考点
第5课时
考点一 天体产生的重力加速度问题
【例1 】某星球可视为球体,其自转周期为T,在它的两极
处,用弹簧秤测得某物体重为P,在它的赤道上,用弹簧秤
本 测得同一物体重为0.9P,则星球的平均密度是多少?
课 栏 目
在两极
P
GMm R2
开 关
在赤道上
P
0.9P
mR
4 2
T2
密度
M
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天体运动
_________________________________________
PLANETARY MOTION
主讲人
.
1
神 州 五 号 载 人 飞 船 发 射 运 行
.
2
.
天鹰座3
■地心说(Geocentric Universe)
地心说是长期盛行于古代欧洲的宇宙学说。它最初由古 希腊学者欧多克斯在公元前三世纪提出,后来经托勒密 (90-168)进一步发展而逐渐建立和完善起来。
解: 已知: T木 =12T地
由开普勒第三定律:
R3 R3 木 =地
T木2
T 地2
.
R
木
= 3144
R
地
16
课堂小结
一、地心说与日心说 地球是中心→太阳是中心→宇宙无限 (科学精神推动了认识发展)
二、行星运动定律
1、轨道定律:椭圆 2、面积定律 3、周期定律: R 3/ T2 =k
(K是一个只与中心天体质量有关的物理量)
.
4
中国古代:
盖天说( “天圆地方” )
.
5
浑天说(东汉)
浑天仪
张衡
认为天是一个圆球,地则位于这
个圆球的中间。天在不停地旋转,日
月星辰随天运转,转到地平线之下就
看不见了,这种见解比盖天说更合理
地解释了天体的出没。
.
6
■日心说(Solarcentric Universe)
十六世纪波兰天文学家哥白尼(1473-1543)经过近40年 的观测.核算与思考,提出了全新的理论“日心说”,临终 前发表了《天球运动论》论这本巨著。
哥.白尼的“日心说”体系
7
.
8
若怎是么匀回速事圆 周呢运…动………
开普勒(德国)
第 谷(丹麦)
↓
↓
四年多的刻苦计算 → 8分的误差 ←二十年的精心观测
↓
否定19 种假设
↓
行星轨道为椭圆
.
9
开普勒第一定律(轨道定律)
所有的行星围绕太阳运动的轨道是椭圆, 太阳处在所在椭圆的一个焦点上。
.
10
短轴 焦点
.
17
.
18
SAB
B
A
.
14
开普勒第三定律 (周期定律)
所有行星的轨道的半长轴的三次方跟公转
周期的二次方的比值都相等。 即:R3 / T 2 = k
K是一个只决定于被绕天体(中心天体)质量的物理量
R
.
太阳系
15
例: 木星绕太阳转动的周期为地球绕太 阳转动周期的12倍,则木星绕太阳 运行的轨道半长轴约为地球绕太阳 运行的轨道半长轴的 倍?
长轴
太阳系
.
11
.12ຫໍສະໝຸດ 开普勒第二定律对于每一个行星而言,太阳和行星的连线在 相等的时间内扫过相等的面积。
.
13
开普勒第二定律 (面积定律)
对于每一个行星而言,太阳和行星的连线在 相等的时间内扫过相等的面积。
若tAB= tCD = tEK ,则sAB= sCD = sEK
E SEK K
D
SCD
C
_________________________________________
PLANETARY MOTION
主讲人
.
1
神 州 五 号 载 人 飞 船 发 射 运 行
.
2
.
天鹰座3
■地心说(Geocentric Universe)
地心说是长期盛行于古代欧洲的宇宙学说。它最初由古 希腊学者欧多克斯在公元前三世纪提出,后来经托勒密 (90-168)进一步发展而逐渐建立和完善起来。
解: 已知: T木 =12T地
由开普勒第三定律:
R3 R3 木 =地
T木2
T 地2
.
R
木
= 3144
R
地
16
课堂小结
一、地心说与日心说 地球是中心→太阳是中心→宇宙无限 (科学精神推动了认识发展)
二、行星运动定律
1、轨道定律:椭圆 2、面积定律 3、周期定律: R 3/ T2 =k
(K是一个只与中心天体质量有关的物理量)
.
4
中国古代:
盖天说( “天圆地方” )
.
5
浑天说(东汉)
浑天仪
张衡
认为天是一个圆球,地则位于这
个圆球的中间。天在不停地旋转,日
月星辰随天运转,转到地平线之下就
看不见了,这种见解比盖天说更合理
地解释了天体的出没。
.
6
■日心说(Solarcentric Universe)
十六世纪波兰天文学家哥白尼(1473-1543)经过近40年 的观测.核算与思考,提出了全新的理论“日心说”,临终 前发表了《天球运动论》论这本巨著。
哥.白尼的“日心说”体系
7
.
8
若怎是么匀回速事圆 周呢运…动………
开普勒(德国)
第 谷(丹麦)
↓
↓
四年多的刻苦计算 → 8分的误差 ←二十年的精心观测
↓
否定19 种假设
↓
行星轨道为椭圆
.
9
开普勒第一定律(轨道定律)
所有的行星围绕太阳运动的轨道是椭圆, 太阳处在所在椭圆的一个焦点上。
.
10
短轴 焦点
.
17
.
18
SAB
B
A
.
14
开普勒第三定律 (周期定律)
所有行星的轨道的半长轴的三次方跟公转
周期的二次方的比值都相等。 即:R3 / T 2 = k
K是一个只决定于被绕天体(中心天体)质量的物理量
R
.
太阳系
15
例: 木星绕太阳转动的周期为地球绕太 阳转动周期的12倍,则木星绕太阳 运行的轨道半长轴约为地球绕太阳 运行的轨道半长轴的 倍?
长轴
太阳系
.
11
.12ຫໍສະໝຸດ 开普勒第二定律对于每一个行星而言,太阳和行星的连线在 相等的时间内扫过相等的面积。
.
13
开普勒第二定律 (面积定律)
对于每一个行星而言,太阳和行星的连线在 相等的时间内扫过相等的面积。
若tAB= tCD = tEK ,则sAB= sCD = sEK
E SEK K
D
SCD
C