磁悬浮列车技术 论文
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、磁悬浮技术的应用
磁悬浮技术主要应用在运载技术上,它不仅能够用于地面运载,也可以用于海上运载,还能用于垂直发射,如美国就在实现用磁悬浮技术发射火箭。磁悬浮在直线驱动、低温超导、电力电子、计算机控制与信息技术、医疗等多个领域都有极重要的价值。概括地说,它既是一种能带动众多高新技术发展的基础科学,又是一种具有极广泛前景的应用技术。
【关键词】:悬浮、推进、导向、创新
【正文】
一、工作原理
磁悬浮列车利用电磁体“同名磁极相互排斥,异名磁极相互吸引”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三分所采用的技术进行介绍。
推进系统
磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就像是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就像同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就像电机的“转子”一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。
四、创新要点
传统列车是利用车轮与钢轨之间的粘着力使列车前进的,它的粘着系数随着列车的速度增加而减少,走行阻力随列车速度的增加而增加,当车速增至粘着系数曲线和走形阻力曲线的交点时就达到了极限。磁悬浮列车采用了无接触的电磁悬浮、导向和驱动系统,减少了噪音、振动、车轮和钢轨的磨损,故能达到更加高更加稳定的运行速度。磁悬浮列车的悬浮系统,驱动系统和导向系统都是新型技术。
五、创新技法
磁悬浮列车的发明使用了变元发明法、形态分析法和信息交合法等创新技法。
【结论】磁悬浮列车的出现,是发明者们充分的利用创新技法,在原有的传统的列车的基础上通过创新改变产生的新型的运载工具。磁悬浮列车通过悬浮技术,大大的增加了列车的行驶速度,拥有很好的前景,但是在现在的现实情况看来,想大规模的使用还有一定的难度。经过不断事件与实验,相信不久之后在科学家的努力之下,当磁悬浮列车的成本降低到能够大规模使用的情况下,磁悬浮列车肯定会走进我们的生活。
二、磁悬浮列车的优势及存在的问题
作为目前最快速的地面交通工具,磁悬浮列车技术的确有着其他地面交通技术无法比拟的优势:
第一,它克服了传统轮轨铁路提高速度的主要障碍,发展前景广阔。第二,磁悬浮列车速度高,常导磁悬浮可达到400~500km/h,超导磁悬浮可达到500~600km/h。第三,磁悬浮列车能耗低,据日本研究与实际试验的结果,在同为500km时速下,磁悬浮列车每作为公立的能耗仅为飞机的1/3。据德国试验,当TR磁悬浮列车时速道道400km时,其每座位公里能耗与时速300km的高速轮轨列车持平;而当磁悬浮列车时速也降到300km时,它的每座位公里能耗可比轮轨铁路低33%。
磁悬浮列车技术
苏州科技学院天平学院陈耀1330117102
【摘要】:磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。不同于传统列车利用车轮与钢轨之间的粘着力使列车前进。磁悬浮列车运行时与轨道保持10mm或者100mm的间隙,从根本上克服了传统列车轮轨黏着限制、机械噪声和磨损等问题,是一种新型的运载工具,其时速远远超过传动列车。
导向系统
导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。
悬浮系统
目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互排斥产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 (EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。
超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就像冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。
【致谢】感谢朱树先老师的教导,老师在前面辛苦的讲课,我们却在下面舒服的坐着。师的耐心教导才让我们对产品技术创新有了一定的了解,谢谢老师,老师辛苦了。
【参考文献】杨华健 著 《产品技术创新》 中南大学出版社
尽管磁悬浮列车技术上有上述的许多优点,但仍然存在一些不足:
1、由于磁悬浮系统是以电磁力完成悬浮、导向和驱动功能的,断电后磁悬浮的安全保障措施,尤其是列车停电后的制动问题仍然是要解决的重要问题。其高速稳定性和可靠性还需要很长时间的运行考验。
2、常导磁悬浮技术的悬浮高度较低,因此对线路的平整Hale Waihona Puke Baidu、路基下沉量及道岔结构方面的要求较超导技术更高。
3、超导磁悬浮技术由于涡流效应悬浮能耗较常导技术更大,对冷却系统的要求高,强磁场对人体与环境都有影响。
此外还有工程上的问题。首先,磁悬浮铁路的造价十分昂贵,每公里造价约需3~4亿人民币。其次,磁悬浮铁路无法利用已有的铁路,必须全部重新建设。由于磁悬浮列车与常规铁路在原理、技术等方面完全不同,因此难以在原有设备的基础上进行利用和常规改造。
磁悬浮技术主要应用在运载技术上,它不仅能够用于地面运载,也可以用于海上运载,还能用于垂直发射,如美国就在实现用磁悬浮技术发射火箭。磁悬浮在直线驱动、低温超导、电力电子、计算机控制与信息技术、医疗等多个领域都有极重要的价值。概括地说,它既是一种能带动众多高新技术发展的基础科学,又是一种具有极广泛前景的应用技术。
【关键词】:悬浮、推进、导向、创新
【正文】
一、工作原理
磁悬浮列车利用电磁体“同名磁极相互排斥,异名磁极相互吸引”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三分所采用的技术进行介绍。
推进系统
磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就像是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就像同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就像电机的“转子”一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。
四、创新要点
传统列车是利用车轮与钢轨之间的粘着力使列车前进的,它的粘着系数随着列车的速度增加而减少,走行阻力随列车速度的增加而增加,当车速增至粘着系数曲线和走形阻力曲线的交点时就达到了极限。磁悬浮列车采用了无接触的电磁悬浮、导向和驱动系统,减少了噪音、振动、车轮和钢轨的磨损,故能达到更加高更加稳定的运行速度。磁悬浮列车的悬浮系统,驱动系统和导向系统都是新型技术。
五、创新技法
磁悬浮列车的发明使用了变元发明法、形态分析法和信息交合法等创新技法。
【结论】磁悬浮列车的出现,是发明者们充分的利用创新技法,在原有的传统的列车的基础上通过创新改变产生的新型的运载工具。磁悬浮列车通过悬浮技术,大大的增加了列车的行驶速度,拥有很好的前景,但是在现在的现实情况看来,想大规模的使用还有一定的难度。经过不断事件与实验,相信不久之后在科学家的努力之下,当磁悬浮列车的成本降低到能够大规模使用的情况下,磁悬浮列车肯定会走进我们的生活。
二、磁悬浮列车的优势及存在的问题
作为目前最快速的地面交通工具,磁悬浮列车技术的确有着其他地面交通技术无法比拟的优势:
第一,它克服了传统轮轨铁路提高速度的主要障碍,发展前景广阔。第二,磁悬浮列车速度高,常导磁悬浮可达到400~500km/h,超导磁悬浮可达到500~600km/h。第三,磁悬浮列车能耗低,据日本研究与实际试验的结果,在同为500km时速下,磁悬浮列车每作为公立的能耗仅为飞机的1/3。据德国试验,当TR磁悬浮列车时速道道400km时,其每座位公里能耗与时速300km的高速轮轨列车持平;而当磁悬浮列车时速也降到300km时,它的每座位公里能耗可比轮轨铁路低33%。
磁悬浮列车技术
苏州科技学院天平学院陈耀1330117102
【摘要】:磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。不同于传统列车利用车轮与钢轨之间的粘着力使列车前进。磁悬浮列车运行时与轨道保持10mm或者100mm的间隙,从根本上克服了传统列车轮轨黏着限制、机械噪声和磨损等问题,是一种新型的运载工具,其时速远远超过传动列车。
导向系统
导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。
悬浮系统
目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互排斥产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 (EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。
超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就像冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。
【致谢】感谢朱树先老师的教导,老师在前面辛苦的讲课,我们却在下面舒服的坐着。师的耐心教导才让我们对产品技术创新有了一定的了解,谢谢老师,老师辛苦了。
【参考文献】杨华健 著 《产品技术创新》 中南大学出版社
尽管磁悬浮列车技术上有上述的许多优点,但仍然存在一些不足:
1、由于磁悬浮系统是以电磁力完成悬浮、导向和驱动功能的,断电后磁悬浮的安全保障措施,尤其是列车停电后的制动问题仍然是要解决的重要问题。其高速稳定性和可靠性还需要很长时间的运行考验。
2、常导磁悬浮技术的悬浮高度较低,因此对线路的平整Hale Waihona Puke Baidu、路基下沉量及道岔结构方面的要求较超导技术更高。
3、超导磁悬浮技术由于涡流效应悬浮能耗较常导技术更大,对冷却系统的要求高,强磁场对人体与环境都有影响。
此外还有工程上的问题。首先,磁悬浮铁路的造价十分昂贵,每公里造价约需3~4亿人民币。其次,磁悬浮铁路无法利用已有的铁路,必须全部重新建设。由于磁悬浮列车与常规铁路在原理、技术等方面完全不同,因此难以在原有设备的基础上进行利用和常规改造。