新人教版八年级下册数学课堂练习题下
新课程课堂数学人教版八年级下册同步练习册参考答案
新课程课堂数学人教版八年级下册同步练习册参考答案二、1、,三、1、 2、(1)(2) 3、§16.1.2(一)一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§16.1.2(二)一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§16.2.1(一)一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§16.2.2(一)一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§16.2.2(二)一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§16.2.2(三)一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§16.2.3(一)一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§16.2.3(二)一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、一、1、C 2、A 3、D二、1、9 2、3 3、x =-14三、1、 2、 3、§16.3(二)一、1、A 2、D 3、-12、二、1、x =5 2、 3、三、1、 2、无解 3、无解§16.3(三)一、1、A 2、B 3、B二、1、 2、三、1、无解 2、§16.4(一)一、1、D 2、B 3、C二、1、 2、; 3、3三、1、120千米/时2、先遣队6千米/时,大队5千米/时§16.4(二)一、1、B 2、B二、1、 2、三、1、15人 2、9天一、1.C 2. D 3.D二.1. 2 2. 如: 3.三、1.(1)略(2)略§17.1.2(二)一、1.B 2.C 3.B二、1.< 2.(2,4),(-2,-4) 3. -4三.1.-3, 2. (1)y=-,(2)-6§17.2(一)一、1.D 2.C 3.B二、1.二、四 2.略 3.(2,3)三、1.,100 2.解:(1)把A(m,2)代入y=得2=∴m=3∴y=,把(2,n)代入y=得n=3(2)由(1)知y=mx-n为y=3x-3与x轴交点的纵坐标为0,由0=3x-3得x=1∴C(1,0),C关于y轴的对称点Cˊ的坐标为(-1,0).§17.2(二)一、1.D2.B 3.B二、 1. 2 2. -2(提示:由双曲线经过A、B得,解得=2,由经过A、B得解得,-2)3. 0.5三、1、(1)设A、B两地之间的路程为千米,则=75×4=300(千米)∴与之间的函数关系式是.(2)当=3时,则有3=,∴返回时车速至少是100千米/时.2解:(1)∵点在反比例函数的图象上,∴∴反比例函数的表达式为.∵点也在反比例函数的图象上,∴,即.把点,点代入一次函数中,得解得一次函数的表达式为.(2)在中,当时,得.直线与轴的交点为.∵线段OC将分成和,一、1. B2.C 3.A二、1.勾股定理, 2.(1)5;(2) 3.76三、150§18.1(二)一、1.C 2.A3.C二、1. 2.25三、1. 米 2.953米§18.1(三)一、1.C 2.C二、1.2. 3.8三、§18.2(一)一、1.B2. A二、1.同位角相等,两条直线平行 2. 24三、1.(1)是;(2)是;(3)是;(4)不是2.(1)两条直线平行,内错角相等;成立;(2)如果两个有理数的绝对值相等,那么它们也相等;不成立;(3)如果两个角的补角相等,那么这两个角也相等;成立;(4)到线段两端点的距离相等的点在这条线段的垂直平分线上;成立.§18.2(二)一、1.B2.A二、1.3,4,5 2.①②③三、符合要求一、1.B 2.D 3.D二、1.分别平行,□ABCD 2、53、(1)∠A=60°,∠B=120°,∠D=120°;(2)∠A=110°,∠B=70°;(3)∠D=135°.三、1.解:∵四边形ABCD是平行四边形∴AD//BC,AB//CD∴∠A+∠B=180°,∠A+∠D=180°,∠C+∠D=180°∵∠A=120°∴∠B=60°,∠D=60°∴∠C=120°2、证:∵四边形ABCD是平行四边形∴ABCD∴∠ABD=∠CDB∵AE⊥BD,CF⊥BD ∴∠AEB =∠CFD=90°在△ABE和△CFD中∴△ABE≌△CDF(AAS) ∴AE=CF§19.1(二)一、1、A ;2、 A ;3、 A ;二、1.互相平分、相等、互补;2.45 cm ;3.16;三、1.证:∵四边形ABCD是平行四边形∴AD//BC∴∠DAE+∠AEC=180°∵AE//CF ∴∠DAE+∠AFC = 180°∴∠AFC =∠AEC2、证:∵四边形ABCD是平行四边形∴AD//BC,OD=OB ∴∠E=∠F在△ODE和△OBF中∴△ODE≌△OBF ∴OE=OF§19.1.2(一)一、1、B 2、D 3、D 4 、B二、1. 8, 4 2. 4,5三、1.证:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∵BE=DF∴OE=OF∴四边形AECF是平行四边形2、证:∵四边形ABCD是平行四边形∴ABCD ,ADBC ∴∠FAB=∠ADC=∠DCE在△ABF和△CDE中∴△ABF≌△CDE∴DE=BF,CE=AF ∴BE=DF又∵AD∥BC 即FD∥BE∴四边形FBED是平行四边形。
人教版八年级数学下册专题训练(含参考答案与解析)
人教版八年级数学下册专题训练(附答案与解析)说明:本套训练习题包含12个专题:类比归纳专题:二次根式求值的常用方法考点综合专题:一次函数与几何图形的综合问题解题技巧专题:利用一次函数解决实际问题解题技巧专题:正方形中特殊的证明(计算)方法思想方法专题:矩形中的折叠问题核心素养专题:四边形中的探究与创新类比归纳专题:有关中点的证明与计算解题技巧专题:特殊平行四边形中的解题方法思想方法专题:勾股定理中的思想方法解题技巧专题:勾股定理与面积问题难点探究专题:特殊四边形中的综合性问题解题技巧专题:函数图象信息题考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B.【易错7】(1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.3.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P(x ,y)是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.◆类型二 一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为________.第4题图 第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB =90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y=0,则-2x+3=0,解得x=32;令x=0,则y=3,∴点A的坐标为⎝ ⎛⎭⎪⎫32,0,点B 的坐标为(0,3). (2)由(1)得点A ⎝ ⎛⎭⎪⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94.3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝ ⎛⎭⎪⎫152,52. 4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC 到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图②,点P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE =90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EEF =3 3 .在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP=90°.∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP =10,∴PM =12E AP =5.由勾股定理得AM =P A 2-PM 2=5 3 .在△ANP 和△AMP 中,⎩⎨⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3 .∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF=10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°.3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎨⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH是菱形,∴四边形EFGH 是正方形.解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A 点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A .1个B .2个C .3个D .4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?◆类型二路程类问题一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?◆类型三工程类问题一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎨⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎨⎧m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎨⎧2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎨⎧20k +b =160,40k +b =288,解得⎩⎨⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎨⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎨⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元). 3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎨⎧2000m +n =2000,4000m +n =3400,解得⎩⎨⎧m =0.7,n =600,所以y乙=⎩⎨⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎨⎧k +b =80,3k +b =320,解得⎩⎨⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km. 7.①②④ 8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一 利用二次根式的非负性求值1.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2018的值是( ) A .0 B .1 C .-1 D .±12.已知a +1+b 2-2b +1=0,则a 2018+b 2017的值是________.3.若a 2-3a +1+b 2-2b +1=0,则a 2+1a 2-|b |=________. 4.若y =x -3+3-x +2,求x y 的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2; (2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1 B.0 C.1 D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析: 1.B 2.23.6 解析:∵a 2-3a +1+b 2-2b +1=0,∴a 2-3a +1+(b -1)2=0,∴a 2-3a +1=0,b =1,∴a -3+1a =0,∴a +1a =3,∴⎝ ⎛⎭⎪⎫a +1a 2=32,∴a 2+1a 2=7.∴a 2+1a2-|b |=6. 4.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =32=9. 5.解:(1)原式=8+215.(2)原式=22-410. (3)原式=4 6.6.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝ ⎛⎭⎪⎫x +1x 2-1=(5)2-1=4.∴原式=14.7.B 8.329.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2 )(1+ 2 )=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2 2 )2-2×(-22)+(-1)=7+4 2.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x -y 和xy 的形式,利用整体思想代入求值.10.解:由已知得x =3+22,y =3-2 2.∴x +y =6,xy =1,∴原式=x 2+y 2xy -4=(x +y )2-6xy xy=62-6×1=30.思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一 折叠中求角度1.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF .若∠EFC ′=125°,那么∠ABE 的度数为( )A .15°B .20°C .25°D .30°第1题图 第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .观察探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° ◆类型二 折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( ) A .6cm B .7cm C .8cm D .9cm第3题图 第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF的长为________.◆类型三折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 解析:由折叠可知∠EFC =∠EFC ′=125°.∵在矩形ABCD 中,AD ∥BC ,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF =∠DEF =55°,∴∠BED =110°.∵四边形ABCD 为矩形,∠A =90°,∴∠ABE =110°-90°=20°.故选B. 2.B 3.C 4.C5. 185 解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12E B C =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝ ⎛⎭⎪⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F=∠D .在△AFE 与△CDE 中,⎩⎨⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10.7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB =45S△NAQ=45×12×AN·NQ=45×12×3×4=245.解题技巧专题:正方形中特殊的证明(计算)方法——解决正方形中的最值及旋转变化模型问题◆类型一利用正方形的旋转性质解题1.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若四边形ABCD的面积是18,则DP的长是__________.2.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.3.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,P 为正方形ABCD 外一点,且BP ⊥CP . 求证:BP +CP =2OP .◆类型二 利用正方形的对称性解题4.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B .23 C .2 6 D.6第4题图 第5题图5.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为________.6.如图,在正方形ABCD 中,点E 是CD 的中点,AC ,BE 交于点F ,MF ∥AE 交AB 于M . 求证:DF =MF .参考答案与解析1.322.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合.∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF =S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.3.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.4.B解析:连接PB.∵点P在正方形ABCD的对角线AC上,∴PD=PB,∴PD +PE的最小值就是PB+PE的最小值,∴PD+PE的最小值就是BE.∵△ABE是等边三角形,∴BE=AB.∵S正方形ABCD=12,∴BE2=AB2=12,即BE=23,故选B.5.176.证明:∵B,D关于AC对称,点F在AC上,∴BF=DF.∵四边形ABCD是正方形,∴AD=BC,∠ADE=∠BCE.∵点E是CD的中点,∴DE=CE.在△ADE 和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE,∴AE =BE,∴∠BAE=∠ABE.∵MF∥AE,∴∠BAE=∠BMF,∴∠BMF=∠ABE,∴MF=BF.∵BF=DF,∴DF=MF.解题技巧专题:函数图象信息题——数形结合,快准解题◆类型一 根据实际问题判断函数图象1.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗.下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )2.(2017·牡丹江中考)下列图象中,能反映等腰三角形顶角度数y(度)与底角度数x(度)之间的函数关系的是( )◆类型二 获取实际问题中图象的信息3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(m 2)与工作时间t(h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是【方法12】( )A .300m 2B .150m 2C .330m 2D .450m 2第3题图 第4题图4.(2017·河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.5.(2017·西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y 与x 之间的函数关系,根据图象进行一下探究:【方法12】 【信息读取】(1)西宁到西安两地相距________千米,两车出发后________小时相遇;(2)普通列车到达终点共需________小时,普通列车的速度是________千米/时. 【解决问题】(3)求动车的速度;(4)普通列车行驶t 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.◆类型三 一次函数图象与字母系数的关系6.若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )7.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( )参考答案与解析 1.A 2.C3.B 解析:设点A (4,1200),点B (5,1650),直线AB 的解析式为y =kx +b,则⎩⎨⎧4k +b =1200,5k +b =1650,解得⎩⎨⎧k =450,b =-600,故直线AB 的解析式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故选B.4.12 解析:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 运动到C 的过程中,BP 的最大值为5,即BC =5.点P 运动到点A 时,BP =AB =5.∴△ABC 是等腰三角形.∵M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理得PC =3,∴AC =6,∴△ABC 的面积为12×4×6=12,故答案为12. 5.解:(1)1000 3(2)12 2503(3)设动车的速度为x 千米/时,根据题意,得3x +3×2503=1000,解得x =250. 答:动车的速度为250千米/时.(4)∵t =1000250=4(小时),∴4×2503=10003(千米),∴1000-10003=20003(千米),∴此时普通列车还需行驶20003千米到达西安. 6.B 7.B思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积为【易错3】( ) A .13 B .5C .13或5D .42.直角三角形的两边长是6和8,则这个三角形的面积是____________. 二、锐角或钝角三角形形状不明需分类讨论3.★(2016·东营中考)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则BC 的长为【易错4】( ) A .10 B .8C .6或10D .8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2016·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC 的面积.◆类型三 利用转化思想求最值8.(2017·涪陵区期末)一只蚂蚁从棱长为4cm 的正方体纸箱的A 点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm .【方法5】9.如图,A ,B 两个村在河CD 的同侧,且AB =13km ,A ,B 两村到河的距离分别为AC =1km ,BD =3km .现要在河边CD 上建一水厂分别向A ,B 两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析 1.C 2.24或673.C 解析:根据题意画出图形,如图所示,图①中,AB =10,AC =210,AD =6.在Rt △ABD 和Rt △ACD 中,根据勾股定理得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C.4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt△ACD 中,由勾股定理得AD=AC2-CD2=52-42=3,∴BD=AB-AD=5-3=2.在Rt△CBD中,由勾股定理得BC=BD2+CD2=22+42=25;如图②,△ABC为钝角三角形,过点C作CD⊥AB,交BA的延长线于点D.同上可得CD=4.在Rt△ACD中,AC=5,由勾股定理得AD=AC2-CD2=52-42=3.∴BD=BA+AD=5+3=8.在Rt△BDC中,由勾股定理得BC=BD2+CD2=82+42=4 5.综上所述,BC的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF=C′F.设BF=x.∵BC=9,∴C′F=CF=BC-BF=9-x.∵C′是AB的中点,AB=6,∴BC′=12E A B=3.在Rt△C′BF中,由勾股定理得C′F2=BF2+C′B2,即(9-x)2=x2+32,解得x=4,即BF的长为4.7.解:过A作AD⊥BC交BC于点D.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=BC-BD=14-x.在Rt△ABD和Rt△ACD中,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,由勾股定理得AD=AB2-BD2=152-92=12.∴S△ABC =12BC·AD=12×14×12=84.8.459.解:如图,作点A关于CD的对称点A′,连接BA′交CD于O,点O即为水厂的位置.过点A′作A′E∥CD交BD的延长线于点E,过点A作AF⊥BD于点F,则AF=A′E,DF=AC=1km,DE=A′C=1km.∴BF=BD-FD=3-1=2(km).在Rt△ABF中,AF2=AB2-BF2=13-22=9,∴AF=3km.∴A′E=3km.在Rt△A′BE中,BE=BD+DE=4km,由勾股定理得A′B=A′E2+BE2=32+42=5(km).∴W=3000×5=15000(元).故铺设水管的总费用为15000元.解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________. ◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6◆类型三巧妙利用割补法求面积6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD 的面积.7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】◆类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,那么长方形KLMJ 的面积为________.参考答案与解析 1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355.3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12E A B ·BC +12E A D ·CE =12×5×12+12×10×12=90.7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E=30°.∴AE =2AB。
新人教版八年级下册数学课堂同步练习(无答案)
16.1分式基础能力题一、选择题(每小题3分 ,共18分) 1.代数式-,23x ,1,87,1,,42ax y x yx -++-π中是分式的有( ) A.1个 B.2个 C.3个 D.4个 2.使分式2-x x 有意义的是( )A.2≠xB. 2-≠xC. 2±≠xD. 2≠x 或2-≠x 3. 下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++4. 分式434y x a+,2411x x --,22x xy yx y-++,2222a ab ab b+-中是最简分式的有( )A .1个B .2个C .3个D .4个 5. 分式31x a x +-中,当x=-a 时,下列结论正确的是( )A .分式的值为零;B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零6.如果把分式yx y x ++2中的y x ,都扩大2倍,则分式的值( )A.扩大2倍B.缩小2倍C.是原来的32 D.不变二、填空题(每小题3分 ,共18分) 7. 分式24x x -,当x 时,分式有意义.8.当x 时,分式33+-x x 的值为0.9.在下列各式中,),(32,,1,2,2,1222b a x x y x b a a -++π分式有 . 10. 不改变分式的值,使分式115101139x yx y-+的各项系数化为整数,分子、分母应乘以11. 计算222a ab a b+-= . 12.)(22yx yx y x -=+-.三、解答题(每大题8分,共24分) 13. 约分: (1)22699x x x ++-; (2)2232mm m m-+-.14. 通分: (1)26x ab,29y a b c; (2)2121a a a -++,261a -.15.若,532-==z y x 求xzy x 232++的值.拓展创新题一、选择题(每小题2分,共8分) 1.如果把分式nm 2中的字母m 扩大为原来的2倍,而n 缩小原来的一半,则分式的值( )A.不变B.是原来的2倍C.是原来的4倍D.是原来的一半2. 不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x xx +++- B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+3.一项工程,甲单独干,完成需要a 天,乙单独干,完成需要b 天,若甲、乙合作,完成这项工程所需的天数是( )A.b a ab+ B.ba 11+ C.abba + D.)(b a ab +4.如果,0432≠==z y x那么z y x zy x -+++的值是( )A.7B.8C.9D.10二、填空题(每小题2分,共8分)5. 李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前 出发.6. 当m = 时,分式2(1)(3)32m m m m ---+的值为零.7.已知2+,,15441544,833833,32232222 ⨯=+⨯=+⨯=若10+b a ba b a ,(102⨯=为正整数)则=a ,=b .8. 若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 . (写出一个..即可) 三、解答题(每大题8分,共24分)9. 已知1x-1y=3,求5352x xy y x xy y+---的值.10.先能明白(1)小题的解答过程,再解答第(2)小题, (1)已知,0132=+-a a 求221aa +的值,解,由0132=+-a a 知,0≠a 31,013=+=+-∴a a aa 即∴72)1(1222=-+=+aa aa ;(2)已知:,0132=-+y y 求13484+-y y y的值.11. 已知a 2-4a+9b 2+6b+5=0,求1a-1b的值.16.2分式的运算(1)基础能力题1.计算下列各题: (1)32×16=______;(2)35÷45=_______;(3)3a ·16ab=________;(4)(a+b )·4a b 2=________;(5)(2a+3b )(a-b )=_________. 2.把下列各式化为最简分式: (1)2216816a a a --+=_________; (2)2222()()x y z x y z--+-=_________.3.分数的乘法法则为_____________________________________________________; 分数的除法法则为_____________________________________________________. 4.分式的乘法法则为____________________________________________________; 分式的除法法则为____________________________________________________.题型1:分式的乘法运算 5.2234xy z·(-28z y)等于( )A .6xyzB .-23384xyzyz- C .-6xyz D .6x 2yz6.计算:23x x +-·22694x x x -+-.题型2:分式的除法运算7.(技能题)22abcd÷34ax cd -等于( )A .223bxB .32b 2x C .-223bxD .-222238a b x c d8.(技能题)计算:23a a -+÷22469a a a -++.9.(-3a b)÷6ab 的结果是( )A .-8a 2B .-2a bC .-218a bD .-212b10.-3xy ÷223yx的值等于( )A .-292xyB .-2y 2C .-229y xD .-2x 2y211.若x 等于它的倒数,则263x x x ---÷2356x x x --+的值是( )A .-3B .-2C .-1D .0 12.计算:(xy-x 2)·xy x y-=________.13.将分式22xx x+化简得1x x +,则x 应满足的条件是________.14.下列公式中是最简分式的是( ) A .21227b aB .22()a b b a-- C .22x y x y++ D .22x y x y--15.计算(1)(2)(1)(2)a a a a -+++·5(a+1)2的结果是( )A .5a 2-1B .5a 2-5C .5a 2+10a+5D .a 2+2a+1 16.计算22121a a a -++÷21a a a -+.17.已知1m+1n=1m n+,则n m+m n等于( )拓展创新题18.(巧解题)已知x2-5x-1 997=0,则代数式32(2)(1)12x xx---+-的值是()A.1 999 B.2 000 C.2 001 D.2 00219.(学科综合题)使代数式33xx+-÷24xx+-有意义的x的值是()A.x≠3且x≠-2 B.x≠3且x≠4C.x≠3且x≠-3 D.x≠-2且x≠3且x≠420.(数学与生活)王强到超市买了a千克香蕉,用了m元钱,又买了b千克鲜橙,•也用了m元钱,若他要买3千克香蕉2千克鲜橙,共需多少钱?(列代数式表示).16.2分式的运算(2)基础能力题1.计算下列各题:(1)2a ·4a;(2)2a÷4a;(3)22561x xx-+-÷23xx x-+;(4)2222x xy yxy y++-·2222x xy yxy y-++.2.55=____×____×_____×_____×5=_______;a n=_______.(12)2=____×______=____;(ba )3=_____·______·_____=33ba.3.分数的乘除混合运算法则是____ ____.题型1:分式的乘除混合运算4.计算:2223x ym n·2254m nxy÷53xymn. 5.计算:2216168mm m-++÷428mm-+·22mm-+.题型2:分式的乘方运算6.计算:(-223a b c)3. 7.(-2ba)2n 的值是( )A .222n nba+ B .-222n nba+ C .42n nb aD .-42n nb a题型3:分式的乘方、乘除混合运算 8.计算:(2b a)2÷(b a-)·(-34b a)3.9.计算(2xy)2·(2yx)3÷(-y x)4得( )A .x 5B .x 5y C .y 5D .x1510.计算(2xy)·(y x)÷(-y x)的结果是( )A .2xyB .-2xyC .x yD .-x y11.(-2bm )2n+1的值是( )A .2321n n bm++ B .-2321n n bm ++ C .4221n n bm++ D .-4221n n bm++12.化简:(3x y z)2·(xz y)·(2yz x)3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z13.计算:(1)22644x x x --+÷(x+3)·263x x x+--;(2)22696x x x x -+--÷229310x x x ---·3210x x +-.拓展创新题 14.如果(32a b)2÷(3a b)2=3,那么a 8b 4等于( )A .6B .9C .12D .8115.已知│3a-b+1│+(3a-32b )2=0. 求2ba b+÷[(b a b-)·(ab a b+)]的值.16.先化简,再求值:232282x x x x x+-++÷(2x x-·41x x ++).其中x=-45.17.一箱苹果a 千克,售价b 元;一箱梨子b 千克,售价a 元,•试问苹果的单价是梨子单价的多少倍?(用a 、b 的代数式表示)18.有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?6.3分式方程基础能力题一、选择题(每小题3分,共18分)1.在下列方程中,关于x 的分式方程的个数有( ) ①0432212=+-x x ②.4=ax ③.;4=xa ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax ax .A.2个B.3个C.4个D.5个 2. 关于x 的方程4332=-+xa ax的根为x =1,则a 应取值( )A.1B.3C.-1D.-33.方程xx x-=++-1315112的根是( )A.x =1B.x =-1C.x =83 D.x =24.,04412=+-xx 那么x2的值是( )A.2B.1C.-2D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x去分母得,1)2)(1(1-+-=+x x x ;B.125552=-+-xx x ,去分母得,525-=+x x;C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ;D.,1132-=+x x去分母得,23)1(+=-x x ;6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x=14 C.21140140++x x=14 D.211010++x x=1二、填空题(每小题3分,共18分) 7. 满足方程:2211-=-x x 的x 的值是________.8. 当x =________时,分式xx ++51的值等于21.9.分式方程0222=--x x x 的增根是 .10. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.11. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 . 12.已知,54=y x 则=-+2222yx y x . 三、解答题(每题8分,共24分)13. .解下列方程(1)xx x --=+-34231 (2)2123442+-=-++-x x x x x14. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?15.在一次军事演习中,红方装甲部队按原计划从A 处向距离150km 的B 地的蓝方一支部队直接发起进攻,但为了迷惑蓝方,红方先向蓝方另一支部队所在的C 地前进,当蓝方在B 地的部队向 C 地增援后,红方在到达D 地后突然转向B 地进发。
新人教版八年级下册数学课堂同步练习
16.1分式基础能力题一、选择题(每小题3分 ,共18分)1.代数式-,23x ,1,87,1,,42a x y x yx -++-π中是分式的有( ) A.1个 B.2个 C.3个 D.4个 2.使分式2-x x有意义的是( ) A.2≠x B. 2-≠x C. 2±≠x D. 2≠x 或2-≠x 3. 下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++4. 分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个 5. 分式31x ax +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义 C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 6.如果把分式yx yx ++2中的y x ,都扩大2倍,则分式的值( ) A.扩大2倍 B.缩小2倍 C.是原来的32D.不变 二、填空题(每小题3分 ,共18分) 7. 分式24xx -,当x 时,分式有意义. 8.当x 时,分式33+-x x 的值为0.9.在下列各式中,),(32,,1,2,2,1222b a x x y x b a a -++π分式有 . 10. 不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以 11. 计算222a ab a b +-= . 12.)(22y x y x yx -=+-. 三、解答题(每大题8分,共24分)13. 约分:(1)22699x x x ++-; (2)2232m m m m-+-.14. 通分:(1)26x ab ,29y a bc; (2)2121a a a -++,261a -.15.若,532-==z y x 求xzy x 232++的值.拓展创新题一、选择题(每小题2分,共8分) 1.如果把分式nm2中的字母m 扩大为原来的2倍,而n 缩小原来的一半,则分式的值( ) A.不变 B.是原来的2倍 C.是原来的4倍 D.是原来的一半2. 不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• ) A .2332523x x x x +++- B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 3.一项工程,甲单独干,完成需要a 天,乙单独干,完成需要b 天,若甲、乙合作,完成这项工程所需的天数是( )A.b a ab + B.b1 C.ab ba + D.)(b a ab + 4.如果,0432≠==zy x 那么z y x z y x -+++的值是( ) A.7 B.8 C.9 D.10二、填空题(每小题2分,共8分)5. 李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前 出发.6. 当m = 时,分式2(1)(3)32m m m m ---+的值为零.7.已知2+,,15441544,833833,32232222 ⨯=+⨯=+⨯=若10+b a ba b a ,(102⨯=为正整数)则=a ,=b .8. 若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 . (写出一个..即可) 三、解答题(每大题8分,共24分) 9. 已知1x -1y=3,求5352x xy y x xy y +---的值.10.先能明白(1)小题的解答过程,再解答第(2)小题,(1)已知,0132=+-a a 求221aa +的值, 解,由0132=+-a a 知,0≠a 31,013=+=+-∴aa a a 即∴72)1(1222=-+=+a a aa ;(2)已知:,0132=-+y y 求13484+-y y y 的值.11. 已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.16.2分式的运算(1)基础能力题1.计算下列各题: (1)32×16=______;(2)35÷45=_______;(3)3a ·16ab=________; (4)(a+b )·4a b 2=________;(5)(2a+3b )(a-b )=_________.2.把下列各式化为最简分式:(1)2216816a a a --+=_________; (2)2222()()x y z x y z --+-=_________.3.分数的乘法法则为_____________________________________________________;分数的除法法则为_____________________________________________________. 4.分式的乘法法则为____________________________________________________; 分式的除法法则为____________________________________________________. 题型1:分式的乘法运算5.2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz 6.计算:23x x +-·22694x x x -+-.题型2:分式的除法运算7.(技能题)22ab cd ÷34axcd-等于( )A .223b xB .32b 2x C .-223b x D .-222238a b x c d 8.(技能题)计算:23a a -+÷22469a a a -++.9.(-3ab)÷6ab 的结果是( ) A .-8a 2B .-2a bC .-218a bD .-212b10.-3xy ÷223y x的值等于( )A .-292x yB .-2y 2C .-229y xD .-2x 2y 211.若x 等于它的倒数,则263x x x ---÷2356x x x --+的值是( )A .-3B .-2C .-1D .0 12.计算:(xy-x 2)·xyx y-=________. 13.将分式22x x x +化简得1xx +,则x 应满足的条件是________.14.下列公式中是最简分式的是( )A .21227ba B .22()ab b a -- C .22x y x y ++ D .22x y x y --15.计算(1)(2)(1)(2)a aa a-+++·5(a+1)2的结果是()A.5a2-1 B.5a2-5 C.5a2+10a+5 D.a2+2a+116.计算22121aa a-++÷21a aa-+.17.已知1m+1n=1m n+,则nm+mn等于()A.1 B.-1 C.0 D.2 拓展创新题18.(巧解题)已知x2-5x-1 997=0,则代数式32(2)(1)12x xx---+-的值是()A.1 999 B.2 000 C.2 001 D.2 00219.(学科综合题)使代数式33xx+-÷24xx+-有意义的x的值是()A.x≠3且x≠-2 B.x≠3且x≠4C.x≠3且x≠-3 D.x≠-2且x≠3且x≠420.(数学与生活)王强到超市买了a千克香蕉,用了m元钱,又买了b千克鲜橙,•也用了m元钱,若他要买3千克香蕉2千克鲜橙,共需多少钱?(列代数式表示).16.2分式的运算(2)基础能力题1.计算下列各题:(1)2a ·4a;(2)2a÷4a;(3)22561x xx-+-÷23xx x-+;(4)2222x xy yxy y++-·2222x xy yxy y-++.2.55=____×____×_____×_____×5=_______;a n=_______.(12)2=____×______=____;(ba)3=_____·______·_____=33ba.3.分数的乘除混合运算法则是____ ____.题型1:分式的乘除混合运算4.计算:2223x y mn ·2254m n xy ÷53xym n . 5.计算:2216168m m m -++÷428m m -+·22m m -+.题型2:分式的乘方运算6.计算:(-223a b c )3. 7.(-2b a)2n的值是( )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a题型3:分式的乘方、乘除混合运算8.计算:(2b a )2÷(b a -)·(-34b a )3.9.计算(2x y )2·(2y x )3÷(-yx)4得( )A .x 5B .x 5yC .y 5D .x 1510.计算(2x y )·(y x )÷(-yx )的结果是( )A .2x yB .-2x yC .x yD .-xy11.(-2b m)2n+1的值是( )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++12.化简:(3x y z )2·(xz y )·(2yzx )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z13.计算:(1)22644x x x --+÷(x+3)·263x x x +--; (2)22696x x x x -+--÷229310x x x ---·3210x x +-.拓展创新题14.如果(32a b )2÷(3ab)2=3,那么a 8b 4等于( )A .6B .9C .12D .8115.已知│3a-b+1│+(3a-32b )2=0.求2b a b+÷[(b a b-)·(ab a b +)]的值.16.先化简,再求值:2282x x x x x+-++÷(2x x -·41x x ++).其中x=-45.17.一箱苹果a 千克,售价b 元;一箱梨子b 千克,售价a 元,•试问苹果的单价是梨子单价的多少倍?(用a 、b 的代数式表示)18.有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?16.3分式方程基础能力题一、选择题(每小题3分,共18分)1.在下列方程中,关于x 的分式方程的个数有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x .A.2个B.3个C.4个D.5个2. 关于x 的方程4332=-+xa ax 的根为x =1,则a 应取值( )A.1B.3C.-1D.-33.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83D.x =2 4.,04412=+-x x 那么x2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ;B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ;D.,1132-=+x x 去分母得,23)1(+=-x x ;6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 二、填空题(每小题3分,共18分)7. 满足方程:2211-=-x x 的x 的值是________. 8. 当x =________时,分式xx ++51的值等于21.9.分式方程0222=--x xx 的增根是 .10. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.11. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 . 12.已知,54=y x 则=-+2222yx y x . 三、解答题(每题8分,共24分)13. .解下列方程(1)xx x --=+-34231 (2)2123442+-=-++-x x x x x14. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?15.在一次军事演习中,红方装甲部队按原计划从A 处向距离150km 的B 地的蓝方一支部队直接发起进攻,但为了迷惑蓝方,红方先向蓝方另一支部队所在的C 地前进,当蓝方在B 地的部队向 C 地增援后,红方在到达D 地后突然转向B 地进发。
八年级数学下册(人教版)课堂练习检测—函数的图像1(含答案)
八年级数学下册(人教版)课堂练习检测—函数的图像1(含答案)一、选择题1.图中,表示y是x的函数图象是()2.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()A.39.0℃B.38.2℃C.38.5℃D.37.8℃3.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()4.你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水,但是还没解渴,瓶中水面下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地叫着飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是( )二、填空题5.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s (m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题6.如图,下面的图象记录了某地一月份的温度随时间变化的情况,请你仔细观察图象回答下面的问题:(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.7.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?8.(广州育才中学模拟)甲车速度为20米/秒,乙车速度为25米/秒。
新课堂试卷八年级下册数学
一、选择题(每题3分,共30分)1. 若方程3x - 2 = 7的解为x,则x的值为()A. 3B. 2C. 5D. 12. 下列数中,有理数是()A. √2B. πC. -√3D. 2/33. 下列各式中,正确的是()A. 3x + 2 = 2x + 3B. 2(x + 1) = 2x + 2C. 3(x - 2) = 3x - 6D. 4(x - 1) = 4x - 44. 已知一次函数y = kx + b中,k和b分别表示()A. 斜率和截距B. 截距和斜率C. 斜率和y轴截距D. x轴截距和斜率5. 若点A(2, 3)关于直线y = x的对称点为B,则点B的坐标为()A. (3, 2)B. (2, 3)C. (3, -2)D. (-2, 3)6. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形7. 若一个三角形的三边长分别为3,4,5,则该三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形8. 已知圆的半径为r,则该圆的面积为()A. πr²B. 2πr²C. 4πr²D. 8πr²9. 若a > b > 0,则下列不等式成立的是()A. a² > b²B. a² < b²C. a < bD. a > b10. 下列函数中,有最小值的是()A. y = x²B. y = -x²C. y = x³D. y = -x³二、填空题(每题5分,共50分)11. 已知方程2x - 5 = 3的解为x = 2,则该方程的另一个解为x = _______。
12. 若a + b = 5,a - b = 3,则a = _______,b = _______。
13. 一次函数y = 2x - 3的图像与x轴、y轴分别交于点A、B,则点A的坐标为(_______,0),点B的坐标为(0,_______)。
新人教版八年级数学下册课课练题全册单元同步测试及答案
新人教版八年级数学下册课课练题全册单元同步测试及答案新人教版八年级数学下册《16.1 二次根式》同步测试(共2课时)新人教版八年级数学下册《16.2 二次根式的乘除》同步测试(共2课时)新人教版八年级数学下册《16.3 二次根式的加减》同步测试(共2课时)新人教版八年级数学下册《17.1 勾股定理》同步测试(共2课时)新人教版八年级数学下册《17.2勾股定理的逆定理》同步测试(共2课时) 新人教版八年级数学下册《矩形》同步测试(共2课时) 新人教版八年级数学下册《平行四边形》同步测试(共3课时)新人教版八年级数学下册《函数》同步测试题新人教版八年级数学下册《一次函数》同步测试题新人教版八年级数学下册《课题学习 选择方案》同步测试题新人教版八年级数学下册《平均数》同步测试练习题 新人教版八年级数学下册《数据的波动程度》同步测试题与答案 新人教版八年级数学下册《16.1 二次根式》同步测试(共2课时) 新人教版八年级数学下册《16.2 二次根式的乘除》同步测试(共2课时) 新人教版八年级数学下册《16.3 二次根式的加减》同步测试(共2课时) 新人教版八年级数学下册《17.1 勾股定理》同步测试(共2课时) 新人教版八年级数学下册《17.2勾股定理的逆定理》同步测试(共2课时) 新人教版八年级数学下册《矩形》同步测试(共2课时) 新人教版八年级数学下册《平行四边形》同步测试(共3课时) 新人教版八年级数学下册《函数》同步测试题 新人教版八年级数学下册《一次函数》同步测试题 新人教版八年级数学下册《课题学习 选择方案》同步测试题 新人教版八年级数学下册《平均数》同步测试练习题 新人教版八年级数学下册《数据的波动程度》同步测试题与答案答案新人教版八年级数学下册《16.1 二次根式》同步测试(共2课时)新人教版八年级数学下册《16.2 二次根式的乘除》同步测试(共2课时)新人教版八年级数学下册《16.3 二次根式的加减》同步测试(共2课时)新人教版八年级数学下册《17.1 勾股定理》同步测试(共2课时)新人教版八年级数学下册《17.2勾股定理的逆定理》同步测试(共2课时)新人教版八年级数学下册《矩形》同步测试(共2课时)新人教版八年级数学下册《平行四边形》同步测试(共3课时)新人教版八年级数学下册《函数》同步测试题新人教版八年级数学下册《一次函数》同步测试题新人教版八年级数学下册《课题学习选择方案》同步测试题新人教版八年级数学下册《平均数》同步测试练习题新人教版八年级数学下册《数据的波动程度》同步测试题与。
八年级数学下册专题课堂十一正方形中45°角模型作业新版新人教版
2.如图,在正方形 ABCD 中,点 E 为 BC 的中点,F 为 AB 上一点,AE,CF 交 于点 O.若 AB=6,∠AOF=45°,求 BF 的长.
解:过点 C 作 CM∥AE 交 AD 于点 M,延长 AD 到点 N,使得 DN=BF,连接 CN, FM,如图所示,在正方形 ABCD 中,AD∥BC,AD=BC=CD,∠BAD=∠B=∠ADC =90°,∴∠NDC=∠B=90°,∴△NDC≌△FBC(SAS),∴CF=CN,∠DCN=∠BCF, ∵∠AOF=45°,CM∥AE,∴∠MCF=∠AOF=45°,∴∠MCN=∠MCD+∠DCN= 45°,∴∠MCF=∠MCN,
CF=CN,
在△MCF 和△MCN 中, ∠MCF=∠MCN, ∴△MCF≌△MCN (SAS),∴MF=MN,
CM=CM,
∵AD∥BC,AE∥MC,∴四边形 AECM 是平行四边形,∴CE=AM,∵E 是 BC 的中 点,∴M 是 AD 的中点,∵AB=6,∴AD=AB=6,∴AM=DM=3,设 BF=x,则 DN=x,AF=6-x,∴MF=MN=3+x,在 Rt△AFM 中,根据勾股定理,得 32+(6 -x)2=(3+x)2,解得 x=2,∴BF=2
【对应训练】 1.如图,正方形 ABCD 中,E 是 AD 上一点,F 是 AB 延长线上一点,DE=BF. 点 G,H 分别在边 AB,CD 上,且 GH=3 5 ,GH 交 EF 于 M.若∠EMH=45°,求 EF 的长.
解:连接 CE,CF,如ห้องสมุดไป่ตู้,∵四边形 ABCD 是正方形,∴AB∥DC,BC=DC,∠ABC
AG=AF,
∠EAG=∠EAF, ∴△AEG≌△AEF(SAS).∴GE=EF,
AE=AE,
部编人教版初二下册数学全册同步练习(一课一练)
新人教版八年级下册初中数学全册资料汇编课时练(一课一练)16.1 二次根式1. 下列各式是二次根式的是( )A.-5 B .34 C. 4 D .-x 2-1 2. 若(x -2)2=2-x ,那么x 的取值范围是( ) A .x≤2 B.x <2 C .x <2 D .x≥2 3. 下列各式中不是二次根式的是( )A.x 2+2 B .-8 C .- 3 D .(m -n)2 4. 要使二次根式2-3x 有意义,则x 的( )A .最大值是23B .最小值是23C .最大值是32D .最小值是325. 已知x 、y 为实数,且x -1+3(y -2)2=0,则x -y 的值为( ) A .3 B .-3 C .1 D .-16. 已知-1≤a≤1,下列是二次根式的为( ) A.a -12B .1-1aC.1-a 2 D .1-a1+a7.已知实数x 、y 满足|x -4|+y -8=0,则以x 、y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上答案均不对8. 实数a ,b 在数轴上对应点的位置如图所示.化简式子|a|+(a -b)2的结果是( )A .-2a +bB .2a -bC .-bD .b 9.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152D .无法确定10. 当x=时,函数y=2x+4+5有最小值,最小值为. 11.在实数范围内分解因式:x4-25=12. 若a+3+2-b=0,则a=,b=.13. 要使二次根式x-1有意义,则x的取值范围是.14. 已知一个直角三角形的两直角边长分别为2和5,则斜边长为.15. 写出下列各式有意义的条件.(1)4-x(2)x+2 x-316. 化简:(1)16(2)(-2)217. 计算:(1)42-(-2)2+(35)2-(-7)2;(2)(4-7)2+(17-5)2.18.已知实数a、b满足b=2018+a2-9+9-a2a-3,求a、b的值.19. 直线y=mx+n,如图所示,化简|m+n|+m2-(2m+n)2.20. 甲、乙两位同学做一道相同的题目: 化简求值:1a+1a 2+a 2-2,其中a =15. 甲同学的做法是:原式=1a +(1a -a)2=1a +1a -a =2a -a =10-15=495; 乙同学的做法是:原式=1a+(a -1a )2=1a +a -1a =a =15.请问哪位同学的解法正确?请说明理由.参考答案1---9 CABAD CBAA 10. -2 511. (x 2+5)(x +5)(x -5) 12. -3 2 13. x≥1 14.715. (1) x≤4 (2) x≥-2且x≠3 16. (1) 解:原式=4 (2) 解:原式=217. (1) 解:原式=4-2+45-7=40 (2) 解:原式=(17-4)+(5-17)=118. 解:依题意得⎩⎨⎧a 2-9≥09-a 2≥0a -3≠0,∴a=-3,∴b=2018.19. 解:依题意得:m <0,n >0.,∴m-n <0,2m +n <0,∴|m+n|+m 2-(2m +n)2=-(m -n)+(-m)-[-(2m +n)]=-m +n -m +2m -n =0.20. 解:甲同学的解法是正确的,理由如下: ∵1a2+a 2-2=(a -1a )2=|1a -a|,且a =15,即1a =5,∵1a >a ,∴|1a -a|=1a-a.∴乙同学在去绝对值时忽略了1a与a 的大小关系,导致错误.16.2 二次根式的乘除同步练习一、选择题 1.若,,把代数式中的m 移进根号内结果是A.B.C.D.2.如果,,那么下面各式:,,,其中正确的是A.B.C.D.3.若,,则可以表示为 A.B.C. D. ab4.如果,那么x 的取值范围是A.B.C.D.5.计算:的结果是A.B.C. 40D. 76.若,且,则的值为A.B.C.D.7.化简的结果为A. B. C. D.8.若,,则的值用a、b可以表示为A. B. C. D.9.若,则x的取值范围是A. B. C. D. 不存在10.下列计算正确的是A. B.C. D.二、填空题11.计算:______.12.能使得成立的所有整数a的和是______ .13.计算:______ .14.成立的x的取值范围是______ .15.观察下列各式:;;,请用含的式子写出你猜想的规律:__________.三、计算题16..17.已知求的值.18.先化简,再求值:,其中.【答案】1. C2. B3. C4. D5. D6. D7. C8. C9. A10. B11. 6a12. 513. x14.15.16. 解:原式.17. 解:,.18. 解:原式,当时,原式.16.3 二次根式的加减同步练习一、选择题19.无论x取任何实数,代数式都有意义,则m的取值范围是A. B. C. D.20.若,则x的取值范围是A. B. C. D.21.已知a,b在数轴上的位置如图所示,化简代数式的结果等于A. B. C. D. 222.若,,则代数式的值为A. 3B.C. 5D. 923.下列计算结果正确的是A. B.C. D.24.已知,则的值为A. 5B. 6C. 3D. 425.的值是A. 0B.C.D. 以上都不对26.计算的结果是A. 6B.C.D. 1227.已知,,,则的结果是A. B. C. D.28.若,,则代数式的值为A. B. C. D. 4二、填空题29.若,则______.30.若,化简______ .31.对于任意不相等的两个数a,b,定义一种运算如下:,如,那么______ .32.若,则的值为______ .33.观察分析下列数据:0,,,,,,,,根据数据排列的规律得到第13个数据应是______ .三、计算题34.计算:.35.已知,求的值.36.已知,求的值.【答案】1. C2. C3. A4. A5. C6. A7. A8. D9. B10. B11. 1 12. 4 13. 14. 15. 616. 解:,,,,,17. 解:原式,,,原式.18. 解:,,原式.17.1 勾股定理同步练习一、选择题37.在中,,,BC边上的高,则另一边BC等于A. 10B. 8C. 6或10D. 8或1038.如图,已知中,,CD是高,,,求AB的长A.4B. 6C. 8D. 1039.如图,以为直径分别向外作半圆,若,,则A. 2B. 6C.D.40.直角三角形的斜边为20cm,两直角边之比为3:4,那么这个直角三角形的周长为A. 27cmB. 30cmC. 40cmD. 48cm41.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为A. 3B. 4C. 5D. 642.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为A. B.C. D.43.如图,正方形ABCD的边长为10,,,连接GH,则线段GH的长为A.B.C.D.44.如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是A. cmB. cmC. cmD. cm45.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为A. 米B. 米C. 米D. 米46.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到,使梯子的底端到墙根O的距离等于3m,同时梯子的顶端B下降至,那么A. 小于1mB. 大于1mC. 等于1mD. 小于或等于1m二、填空题47.在中,已知两边长为5、12,则第三边的长为______ .48.如图,已知中,,,,,则______ .49.如图,在中,,,D为BC上一点,过点D作,垂足为E,连接AD,若,则AB的长为______ .50.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______元钱.51.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.三、计算题52.如图,在中,,垂足为D,,.求的度数.若,求AB的长.53.已知:如图,在中,,D是AC上一点,于E,且.求证:BD平分;若,求的度数.54.如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.求梯子顶端与地面的距离OA的长.若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.【答案】1. C2. C3. A4. D5. C6. C7. B8. C9. C10. A11. 13或12. 1213.14. 61215. 816. 解:.,;.17. 证明:,,,点D在的平分线上,平分.解:,,,平分,.18. 解:米;米,米.17.2勾股定理的逆定理同步练习一、选择题55.适合下列条件的中,直角三角形的个数为,,;,;,,;,.A. 1个B. 2个C. 3个D. 4个56.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( )A. 10B. 12C. 24D. 4857.在中,,,,则A. B. C. D.58.在中,,,,则点C到AB的距离是A. B. C. D.59.三角形两边长分别是8和6,第三边长是一元二次方程一个实数根,则该三角形的面积是A. 24B. 48C. 24或D.60.中,,,的对边分别为a、b、c,下列说法中错误的A. 如果,则是直角三角形,且B. 如果,则是直角三角形,且C. 如果,则是直角三角形,且D. 如果:::2:5,则是直角三角形,且61.如图,已知点,,点C在直线上,则使是直角三角形的点C的个数为A. 1B. 2C. 3D. 462.中,,,BC边上中线,则AB,AC关系为A. B. C. D. 无法确定63.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为A. 1个B. 2个C. 3个D. 4个64.如图,在中,,,,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是A. B.C. 5D.二、填空题65.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为______ .66.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______ .67.如图,已知三条边,,,,则______ cm68.如图所示,在中,AB:BC::4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,的面积为______69.在中,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为______.三、计算题70.已知如图,四边形ABCD中,,,,,,求这个四边形的面积.71.如图,P为等边内一点,PA、PB、PC的长为正整数,且,设,n为大于5的实数,且满足,求的面积.72.在直角三角形ABC中,,CD是AB边上的高,,,求的面积;求CD的长;若的边AC上的中线是BE,求出的面积.【答案】1. C2. B3. A4. A5. C6. B7. C8. B9. B10. B11.12. 213. 1214. 1815. 216. 解:连接AC,如图所示:,为直角三角形,又,,根据勾股定理得:,又,,,,,为直角三角形,,则.17. 解:,分解因式得:,为大于5的实数,,即:,,PA、PB、PC的长为正整数,,,设,等边三角形的边长是a,则,由余弦定理得:,,而,,将代入得:,解得:,,,令,,解得:,,由知,,即,,,不合题意舍去,,即,过A作于D,等边,,由勾股定理得:,.答:的面积是.18. 解:,,,;,;,,的面积为.18.1平行四边形同步练习一、选择题73.如图,平行四边形ABCD的周长为40,的周长比的周长多10,则AB长为A. 20B. 15C. 10D. 574.已知四边形ABCD中有四个条件:,,,,从中任选两个,不能使四边形ABCD成为平行四边形的选法是A. ,B. ,C. ,D. ,75.平行四边形的两条对角线分别为4和6,则其中一条边x的取值范围为A. B. C. D.76.平行四边形ABCD中,有两个内角的比为1:2,则这个平行四边形中较小的内角是A. B. C. D.77.如图,▱ABCD的对角线AC与BD相交于点O,,垂足为E,,,,则AE的长为A. B. C. D.78.在平行四边形ABCD中,:::的可能情况是A. 2:7:2:7B. 2:2:7:7C. 2:7:7:2D. 2:3:4:579.如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为A.B.C.D.80.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把沿着AD方向平移,得到,若两个三角形重叠部分的面积为,则它移动的距离等于A. B. 1cm C. D. 2cm81.如图,平行四边形的两条对角线将平行四边形的面积分成四部分,分别记作,,,,下列关系式成立的是A. B. C. D.82.如图,在▱ABCD中,,F是AD的中点,作于E,在线段AB上,连接EF、则下列结论:;;;,其中一定正确的是A. B. C. D.二、填空题83.平行四边形ABCD中,的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是______ .84.在▱ABCD中,如果,那么______ 度85.如图,▱ABCD的面积为,P为▱ABCD内部的任意一点,则图中阴影部分的面积之和为______ .86.若在▱ABCD中,,,,则______ .87.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分交AB丁点E,交BD于点F,且,,连接下列四个结论:;;;::,其中结论正确的序号是______把所有正确结论的序号都选上三、计算题88.已知平行四边形ABCD的周长为60cm,对角线AC,BD相交于点O,的周长比的周长长8cm,求这个平行四边形各边的长.89.如图,已知,,四边形ABCD为平行四边形;求证:;连接OD,若,求证:四边形ABCD为菱形.90.如图,在▱ABCD,对角线AC、BD相交于点O、E、F是对角线AC上的两点.现有三个条件:;;都可确定四边形DEBF为平行四边形.请选择其中的一个等式作为条件,证明四边形DEBF为平行四边形.【答案】1. D2. C3. B4. B5. D6. A7. C8. B9. B10. B11. 14或1612. 11013.14. 2115.16.解:的周长比的周长长8cm,,是平行四边形,,,,平行四边形ABCD的周长60cm,,,,即平行四边形ABCD的边长是11cm,19cm,11cm,19cm.17. 解:,,,,,,四边形ABCD为平行四边形;,,,,,;连接BD,交AC于点H,,,,,,∽,,,,,平行四边形ABCD中,,四边形ABCD为菱形.18. 解:选择,理由为:证明:四边形ABCD是平行四边形,,,,,即,四边形DEBF为平行四边形.18.2 特殊的平行四边形同步练习一、选择题91.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是A. B. 5 C. 6 D.92.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,于H,连接OH,,则的度数是A. B. C. D.93.以下条件不能判别四边形ABCD是矩形的是A. ,,B.C. ,,D. ,,,94.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是A. 17B. 16C.D.95.已知菱形的面积为,一条对角线长为6cm,则这个菱形的边长是厘米.A. 8B. 5C. 10D.96.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若,则AF等于A.B.C.D. 897.如图,在周长为12的菱形ABCD中,,,若P为对角线BD上一动点,则的最小值为A. 1B. 2C. 3D. 498.有3个正方形如图所示放置,阴影部分的面积依次记为,,则:等于A. 1:B. 1:2C. 2:3D. 4:999.如图:A,D,E在同一条直线上,,,BD,DF分别为正方形ABCD,正方形DEFG的对角线,则三角形的面积为A.B. 3C. 4D. 2100.我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点处,则点C的对应点的坐标为A. B. C. D.二、填空题101.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为______ .102.如图,正方形ABCD的边长为1,AC,BD是对角线将绕着点D顺时针旋转得到,HG交AB于点E,连接DE交AC于点F,连接则下列结论:四边形AEGF是菱形≌其中正确的结论是______.103.如图:在矩形ABCD中,,,P为AD上任一点,过点P作于点E,于点F,则______ .104.如图,四边形ABCD是菱形,,,于点H,则线段BH的长为______.105.正方形ABCD中,E、F分别在AD、DC上,,G是AD上另一点,且,连接EF、BG、FG、EF、BG交于点H,则下面结论:;是等边三角形;;中,正确的是______请填番号三、计算题106.如图,在中,,D、E、F分别是BC、AC、AB边上的中点.求证:四边形BDEF是菱形;若,求菱形BDEF的周长.107.如图所示,将一个长方形纸片ABCD沿对角线AC折叠点B落在E点,AE交DC于F点,已知,求折叠后重合部分的面积.108.如图1,四边形ABCD是正方形,,点G在BC边上,,于点E,于点F.求BF和DE的长;如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.【答案】1. A2. A3. D4. A5. B6. A7. C8. D9. B10. D11. 12012.13.14.15.16. 证明:、E、F分别是BC、AC、AB的中点,,,四边形BDEF是平行四边形,又,,且,,四边形BDEF是菱形;解:,F为AB中点,,菱形BDEF的周长为.17. 解:四边形ABCD是矩形,,,将一个长方形纸片ABCD沿对角线AC折叠,,,,,在和中,≌,,,设,则,在中,,即,解得:,即,折叠后重合部分的面积.18. 解:如图1,四边形ABCD是正方形,,,,,,在中,,,,,,,,在和中,≌,,理由如下:作于H,如图2,≌,,,与的证明方法一样可得≌,,,,,在和中,≌,,,,,.19.1函数一、选择题(每小题只有一个正确答案) 1.下列各式中,表示y 是x 的函数的有( )①2y +x =3;②y =x +2z ;③y =2;④y =kx +1(k 为常量);⑤y 2=2x . A. 0个 B. 1个 C. 2个 D. 3个 2.函数5y x =-中自变量x 的取值范围是( )A. x≥-5B. x≤-5C. x≥5D. x≤53.下面关于函数的三种表示方法叙述错误的是( )A. 用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B. 用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C. 用公式法表示函数关系,可以方便地计算函数值D. 任何函数关系都可以用上述三种方法来表示 4.如图所示,y 与x 的关系式为( )A. y=-x+120B. y=120+xC. y=60-xD. y=60+x 6.已知两个变量x 和y ,它们之间的三组对应值如下表所示:x -1 2 -3 y-63-2则y 与x 之间的函数表达式可能是( ) A. y =3x B. y =x +5 C. y =x 2+5 D. y =6x7.下列各曲线中能表示y 是x 的函数的是( )A. B. C. D.二、填空题8.某超市,苹果的标价为3元/千克,设购买这种苹果xkg ,付费y 元,在这个过程中常量是________变量是________,请写出y 与x 的函数表达式________ .9.函数y =x 的取值范围是_____. 11.函数的三种表示方法是_________、_________、___________.12.一空水池现需注满水,水池深 4.9m ,现以不变的流量注水,数据如下表所示:(1)上表反映的变量关系中,注水时间 t 是_____,水的深度 h 是_____. (2)注满水池需要的时间是_____h .三、解答题13.求下列函数中自变量的取值范围.()135y x =-+;()324xy x =-; ()3y =; ()4y =; ()5y =14.写出下列问题中的关系式,并指出其中的变量和常量. (1)直角三角形中一个锐角a 与另一个锐角β之间的关系;(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t (小时)表示水箱中的剩水量y (吨).15.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车油箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.2 一次函数1. 关于直线l :y =kx +k(k≠0),下列说法不正确的是( ) A .点(0,k)在l 上 B .l 经过定点(-1,0) C .当k >0时,y 随x 的增大而增大 D .l 经过第一、二、三象限2. 若k≠0,b <0,则y =kx +b 的图象可能是( )3. 设点A(a ,b)是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A .2a +3b =0B .2a -3b =0C .3a -2b =0D .3a +2b =04. 如图,若一次函数y =-2x +b 的图象交y 轴于点A(0,3),则不等式-2x +b>0的解集为( )A .x>32B .x>3C .x<32D .x<35. 已知正比例函数y =3x 的图象经过点(1,m),则m 的值为( ) A.13 B .3 C .-13D .-3 6. 直线y =kx +3经过点A(2,1),则不等式kx +3≥0的解集是( ) A .x≤3 B.x≥3 C .x≥-3 D .x≤0 7. 对于一次函数y =-x +3,下列说法正确的有( )①函数值y 随x 的增大而减小;②函数图象不过第一象限;③函数图象与y 轴交点为(3,0);④将y =-x +3向上平移一个单位长度可得y =-x +2的图象. A .1个 B .2个 C .3个 D .4个8. 如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )A.y=2x+3 B.y=x-3C.y=2x-3 D.y=-x+39. 如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2 B.x=0 C.x=-1 D.x=-310. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.11. 将直线y=2x+1向下平移3个单位长度后所得直线的解析式是__y_.12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解为____.13.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为___.14. 过点(0,-2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m).(1)写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式.15. 如图,一次函数y =-x +m 的图象与y 轴交于点B ,与正比例函数y =32x 的图象交于点P(2,n).(1)观察图象,直接写出不等式-x +m<32x 的解集;(2)求出m ,n 的值,并直接写出方程组⎩⎨⎧y =-x +m ,y =32x 的解.参考答案:1---9 DBDCB AADD 10. x >3 11. =2x -2 12. x =3213. -114. 解:(1)当x <2时,y 1<y 2 (2)把P(2,m)代入y 2=x +1得m =2+1=3,则P(2,3),把P(2,3)和(0,-2)分别代入y 1=kx +b 得⎩⎨⎧2k +b =3,b =-2解得⎩⎨⎧k =52,b =-2所以直线l 1的解析式为:y 1=52x -215. 解:(1)根据图象观察可知,-x +m<32x 的解集是x>2(2)∵点P(2,n)在图象上,∴n=32×2=3.把P(2,3)代入y =-x +m ,得3=-2+m ,∴m=5.∵直线y =-x+5与直线y =32x 交于点P(2,3),∴方程组⎩⎨⎧y =-x +5,y =32x的解是⎩⎨⎧x =2,y =320.1 数据的代表一、选择题109.一组数据的平均数是A. 2B. 3C. 4D. 5110.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是A. 255分B. 分C. 分D. 分111.有10位同学参加数学竞赛,成绩如表:分数75808590人数1432则上列数据中的中位数是A. 80B.C. 85D.112.小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的A. 众数B. 方差C. 中位数D. 平均数113.上学期期末考试,某小组五位同学的数学成绩分别是,则这五个数据的中位数是A. 90B. 98C. 100D. 105114.某男装专营店老板专卖某品牌的夹克,店主统计了一周中不同尺码的夹克销售量如表:尺码170175180185190平均每天的销售量件7918106如果店主要购进100件这种夹克,则购进180尺码的夹克数量最合适的是A. 20件B. 18件C. 36件D. 50件115.某班50名学生的一次安全知识竞赛成绩分布如表所示满分10分成绩分012345678910人数人0001013561915这次安全知识竞赛成绩的众数是A. 5分B. 6分C. 9分D. 10分116.为鼓励市民珍稀每一滴水,某居民会表扬了100个节约用水模范户,6月份节约用水的情况如表:每户节水量单位:吨1节水户数523018那么,6月份这100户平均节约用水的吨数为A. B. C. D. 1t117.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是A. B.C. D.118.某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为A. B. C. D.二、解答题119.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲9092949588乙8986879491表2民主测评票数统计表单位:张“好”票数“较好”票数“一般”票数甲4073乙4244规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.120.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,三人各项得分如表:笔试面试体能甲847890乙858075丙809073根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按的比例计入总分根据规定,请你说明谁将被录用.121.设一组数据的平均数为m,求下列各组数据的平均数:;.122.某市规定学生的学期体育成绩满分是100分,其中大课间活动和下午体段占,期中考试占,期末考试占,张晨的三项成绩百分制分别是95分、90分、86分,求张晨这学期的体育成绩.123.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工作能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?【答案】1. D2. D3. B4. C5. B6. C7. C8. B9. C10. D11. 解:甲的演讲答辩得分分,甲的民主测评得分分,当时,甲的综合得分分;答:当时,甲的综合得分是89分;乙的演讲答辩得分分,乙的民主测评得分分,乙的综合得分为:,甲的综合得分为:,当时,即有,又,时,甲的综合得分高,甲应当选为班长;当时,即有,又,时,乙的综合得分高,乙应当选为班长.12. 解:甲乙丙三人的平均分分别是.所以三人的平均分从高到低是:甲、丙、乙;因为甲的面试分不合格,所以甲首先被淘汰.乙的加权平均分是:分,丙的加权平均分是:分因为丙的加权平均分最高,因此,丙将被录用.13. 解:设一组数据的平均数是m,即,则.,,的平均数是;,,的平均数是.14. 解:根据题意得:分.即张晨这学期的体育成绩为89分.15. 解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,。
(人教版)八年级数学下册课后习题与答案
习题16.11、当a是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4.解析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得12a-≥.2、计算:(1)2;(2)2(;(3)2;(4)2;(5;(6)2(-;(7(8).解析:(1)25=;(2(3(4(5(6(7(83(1(2(2)设两条邻边长为2x ,3x (x>0),则有2x ·3x=S ,得x =所以两条邻边长为4、利用2(0)a a =≥,把下列非负数分别写成一个非负数的平方的形式: (1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)212=;(6)0=02.5、半径为r cm 的圆的面积是,半径为2cm 和3cm 的两个圆的面积之和.求r 的值.,0,r r >∴67(18.经过实验,发现时,小9、((2因为10、一个圆柱体的高为10,体积为V.求它的底面半径r(用含V的代数式表示),并分别求当V=5π,10π和20π时,底面半径r的大小.r=答案:2习题16.21、计算:(1(2(;(3(4答案:(1)(2)-(3)(4)2(13(14(15(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.-+答案:(1)5(26、设长方形的面积为S,相邻两边分别为a,b.(1)已知a=b=S;(2)已知a=,b=,求S.答案:(1);(2)240.7、设正方形的面积为S,边长为a.(1)已知S=50,求a;(2)已知S=242,求a.(28(191011答案:263.12、如图,从一个大正方形中裁去面积为15cm 2和24cm 2的两个小正方形,求留下部分的面积.答案:210cm .13、用计算器计算:(19919⨯+(29999199⨯+;(3)9999991999⨯+;(4)9999999919999⨯+.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9999999991999________.n n n ⨯+=个个个答案:(1)10;(2)100;(3)1000;(4)10000.01000n 个.习题16.31、下列计算是否正确?为什么? (1)235+=;(2)2222+=;(3)3223-=;(4)188943212-=-=-=. 答案:(1)不正确,2与3不能合并; (2)不正确,2与2不能合并; (3)不正确,32222-=;==(4)不正确,2222、计算:(1);(2(3a(4)3答案:(1)(2(3)(4)17a 3、计算:(1(2(3(44(1(2(3(45、已知5 2.236≈,求154545545-+的近似值(结果保留小数点后两位). 答案:7.83.6、已知31,31x y =+=-,求下列各式的值: (1)x 2+2xy +y 2;(2)x 2-y 2. 答案:(1)12;(2)43.7、如图,在Rt △ABC 中,∠C=90°,CB=CA=a .求AB 的长.答案:2a .8、已知110a a+=,求1a a -的值.答案:6±.9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1)2x 2-6=0,(3,6,3,6)--;(2)2(x +5)2=24,(523,523,523,523)+--+--. 答案:(1)3±;(2)235±-.复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (1)3x +; (2)121x -;(3(4答案:(1)x ≥-3;(2)12x >;(3)23x <;(4)x ≠1.2、化简:(1 (2; (3 (4(5 (6答案:(1)(2);(3)3;(4)3a (5)(6)6a .3(1(3(5456答案:23+.7、电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足Q=I 2Rt .已知导线的电阻为5Ω,1s 时间导线产生30J 的热量,求电流I 的值(结果保留小数点后两位).答案:2.45A .8、已知n 是正整数,189n 是整数,求n 的最小值.答案:21. 9、(1)把一个圆心为点O ,半径为r 的圆的面积四等分.请你尽可能多地设想各种分割方法. (2)如图,以点O 为圆心的三个同心圆把以OA 为半径的大圆O 的面积四等分.求这三个圆的半径OB ,OC ,OD 的长.答案:(1)例如,相互垂直的直径将圆的面积四等分; (2)设OA=r ,则12OD r =,22OC r =,32OB r =.10、判断下列各式是否成立:22334422; 33; 44.33881515=== 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明.答案:规律是:2211n n n nn n +=--.只要注意到32211n n n n n +=--,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a和b,斜边长为c.(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.答案:(1)13;(2)7;(3)19.2、一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高AO=2.4,底面半径OB=0.7.AB的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点A到电线杆底部B的距离(结果保留小数点后一位).答案:4.9m.6、在数轴上作出表示20的点.答案:略.7、在△ABC中,∠C=90°,AB=c.(1)如果∠A=30°,求BC,AC;(2)如果∠A=45°,求BC,AC.答案:(1)12BC c=,32AC c=;(2)22BC c=,22AC c=.8、在△ABC中,∠C=90°,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB;(3)高CD.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2.求斜边AB的长.答案:43 3.12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.13、如图,分别以等腰Rt△ACD的边AD,AC,CD为直径画半圆.求证:所得两个月形图案AGCE 和DHCF的面积之和(图中阴影部分)等于Rt△ACD的面积.答案:2211()228AEC AC S AC ππ==半圆,218CFD S CD π=半圆,218ACD S AD π=半圆.因为∠ACD=90°,根据勾股定理得AC 2+CD 2=AD 2,所以S 半圆AEC +S 半圆CFD =S 半圆ACD ,S 阴影=S △ACD + S 半圆AEC +S 半圆CFD -S 半圆ACD , 即S 阴影=S △ACD .14、如图,△ACB 和△ECD 都是等腰直角三角形,△ACB 的顶点A 在△ECD 的斜边DE 上.求证:AE 2+AD 2=2AC 2.证明:证法1:如图(1),连接BD .∵△ECD 和△ACB 都为等腰直角三角形, ∴EC=CD ,AC=CB ,∠ECD=∠ACB=90°. ∴∠ECA=∠DCB . ∴△ACE ≌△DCB .∴AE=DB ,∠CDB=∠E=45°. 又∠EDC=45°, ∴∠ADB=90°.在Rt △ADB 中,AD 2+DB 2=AB 2,得AD 2+AE 2=AC 2+CB 2, 即AE 2+AD 2=2AC 2.证法2:如图(2),作AF ⊥EC ,AG ⊥CD ,由条件可知,AG=FC .在Rt△AFC中,根据勾股定理得AF2+FC2=AC2.∴AF2+AG2=AC2.在等腰Rt△AFE和等腰Rt△AGD中,由勾股定理得AF2+FE2=AE2,AG2+GD2=AD2.又AF=FE,AG=GD,∴2AF2=AE2,2AG2=AD2.而2AF2+2AG2=2AC2,∴AE2+AD2=2AC2.习题17.21、判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=7,b=24,c=25;(2)a=b=4,c=5;(3)54a=,b=1,34c=;(4)a=40,b=50,c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角.不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求AC.答案:13.5、如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.答案:36.6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且14CF CD.求证∠AEF=90°.答案:设AB=4k,则BE=CE=2k,CF=k,DF=3k.∵∠B=90°,∴AE2=(4k)2+(2k)2=20k2.同理,EF2=5k2,AF2=25k2.∴AE2+EF2=AF2.根据勾股定理的逆定理,△AEF为直角三角形.∴∠AEF=90°.7、我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)也是一组勾股数吗?一般地,如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?答案:因为(3k)2+(4k)2=9k2+16k2=25k2=(5k)2,所以3k,4k,5k(k是正整数)为勾股数.如果a,b,c为勾股数,即a2+b2=c2,那么(ak)2+(bk)2=a2k2+b2k2=(a2+b2)k2=c2k2=(ck)2.因此,ak,bk,ck(k是正整数)也是勾股数.复习题171、两人从同一地点同时出发,一人以20 m/min的速度向北直行,一人以30m/min的速度向东直行.10min后他们相距多远(结果取整数)?答案:361m.2、如图,过圆锥的顶点S和底面圆的圆心O的平面截圆锥得截面△SAB,其中SA=SB,AB是圆锥底面圆O的直径.已知SA=7cm,AB=4cm,求截面△SAB的面积.65cm.答案:23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).答案:109.7mm.4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽a=3m,高b=1.5m,长d=10m.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).答案:33.5m 2.5、一个三角形三边的比为1:3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k ,3k ,2k ,其中k >0.由于2222(3)4(2)k k k k +==,根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗? (1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数; (3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等. 答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立. (3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为231+和231-,求斜边c 的长..26答案:كىتىلانائ8、如图,在△ABC 中,AB=AC=BC ,高AD=h .求AB .答案:233h .9、如图,每个小正方形的边长都为1. (1)求四边形ABCD 的面积与周长; (2)∠BCD 是直角吗?答案:(1)14.5,351726++; (2)由20BC =,5CD =,BD=5,可得BC 2+CD 2=BD 2.根据勾股定理的逆定理,△BCD是直角三角形,因此∠BCD 是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a=2m ,b=m 2-1,c=m 2+1,那么a ,b ,c 为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2=(2m )2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2=c 2, 所以a ,b ,c 为勾股数.用m=2,3,4等大于1的整数代入2m ,m 2-1,m 2+1,得4,3,5;6,8,10;8,15,17;等等.12、如图,圆柱的底面半径为6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm ,40cm ,30cm 的长方体木箱中,能放进去吗?答案:能.14、设直角三角形的两条直角边长及斜边上的高分别为a ,b 及h .求证:222111a b h+=.答案:由直角三角形的面积公式,得221122ab h a b =+,等式两边平方得a 2b 2=h 2(a 2+b 2),等式两边再同除以a 2b 2c 2,得222111h a b=+,即222111abh+=.习题18.11、如果四边形ABCD 是平行四边形,AB=6,且AB 的长是□ABCD 周长的316,那么BC 的长是多少?答案:10.2、如图,在一束平行光线中插入一张对边平行的纸板.如果光线与纸板右下方所成的∠1是72°15′,那么光线与纸板左上方所成的∠2是多少度?为什么?答案:72°15′,平行四边形的对角相等.3、如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=36,AB=11.求△OCD的周长.答案:29.4、如图,在□ABCD中,点E,F分别在BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.答案:提示:利用AF CE.5、如图,□ABCD的对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.答案:提示:利用AD=EF=BC.7、如图,直线l1∥l2,△ABC与△DBC的面积相等吗?为什么?你还能画出一些与△ABC面积相等的三角形吗?答案:相等.提示:在直线l1上任取一点P,△PBC的面积与△ABC的面积相等(同底等高).8、如图,□OABC的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c).求顶点B的坐标.答案:B(a+b,c).9、如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;(2)已知AD=BC,求证∠A=∠B.答案:提示:过点C作CE∥AD,交AB于点E,可得四边形AECD为平行四边形.10、如图,四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC且交AD于点E,DF∥BE 且交BC于点F.求∠1的大小.答案:35°.11、如图,A′B′∥BA,B′C′∥CB,C′A′∥AC,∠ABC与∠B′有什么关系?线段AB′与线段AC′呢?为什么?答案:由四边形ABCB′是平行四边形,可知∠ABC=∠B′,AB′=BC;再由四边形C′BCA是平行四边形,可知C′A=BC.从而AB′=AC′.12、如图,在四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的长和四边形ABCD的面积.答案:因为AD=12,DO=5,利用勾股定理可得AO=13,从而四边形ABCD的对角线互相平分,它是一个平行四边形.所以BC=AD=12,四边形ABCD的面积为120.13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处,并使细木条可以绕点O转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与□ABCD的边AD,BC分别交于点E,F,可以发现OE=OF,AE=CF,DE=BF,△AOE≌△COF,△DOE≌△BOF等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形面积相等?为什么?答案:□AEPH与□PGCF面积相等.利用△ABD与△CDB,△PHD与△DFP,△BEP与△PGB 分别全等,从而□AEPH与□PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠2.它是一个矩形吗?为什么?答案:是.利用∠1=∠2,可知BO=CO,从而BD=AC,□ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°,四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ABC中,∠C=90°,AB=2AC.求∠A,∠B的度数.答案:∠A=60°,∠B=30°.5、如图,四边形ABCD是菱形,∠ACD=30°,BD=6.求:(1)∠BAD,∠ABC的度数;(2)AB,AC的长.AC .答案:(1)∠BAD=60°,∠ABC=120°;(2)AB=6,636、如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.答案:提示:由∠ABD=∠DBC=∠ADB,可知AB=AD,同理可得AB=BC.从而AD BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕应成多少度的角?答案:45°.8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了.纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点.∠ECD是多少度?为什么?答案:45°.提示:∠BCD=∠EAC=∠ECA=22.5°.10、如图,四边形ABCD是菱形,点M,N分别在AB,AD上,且BM=DN,MG∥AD,NF∥AB;点F,G分别在BC,CD上,MG与NF相交于点E.求证:四边形AMEN,EFCG都是菱形.答案:提示:四边形AMEN,EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.求DH的长.答案:DH=4.8.提示:由AB·DH=2AO·OD=2S△ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(b,0),(0,d).求点C的坐标.(2)如下图(2),四边形ABCD是菱形,C,D两点的坐标分别是(c,0),(0,d),点A,B在坐标轴上.求A,B两点的坐标.(3)如下图(3),四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,d).求B,C 两点的坐标.答案:(1)C(b,d);(2)A(-c,0),B(0,-d);(3)B(d,0),C(d,d).13、如图,E,F,M,N分别是正方形ABCD四条边上的点,且AE=BF=CM=DN.试判断四边形EFMN是什么图形,并证明你的结论.答案:正方形.提示:△BFE ≌△CMF ≌△DNM ≌△AEN ,证明四边形EFMN 的四条边相等,四个角都是直角.14、如图,将等腰三角形纸片ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.答案:3种.可以分别以AD ,AB (AC ),BD (CD )为四边形的一条对角线,得到3种平行四边形,它们的对角线长分别为h ,22224(3)n h n m ++或;m ,m ;n ,22224(3)n h h m ++或.15、如图,四边形ABCD 是正方形.G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ∥DE ,且交AG 于点F .求证:AF -BF=EF .答案:提示:由△ADE ≌△BAF ,可得AE=BF ,从而AF -BF=EF .16、如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O .BO 与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答案:BO=2OD,BC边上的中线一定过点O.利用四边形EMND是平行四边形,可知BO=2OD;设BC边上的中线和BD相交于点O′,可知BO′=2O′D,从而O与O′重合.17、如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.答案:分法有无数种.只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题.(1)若平行四边形中两个内角的度数比为1︰2,则其中较小的内角是().A.90°B.60°C.120°D.45°(2)若菱形的周长为8,高为1,则菱形两邻角的度数比为().A.3︰1 B.4︰1 C.5︰1 D.6︰1(3)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB为()A.10°B.15°C.20°D.125°答案:(1)B;(2)C;(3)B.2、如图,将□ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF是平行四边形.答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个50°的角.对角线与各边组成的角是多少度?答案:65°和25°.4、如图,你能用一根绳子检查一个书架的侧边是否和上、下底都垂直吗?为什么?答案:可以.通过测量对边以及对角线是否分别相等来检验.5、如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD.求证:四边形OCED 是菱形.答案:提示:一组邻边相等的平行四边形是菱形.6、如图,E,F,G,H分别是正方形ABCD各边的中点.四边形EFGH是什么四边形?为什么?答案:正方形.提示:证明四边形EFGH四边相等、四个角都是直角.7、如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.求证∠1=∠2.答案:由△ABE≌△CDF,可知BE=DF.又BE∥DF,所以四边形BFDE是平行四边形.所以DE∥BF,从而∠1=∠2.8、如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?答案:由△ABE≌△DAF可知,BE和AF等长,并且互相垂直.9、我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)任意四边形的中点四边形是什么形状?为什么?(2)任意平行四边形的中点四边形是什么形状?为什么?(3)任意矩形、菱形和正方形的中点四边形分别是什么形状?为什么?答案:(1)平行四边形,利用三角形中位线定理可证一组对边平行且相等,或两组对边分别平行;(2)平行四边形;(3)菱形、矩形、正方形.10、如果一个四边形是轴对称图形,并且有两条互相垂直的对称轴,它一定是菱形吗?一定是正方形吗?答案:一定是菱形,不一定是正方形.11、用纸板剪成的两个全等三角形能够拼成什么四边形?要想拼成一个矩形,需要两个什么样的全等三角形?要想拼成菱形或正方形呢?动手剪拼一下,并说明理由.答案:平行四边形;要拼成一个矩形,需要两个全等的直角三角形;要拼成一个菱形,需要两个全等的等腰三角形;要拼成一个正方形,需要两个全等的等腰直角三角形.12、如图,过□ABCD的对角线AC的中点O作两条互相垂直的直线,分别交AB,BC,CD,DA 于E,F,G,H四点,连接EF,FG,GH,HE.试判断四边形EFGH的形状,并说明理由.答案:菱形.提示:先证明△AOE≌△COG,△AOH≌△COF,可得OE=OG,OF=OH,所以四边形EFGH是平行四边形.又EG⊥FH,从而□EFGH是菱形.13、如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm.点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?答案:6s;6s或7s.提示:设经过t s,四边形PQCD成为平行四边形,根据PD=QC,可列方程24-t=3t,解得t=6.若PQ=CD,则四边形PQCD为平行四边形或梯形(腰相等),为平行四边形时有t=6;为梯形(腰相等)时,有QC=PD+2(BC-AD),可列方程3t=24-t+4,解得t=7.14、如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.答案:提示:证明△AGE≌△ECF.15、求证:平行四边形两条对角线的平方和等于四条边的平方和.答案:提示:如图,在□ABCD中,设AD=a,AB=b,BD=m,AC=n,DE=h,AE=x,则分别有h2=a2-x2①,h2=n2-(b+x)2②,h2=m2-(b-x)2③,由①×2=②+③,化简可得m2+n2=2a2+2b2.习题19.11、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.答案:常量0.2,变量x,y,自变量x,函数y,y=0.2x.2、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.答案:常量5,变量h,S,自变量h(h>0),函数S,52hS .3、在计算器上按下面的程序操作:填表:x 1 3 -4 0 101 -5.2y显示的计算结果y是输入数值x的函数吗?为什么?答案:7,11,-3,5,207,-5.4,y是x的函数,符合函数定义.4、下列式子中的y是x的函数吗?为什么?(1)y=3x-5;(2)21xyx-=-;(3)1y x=-.请再举出一些函数的例子.答案:y是x的函数,符合函数定义.例子略.5、分别对上一题中的各函数解析式进行讨论:(1)自变量x在什么范围内取值时函数解析式有意义?(2)当x=5时对应的函数值是多少?答案:(1)y=3x-5,x可为任意实数;21xyx-=-,x≠1;1y x=-,x≥1.(2)y=3x-5,x=5,y=10;21xyx-=-,x=5,34y=;1y x=-,x=5,y=2.6、画出函数y=0.5x的图象,并指出自变量x的取值范围.答案:自变量x的取值范围是全体实数.7、下列各曲线中哪些表示y是x的函数?答案:图(1)(2)(3)中y是x的函数,图(4)中y不是x的函数.8、“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下列哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)答案:图(2).9、下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图象回答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)张强从文具店回家的平均速度是多少?答案:(1)2.5km,15min;(2)1km;(3)20min;(4)3km/min 70.10、某种活期储蓄的月利率是0.06%,存入100元本金.求本息和y(本金与利息的和,单位:元)随所存月数x变化的函数解析式,并计算存期为4个月时的本息和.答案:y=100+0.06x,100.24元.11、正方形边长为3.若边长增加x,则面积增加y.求y随x变化的函数解析式,指出自变量与函数,并以表格形式表示当x等于1,2,3,4时y的值.答案:y=x2+6x,自变量x,函数y,x 1 2 3 4y 7 16 27 4012、甲、乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m处,设x s (0≤x≤100)后两车相距y m.用解析式和图象表示y与x的对应关系.答案:y=500-5x(0≤x≤100).13、甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如下图所示.(1)A,B两城相距多远?(2)哪辆车先出发?哪辆车先到B城?(3)甲、乙两车的平均速度分别为多少?(4)你还能从图中得到哪些信息?答案:(1)300km;(2)甲先出发,乙先到达;(3)甲60km/h,乙100km/h;(4)6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前.14、在同一直角坐标系中分别画出函数y=x与1yx的图象.利用这两个图象回答:(1)x取什么值时,x比1x大?(2)x取什么值时,x比1x小?答案:(1)-1<x<0或x>1;(2)x<-1或0<x<1.15、四边形有两条对角线,五边形、六边形分别有多少条对角线?n边形呢?多边形对角线的条数是边数的函数吗?答案:五边形有5条对角线,六边形有9条对角线,n边形有(3)2n n条对角线,多边形对角线的条数是边数的函数.习题19.21、一列火车以90km/h的速度匀速前进.求它的行驶路程s(单位:km)关于行驶时间t(单位:h)的函数解析式,并画出函数图象.答案:s=90t(t≥0).图象略.2、函数y=-5x的图象在第__________象限内,经过点(0,__________)与点(1,__________),y随x的增大而__________.答案:二,四,0,-5,减小.3、一个弹簧不挂重物时长12 cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1 kg 的物体后,弹簧伸长2 cm.求弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式.答案:y=12+2x(0≤x≤m,m是弹簧能承受物体的最大质量).4、分别画出下列函数的图象:(1)y=4x;(2)y=4x+1;(3)y=-4x+1;(4)y=-4x-1.答案:(1)(2)(3)(4)5、在同一直角坐标系中,画出函数y=2x+4与y=-2x+4的图象,并指出每个函数中当x增大时y如何变化.答案:y=2x+4随x增大而增大,y=-2x+4随x增大而减小.6、已知一次函数y=kx+b,当x=2时y的值为4,当x=-2时y的值为-2,求k与b.答案:32k=,b=1.7、已知一次函数的图象经过点(-4,9)和点(6,3),求这个函数的解析式.答案:33355y x=-+.8、当自变量x取何值时,函数512y x=+与y=5x+17的值相等?这个函数值是多少?答案:325x=-,y=-15.9、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象.(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?答案:(1)S=-3x+24(0<x<8);(2)9;(3)不能大于24,因为0<x<8,所以0<S=-3x+24<24.10、不画图象,仅从函数解析式能否看出直线y=3x+4与y=3x-4具有什么样的位置关系?答案:平行.11、从A 地向B 地打长途电话,通话时间不超过3min 收费2.4元,超过3min 后每分加收1元.写出通话费用y (单位:元)关于通话时间x (单位:min )的函数解析式.有10元钱时,打一次电话最多可以通话多长时间?(本题中x 取整数,不足1min 的通话时间按1min 计费.)答案: 2.4, 03,0.6, 3.x y x x <⎧=⎨->⎩≤由函数解析式得x=10.6.由不足1min 的通话时间要按1min 计算可知,有10元钱最多通话10min .12、(1)当b >0时,函数y=x +b 的图象经过哪几个象限? (2)当b <0时,函数y=-x +b 的图象经过哪几个象限? (3)当k >0时,函数y=kx +1的图象经过哪几个象限? (4)当k <0时,函数y=kx +1的图象经过哪几个象限? 答案:(1)第一、二、三象限; (2)第二、三、四象限; (3)第一、二、三象限; (4)第一、二、四象限.13、在同一直角坐标系中,画出函数512y x =+和y=5x +17的图象.并结合图象比较这两个函数的函数值的大小关系.答案:当325x <-时,51517;2y x y x =+>=+ 325,1517;52x y x y x =-=+==+当时325,1517.52x y x y x >-=+<=+当时14、图中的折线表示一骑车人离家的距离y 与时间x 的关系.骑车人9:00离开家,15:00回家.请你根据这个折线图回答下列问题:(1)这个人何时离家最远?这时他离家多远?(2)何时他开始第一次休息?休息多长时间?这时他离家多远?(3)11:00~12:30他骑了多少千米?(4)他在9:00~10:30和10:30~12:30的平均速度各是多少?(5)他返家时的平均速度是多少?(6)14:00时他离家多远?何时他距家9km?答案:(1)12:30~13:30,45km;(2)10:30,30min,30km;(3)15km;(4)20km/h,7.5km/h;(5)30km/h;(6)18km,14:30.15、甲、乙两家商场平时以同样价格出售相同的商品.春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?答案:(1)甲商场y=0.8x(x≥0),乙商场, 0200,0.760,200.x xyx x⎧=⎨+>⎩≤≤(2)。
新课程课堂数学人教版八年级下册同步练习册参考答案
新课程课堂数学人教版八年级下册同步练习册参考答案新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、§一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、§一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、。
人教版八年级下册数学课时练《16.1 二次根式》(含答案) (2)
人教版八年级数学下册《16.1二次根式》课时练学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式一定有意义的共有()个.①A .0B .2C .4D .62.把(2-x)的根号外的(2-x )适当变形后移入根号内,得()AB C .D .31a =-,则a 的取值是().A .1a >B .1a ³C .1a <D .14=成立的条件是()A .3x ³B .4x ³C .34x ££D .3x £5a =-成立,那么a 的取值范围是()A .0a £B .0a ³C .0a <D .0a >6.计算-2-3×(5)(精确到百分位)的结果为()A .12.76B .-12.76C .21.24D .-21.24二、填空题7=___________.8.求下列各式的值:(1;(2);(3)=____.90=,则y x =__________.10.当x _____有意义;当x _______11.若a,b 满足7a =,则b a =_____.三、解答题12.计算:(1)2(2(3(42(-13.当a 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(414.若x ,y 满足y|y -3|15的值:(1)1a =,10b =,15c =-;(2)2a =,8b =-,5c =.16.(1n 所有可能的值;(2是整数,求正整数n 的最小值.参考答案1.C 2.D 3.B 4.B 5.A 6.B 7+18.12-0.9±11149.8110.1x <3x >-11.4912.解:(1)22=;(211=;(3)原式34==;(4)原式770=-=.13.解:(1∴a −1≥0,解得:a ≥1;(2∴2a +3≥0,解得:32a ³-.(3∴0a -³,解得:0a £.(4在实数范围内有意义,∴50a -³,解得:5a £.14.解:由已知条件,得x -2≥0且2-x≥0,解得x =2,代入原不等式中得y所以|y -3|=|y -3|=|y -3|-|y=3-y +y=315.解:(1)当1a =,10b =,15c =-时,=(2)当2a =,8b =-,5c ==16.解:(1∴180n -=,181n -=,184n -=,189n -=,1816n -=,解得:18n =,17n =,14n =,9n =,2n =,则自然数n 的值为2,9,14,17,18;(2=是整数,n 为正整数,∴正整数n 的最小值为6.。
八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)
八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)一、选择题1.已知函数y=(k-1)2k x为正比例函数,则()A.k≠±1B.k=±1C.k=-1D.k=12.若y=x+2-b是正比例函数,则b的值是()A.0B.-2C.2D.-0.53.(易错题)正比例函数y=x的大致图像是()x图像上的两点,下列判断中,正确的4.P1(x1,y1),P2(x2,y2)是正比例函数y=-12是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y25.(易错题)已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1B.a>1C.a≥1D.a≤16.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2)B.(-1,-2)C.(-2,-1)D.(1,-2)7.(北京景山学校月考)若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是()A.14B.14-C.1D.-18.(北京师大附中月考)某正比例函数的图像如图19-2-1所示,则此正比例函数的表达式为()A.y=-12-x B.y=12xC.y=-2xD.y=2x9.(天津河西区模拟)对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1,kk-)C.经过一、三象限或二、四象限D.y随着x增大而减小二、填空题10.(教材习题变式)直线y=32x经过第________象限,经过点(1,________),y随x 增大而________;直线y=-(a2+1)x经过第________象限,y随x增大而________.三、解答题11.已知正比例函数y=(2m+4)x,求:(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)m为何值时,点(1,3)在该函数的图象上?12.已知4y+3m与2x-5n成正比例,证明:y是x的一次函数.13.(教材例题变式)画正比例函数y=13x与y=-13x的图象.14.已知点(12,1)在函数y=(3m-1)x的图象上.(1)求m的值;(2)求这个函数的分析式.15.已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式;(2)如果y的取值范围为0≤y≤5,求x的取值范围;(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.16.(湖北启黄中学月考)已知函数()2321-=-my m x的图象是一条过原点的直线,且y随x的增大而减小,求m的值。
八年级数学下册(人教版)课堂练习检测—中位数和众数2(含答案)
八年级数学下册(人教版)课堂练习检测—中位数和众数2(含答案)一、选择题1.对于数据2,4,4,5,3,9,4,5,1,8,其众数、中位数和平均数分别为( ).A.4 4 6B.4 6 4.5C.4 4 4.5D.5 6 4.52.为了筹备班里的新年联欢会,班长以全班同学最爱吃哪几种水果做民意调查,以决定最终买什么水果.该次调查结果最终应该由数据的( )决定.A.平均数B.中位数C.众数D.无法确定3.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为( )A.9与8B.8与9C.8与8D.8.5与94.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在( ).A.B组B.C组[来源:学科网]C.D组D.A组5.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A.23 25B.23 23C.25 23D.25 256.为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75,70,90,70,70,58,80,55(单位:分钟),那么这组数据的众数、中位数和平均数依次为( ).A.70 70 71B.70 71 70C.71 70 70D.70 70 707.有7个数由小到大排列,其平均数是38.如果这组数中前4个数的平均数是33,后4个数的平均数是42,那么这7个数的中位数是( ).A.34B.1 6C.38D.20二、填空题8.已知a<b<c<d,则数据a,a,b,c,d,b,c,c的众数为______,中位数为______,平均数为______.9.一组数据的中位数是m,众数是n,则将这组数据中每个数都减去a后,新数据的中位数是______,众数是______.三、解答题10.某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.11.文艺会演中,参加演出的10个班各派1名代表担任评委给演出打分,1班和2班的成绩如下:(1)若根据平均数作为评选标准,两个班谁将获胜?你认为公平吗?为什么?(2)采用怎样的方法,对参赛的班级更为公平?如果采用你提供的方法,两个班谁将获胜?12.某同学为了完成统计作业,对全校的耗电情况进行调查.他抽查了10天中全校每天的耗电量,数据如下(单位:度):(1)写出上表中数据的众数和平均数;(2)由(1)获得的数据,估计该校一个月(按30天计算)的耗电量;(3)若当地每度电的定价是0.5元,写出该校应付的电费y(元)与天数x(取正整数)之间的函数关系式.13.在学校组织的“喜迎奥运,知荣明耻.文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中,2班成绩在C级以上(包括C级)的人数为______;(2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较1班和2班的成绩;①从平均数和众数的角度来比较1班和2班的成绩;①从B级以上(包括B级)的人数的角度来比较1班和2班的成绩.参考答案1.C . 2.C . 3.C . 4.B . 5.D . 6.A . 7.A .8.⋅++++8322;2;dc b a c b c 9.m -a ;n -a .10.(1)样本平均数是80分,中位数是80分,众数是85分;(2)估计全年级平均80分.11.(1)3.7101437681=⨯+⨯+⨯=x (分),6.71011067382=⨯+⨯+⨯=x (分),2班将获胜;我认为不公平,因为4号评委给两个班的打分明显有偏差,影响了公正性;(2)可以采取去掉一个最高分和一个最低分后,再计算平均数,这样1班获胜;也可以用中位数来衡量标准,也是1班获胜.12.(1)众数是113度,平均数是108度; (2)估计一个月的耗电量是108×30=3240(度);(3)解析式为y=54x(x是正整数).13.(1)21;(2)1班众数:90分;2班中位数:80分;(3)略。
(完整版)人教八年级数学下册同步练习题及答案
1第十六章、分式 16.1.1从分数到分式(第一课时)一、课前小测:1、________________________统称为整式.2、23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.二、基础训练:1、分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零; 当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 2、有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④23、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1三、综合训练:1、当x______时,分式2134x x +-无意义. 2、当x_______时,分式2212x x x -+-的值为零. 3、当x 取何值时,下列分式有意义?(1) (2)2323x x +-16.1.2分式的基本性质(第二课时)一、课前小测:23+x31.如果分式x211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x 2. 当_____时,分式4312-+x x 无意义.当______时,分式68-x x 有意义 二、基础训练:1、分式的基本性质为:_________ ___.用字母表示为:_____________________.2、判断下列约分是否正确:(1)c b c a ++=b a , (2)22y x y x --=y x +1, (3)nm n m ++=0。
3、根据分式的基本性质,分式a a b --可变形为( ) A .a a b-- B .a a b + C .-a a b - D .a a b + 4、填空:4 (1) x x x 3222+= ()3+x , (2) 32386b b a =()33a , 5、约分:(1)c ab b a 2263 (2)532164xyz yz x - 三、综合训练:1、通分:(1)231ab 和b a 272 (2)xx x --21和x x x +-21 2、若a =23,则2223712aa a a ---+的值等于______。
部编人教版初二下册数学全册同步练习(一课一练)
新人教版八年级下册初中数学全册资料汇编课时练(一课一练)16.1 二次根式1. 下列各式是二次根式的是( )A.-5 B .34 C. 4 D .-x 2-1 2. 若(x -2)2=2-x ,那么x 的取值范围是( ) A .x≤2 B.x <2 C .x <2 D .x≥2 3. 下列各式中不是二次根式的是( )A.x 2+2 B .-8 C .- 3 D .(m -n)2 4. 要使二次根式2-3x 有意义,则x 的( )A .最大值是23B .最小值是23C .最大值是32D .最小值是325. 已知x 、y 为实数,且x -1+3(y -2)2=0,则x -y 的值为( ) A .3 B .-3 C .1 D .-16. 已知-1≤a≤1,下列是二次根式的为( ) A.a -12B .1-1aC.1-a 2 D .1-a1+a7.已知实数x 、y 满足|x -4|+y -8=0,则以x 、y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上答案均不对8. 实数a ,b 在数轴上对应点的位置如图所示.化简式子|a|+(a -b)2的结果是( )A .-2a +bB .2a -bC .-bD .b 9.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152D .无法确定10. 当x=时,函数y=2x+4+5有最小值,最小值为. 11.在实数范围内分解因式:x4-25=12. 若a+3+2-b=0,则a=,b=.13. 要使二次根式x-1有意义,则x的取值范围是.14. 已知一个直角三角形的两直角边长分别为2和5,则斜边长为.15. 写出下列各式有意义的条件.(1)4-x(2)x+2 x-316. 化简:(1)16(2)(-2)217. 计算:(1)42-(-2)2+(35)2-(-7)2;(2)(4-7)2+(17-5)2.18.已知实数a、b满足b=2018+a2-9+9-a2a-3,求a、b的值.19. 直线y=mx+n,如图所示,化简|m+n|+m2-(2m+n)2.20. 甲、乙两位同学做一道相同的题目: 化简求值:1a+1a 2+a 2-2,其中a =15. 甲同学的做法是:原式=1a +(1a -a)2=1a +1a -a =2a -a =10-15=495; 乙同学的做法是:原式=1a+(a -1a )2=1a +a -1a =a =15.请问哪位同学的解法正确?请说明理由.参考答案1---9 CABAD CBAA 10. -2 511. (x 2+5)(x +5)(x -5) 12. -3 2 13. x≥1 14.715. (1) x≤4 (2) x≥-2且x≠3 16. (1) 解:原式=4 (2) 解:原式=217. (1) 解:原式=4-2+45-7=40 (2) 解:原式=(17-4)+(5-17)=118. 解:依题意得⎩⎨⎧a 2-9≥09-a 2≥0a -3≠0,∴a=-3,∴b=2018.19. 解:依题意得:m <0,n >0.,∴m-n <0,2m +n <0,∴|m+n|+m 2-(2m +n)2=-(m -n)+(-m)-[-(2m +n)]=-m +n -m +2m -n =0.20. 解:甲同学的解法是正确的,理由如下: ∵1a2+a 2-2=(a -1a )2=|1a -a|,且a =15,即1a =5,∵1a >a ,∴|1a -a|=1a-a.∴乙同学在去绝对值时忽略了1a与a 的大小关系,导致错误.16.2 二次根式的乘除同步练习一、选择题 1.若,,把代数式中的m 移进根号内结果是A.B.C.D.2.如果,,那么下面各式:,,,其中正确的是A.B.C.D.3.若,,则可以表示为 A.B.C. D. ab4.如果,那么x 的取值范围是A.B.C.D.5.计算:的结果是A.B.C. 40D. 76.若,且,则的值为A.B.C.D.7.化简的结果为A. B. C. D.8.若,,则的值用a、b可以表示为A. B. C. D.9.若,则x的取值范围是A. B. C. D. 不存在10.下列计算正确的是A. B.C. D.二、填空题11.计算:______.12.能使得成立的所有整数a的和是______ .13.计算:______ .14.成立的x的取值范围是______ .15.观察下列各式:;;,请用含的式子写出你猜想的规律:__________.三、计算题16..17.已知求的值.18.先化简,再求值:,其中.【答案】1. C2. B3. C4. D5. D6. D7. C8. C9. A10. B11. 6a12. 513. x14.15.16. 解:原式.17. 解:,.18. 解:原式,当时,原式.16.3 二次根式的加减同步练习一、选择题19.无论x取任何实数,代数式都有意义,则m的取值范围是A. B. C. D.20.若,则x的取值范围是A. B. C. D.21.已知a,b在数轴上的位置如图所示,化简代数式的结果等于A. B. C. D. 222.若,,则代数式的值为A. 3B.C. 5D. 923.下列计算结果正确的是A. B.C. D.24.已知,则的值为A. 5B. 6C. 3D. 425.的值是A. 0B.C.D. 以上都不对26.计算的结果是A. 6B.C.D. 1227.已知,,,则的结果是A. B. C. D.28.若,,则代数式的值为A. B. C. D. 4二、填空题29.若,则______.30.若,化简______ .31.对于任意不相等的两个数a,b,定义一种运算如下:,如,那么______ .32.若,则的值为______ .33.观察分析下列数据:0,,,,,,,,根据数据排列的规律得到第13个数据应是______ .三、计算题34.计算:.35.已知,求的值.36.已知,求的值.【答案】1. C2. C3. A4. A5. C6. A7. A8. D9. B10. B11. 1 12. 4 13. 14. 15. 616. 解:,,,,,17. 解:原式,,,原式.18. 解:,,原式.17.1 勾股定理同步练习一、选择题37.在中,,,BC边上的高,则另一边BC等于A. 10B. 8C. 6或10D. 8或1038.如图,已知中,,CD是高,,,求AB的长A.4B. 6C. 8D. 1039.如图,以为直径分别向外作半圆,若,,则A. 2B. 6C.D.40.直角三角形的斜边为20cm,两直角边之比为3:4,那么这个直角三角形的周长为A. 27cmB. 30cmC. 40cmD. 48cm41.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为A. 3B. 4C. 5D. 642.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为A. B.C. D.43.如图,正方形ABCD的边长为10,,,连接GH,则线段GH的长为A.B.C.D.44.如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是A. cmB. cmC. cmD. cm45.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为A. 米B. 米C. 米D. 米46.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到,使梯子的底端到墙根O的距离等于3m,同时梯子的顶端B下降至,那么A. 小于1mB. 大于1mC. 等于1mD. 小于或等于1m二、填空题47.在中,已知两边长为5、12,则第三边的长为______ .48.如图,已知中,,,,,则______ .49.如图,在中,,,D为BC上一点,过点D作,垂足为E,连接AD,若,则AB的长为______ .50.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______元钱.51.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.三、计算题52.如图,在中,,垂足为D,,.求的度数.若,求AB的长.53.已知:如图,在中,,D是AC上一点,于E,且.求证:BD平分;若,求的度数.54.如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.求梯子顶端与地面的距离OA的长.若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.【答案】1. C2. C3. A4. D5. C6. C7. B8. C9. C10. A11. 13或12. 1213.14. 61215. 816. 解:.,;.17. 证明:,,,点D在的平分线上,平分.解:,,,平分,.18. 解:米;米,米.17.2勾股定理的逆定理同步练习一、选择题55.适合下列条件的中,直角三角形的个数为,,;,;,,;,.A. 1个B. 2个C. 3个D. 4个56.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( )A. 10B. 12C. 24D. 4857.在中,,,,则A. B. C. D.58.在中,,,,则点C到AB的距离是A. B. C. D.59.三角形两边长分别是8和6,第三边长是一元二次方程一个实数根,则该三角形的面积是A. 24B. 48C. 24或D.60.中,,,的对边分别为a、b、c,下列说法中错误的A. 如果,则是直角三角形,且B. 如果,则是直角三角形,且C. 如果,则是直角三角形,且D. 如果:::2:5,则是直角三角形,且61.如图,已知点,,点C在直线上,则使是直角三角形的点C的个数为A. 1B. 2C. 3D. 462.中,,,BC边上中线,则AB,AC关系为A. B. C. D. 无法确定63.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为A. 1个B. 2个C. 3个D. 4个64.如图,在中,,,,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是A. B.C. 5D.二、填空题65.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为______ .66.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______ .67.如图,已知三条边,,,,则______ cm68.如图所示,在中,AB:BC::4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,的面积为______69.在中,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为______.三、计算题70.已知如图,四边形ABCD中,,,,,,求这个四边形的面积.71.如图,P为等边内一点,PA、PB、PC的长为正整数,且,设,n为大于5的实数,且满足,求的面积.72.在直角三角形ABC中,,CD是AB边上的高,,,求的面积;求CD的长;若的边AC上的中线是BE,求出的面积.【答案】1. C2. B3. A4. A5. C6. B7. C8. B9. B10. B11.12. 213. 1214. 1815. 216. 解:连接AC,如图所示:,为直角三角形,又,,根据勾股定理得:,又,,,,,为直角三角形,,则.17. 解:,分解因式得:,为大于5的实数,,即:,,PA、PB、PC的长为正整数,,,设,等边三角形的边长是a,则,由余弦定理得:,,而,,将代入得:,解得:,,,令,,解得:,,由知,,即,,,不合题意舍去,,即,过A作于D,等边,,由勾股定理得:,.答:的面积是.18. 解:,,,;,;,,的面积为.18.1平行四边形同步练习一、选择题73.如图,平行四边形ABCD的周长为40,的周长比的周长多10,则AB长为A. 20B. 15C. 10D. 574.已知四边形ABCD中有四个条件:,,,,从中任选两个,不能使四边形ABCD成为平行四边形的选法是A. ,B. ,C. ,D. ,75.平行四边形的两条对角线分别为4和6,则其中一条边x的取值范围为A. B. C. D.76.平行四边形ABCD中,有两个内角的比为1:2,则这个平行四边形中较小的内角是A. B. C. D.77.如图,▱ABCD的对角线AC与BD相交于点O,,垂足为E,,,,则AE的长为A. B. C. D.78.在平行四边形ABCD中,:::的可能情况是A. 2:7:2:7B. 2:2:7:7C. 2:7:7:2D. 2:3:4:579.如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为A.B.C.D.80.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把沿着AD方向平移,得到,若两个三角形重叠部分的面积为,则它移动的距离等于A. B. 1cm C. D. 2cm81.如图,平行四边形的两条对角线将平行四边形的面积分成四部分,分别记作,,,,下列关系式成立的是A. B. C. D.82.如图,在▱ABCD中,,F是AD的中点,作于E,在线段AB上,连接EF、则下列结论:;;;,其中一定正确的是A. B. C. D.二、填空题83.平行四边形ABCD中,的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是______ .84.在▱ABCD中,如果,那么______ 度85.如图,▱ABCD的面积为,P为▱ABCD内部的任意一点,则图中阴影部分的面积之和为______ .86.若在▱ABCD中,,,,则______ .87.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分交AB丁点E,交BD于点F,且,,连接下列四个结论:;;;::,其中结论正确的序号是______把所有正确结论的序号都选上三、计算题88.已知平行四边形ABCD的周长为60cm,对角线AC,BD相交于点O,的周长比的周长长8cm,求这个平行四边形各边的长.89.如图,已知,,四边形ABCD为平行四边形;求证:;连接OD,若,求证:四边形ABCD为菱形.90.如图,在▱ABCD,对角线AC、BD相交于点O、E、F是对角线AC上的两点.现有三个条件:;;都可确定四边形DEBF为平行四边形.请选择其中的一个等式作为条件,证明四边形DEBF为平行四边形.【答案】1. D2. C3. B4. B5. D6. A7. C8. B9. B10. B11. 14或1612. 11013.14. 2115.16.解:的周长比的周长长8cm,,是平行四边形,,,,平行四边形ABCD的周长60cm,,,,即平行四边形ABCD的边长是11cm,19cm,11cm,19cm.17. 解:,,,,,,四边形ABCD为平行四边形;,,,,,;连接BD,交AC于点H,,,,,,∽,,,,,平行四边形ABCD中,,四边形ABCD为菱形.18. 解:选择,理由为:证明:四边形ABCD是平行四边形,,,,,即,四边形DEBF为平行四边形.18.2 特殊的平行四边形同步练习一、选择题91.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是A. B. 5 C. 6 D.92.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,于H,连接OH,,则的度数是A. B. C. D.93.以下条件不能判别四边形ABCD是矩形的是A. ,,B.C. ,,D. ,,,94.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是A. 17B. 16C.D.95.已知菱形的面积为,一条对角线长为6cm,则这个菱形的边长是厘米.A. 8B. 5C. 10D.96.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若,则AF等于A.B.C.D. 897.如图,在周长为12的菱形ABCD中,,,若P为对角线BD上一动点,则的最小值为A. 1B. 2C. 3D. 498.有3个正方形如图所示放置,阴影部分的面积依次记为,,则:等于A. 1:B. 1:2C. 2:3D. 4:999.如图:A,D,E在同一条直线上,,,BD,DF分别为正方形ABCD,正方形DEFG的对角线,则三角形的面积为A.B. 3C. 4D. 2100.我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点处,则点C的对应点的坐标为A. B. C. D.二、填空题101.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为______ .102.如图,正方形ABCD的边长为1,AC,BD是对角线将绕着点D顺时针旋转得到,HG交AB于点E,连接DE交AC于点F,连接则下列结论:四边形AEGF是菱形≌其中正确的结论是______.103.如图:在矩形ABCD中,,,P为AD上任一点,过点P作于点E,于点F,则______ .104.如图,四边形ABCD是菱形,,,于点H,则线段BH的长为______.105.正方形ABCD中,E、F分别在AD、DC上,,G是AD上另一点,且,连接EF、BG、FG、EF、BG交于点H,则下面结论:;是等边三角形;;中,正确的是______请填番号三、计算题106.如图,在中,,D、E、F分别是BC、AC、AB边上的中点.求证:四边形BDEF是菱形;若,求菱形BDEF的周长.107.如图所示,将一个长方形纸片ABCD沿对角线AC折叠点B落在E点,AE交DC于F点,已知,求折叠后重合部分的面积.108.如图1,四边形ABCD是正方形,,点G在BC边上,,于点E,于点F.求BF和DE的长;如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.【答案】1. A2. A3. D4. A5. B6. A7. C8. D9. B10. D11. 12012.13.14.15.16. 证明:、E、F分别是BC、AC、AB的中点,,,四边形BDEF是平行四边形,又,,且,,四边形BDEF是菱形;解:,F为AB中点,,菱形BDEF的周长为.17. 解:四边形ABCD是矩形,,,将一个长方形纸片ABCD沿对角线AC折叠,,,,,在和中,≌,,,设,则,在中,,即,解得:,即,折叠后重合部分的面积.18. 解:如图1,四边形ABCD是正方形,,,,,,在中,,,,,,,,在和中,≌,,理由如下:作于H,如图2,≌,,,与的证明方法一样可得≌,,,,,在和中,≌,,,,,.19.1函数一、选择题(每小题只有一个正确答案) 1.下列各式中,表示y 是x 的函数的有( )①2y +x =3;②y =x +2z ;③y =2;④y =kx +1(k 为常量);⑤y 2=2x . A. 0个 B. 1个 C. 2个 D. 3个 2.函数5y x =-中自变量x 的取值范围是( )A. x≥-5B. x≤-5C. x≥5D. x≤53.下面关于函数的三种表示方法叙述错误的是( )A. 用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B. 用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C. 用公式法表示函数关系,可以方便地计算函数值D. 任何函数关系都可以用上述三种方法来表示 4.如图所示,y 与x 的关系式为( )A. y=-x+120B. y=120+xC. y=60-xD. y=60+x 6.已知两个变量x 和y ,它们之间的三组对应值如下表所示:x -1 2 -3 y-63-2则y 与x 之间的函数表达式可能是( ) A. y =3x B. y =x +5 C. y =x 2+5 D. y =6x7.下列各曲线中能表示y 是x 的函数的是( )A. B. C. D.二、填空题8.某超市,苹果的标价为3元/千克,设购买这种苹果xkg ,付费y 元,在这个过程中常量是________变量是________,请写出y 与x 的函数表达式________ .9.函数y =x 的取值范围是_____. 11.函数的三种表示方法是_________、_________、___________.12.一空水池现需注满水,水池深 4.9m ,现以不变的流量注水,数据如下表所示:(1)上表反映的变量关系中,注水时间 t 是_____,水的深度 h 是_____. (2)注满水池需要的时间是_____h .三、解答题13.求下列函数中自变量的取值范围.()135y x =-+;()324xy x =-; ()3y =; ()4y =; ()5y =14.写出下列问题中的关系式,并指出其中的变量和常量. (1)直角三角形中一个锐角a 与另一个锐角β之间的关系;(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t (小时)表示水箱中的剩水量y (吨).15.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车油箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.2 一次函数1. 关于直线l :y =kx +k(k≠0),下列说法不正确的是( ) A .点(0,k)在l 上 B .l 经过定点(-1,0) C .当k >0时,y 随x 的增大而增大 D .l 经过第一、二、三象限2. 若k≠0,b <0,则y =kx +b 的图象可能是( )3. 设点A(a ,b)是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A .2a +3b =0B .2a -3b =0C .3a -2b =0D .3a +2b =04. 如图,若一次函数y =-2x +b 的图象交y 轴于点A(0,3),则不等式-2x +b>0的解集为( )A .x>32B .x>3C .x<32D .x<35. 已知正比例函数y =3x 的图象经过点(1,m),则m 的值为( ) A.13 B .3 C .-13D .-3 6. 直线y =kx +3经过点A(2,1),则不等式kx +3≥0的解集是( ) A .x≤3 B.x≥3 C .x≥-3 D .x≤0 7. 对于一次函数y =-x +3,下列说法正确的有( )①函数值y 随x 的增大而减小;②函数图象不过第一象限;③函数图象与y 轴交点为(3,0);④将y =-x +3向上平移一个单位长度可得y =-x +2的图象. A .1个 B .2个 C .3个 D .4个8. 如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )A.y=2x+3 B.y=x-3C.y=2x-3 D.y=-x+39. 如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2 B.x=0 C.x=-1 D.x=-310. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.11. 将直线y=2x+1向下平移3个单位长度后所得直线的解析式是__y_.12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解为____.13.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为___.14. 过点(0,-2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m).(1)写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式.15. 如图,一次函数y =-x +m 的图象与y 轴交于点B ,与正比例函数y =32x 的图象交于点P(2,n).(1)观察图象,直接写出不等式-x +m<32x 的解集;(2)求出m ,n 的值,并直接写出方程组⎩⎨⎧y =-x +m ,y =32x 的解.参考答案:1---9 DBDCB AADD 10. x >3 11. =2x -2 12. x =3213. -114. 解:(1)当x <2时,y 1<y 2 (2)把P(2,m)代入y 2=x +1得m =2+1=3,则P(2,3),把P(2,3)和(0,-2)分别代入y 1=kx +b 得⎩⎨⎧2k +b =3,b =-2解得⎩⎨⎧k =52,b =-2所以直线l 1的解析式为:y 1=52x -215. 解:(1)根据图象观察可知,-x +m<32x 的解集是x>2(2)∵点P(2,n)在图象上,∴n=32×2=3.把P(2,3)代入y =-x +m ,得3=-2+m ,∴m=5.∵直线y =-x+5与直线y =32x 交于点P(2,3),∴方程组⎩⎨⎧y =-x +5,y =32x的解是⎩⎨⎧x =2,y =320.1 数据的代表一、选择题109.一组数据的平均数是A. 2B. 3C. 4D. 5110.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是A. 255分B. 分C. 分D. 分111.有10位同学参加数学竞赛,成绩如表:分数75808590人数1432则上列数据中的中位数是A. 80B.C. 85D.112.小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的A. 众数B. 方差C. 中位数D. 平均数113.上学期期末考试,某小组五位同学的数学成绩分别是,则这五个数据的中位数是A. 90B. 98C. 100D. 105114.某男装专营店老板专卖某品牌的夹克,店主统计了一周中不同尺码的夹克销售量如表:尺码170175180185190平均每天的销售量件7918106如果店主要购进100件这种夹克,则购进180尺码的夹克数量最合适的是A. 20件B. 18件C. 36件D. 50件115.某班50名学生的一次安全知识竞赛成绩分布如表所示满分10分成绩分012345678910人数人0001013561915这次安全知识竞赛成绩的众数是A. 5分B. 6分C. 9分D. 10分116.为鼓励市民珍稀每一滴水,某居民会表扬了100个节约用水模范户,6月份节约用水的情况如表:每户节水量单位:吨1节水户数523018那么,6月份这100户平均节约用水的吨数为A. B. C. D. 1t117.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是A. B.C. D.118.某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为A. B. C. D.二、解答题119.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲9092949588乙8986879491表2民主测评票数统计表单位:张“好”票数“较好”票数“一般”票数甲4073乙4244规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.120.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,三人各项得分如表:笔试面试体能甲847890乙858075丙809073根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按的比例计入总分根据规定,请你说明谁将被录用.121.设一组数据的平均数为m,求下列各组数据的平均数:;.122.某市规定学生的学期体育成绩满分是100分,其中大课间活动和下午体段占,期中考试占,期末考试占,张晨的三项成绩百分制分别是95分、90分、86分,求张晨这学期的体育成绩.123.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工作能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?【答案】1. D2. D3. B4. C5. B6. C7. C8. B9. C10. D11. 解:甲的演讲答辩得分分,甲的民主测评得分分,当时,甲的综合得分分;答:当时,甲的综合得分是89分;乙的演讲答辩得分分,乙的民主测评得分分,乙的综合得分为:,甲的综合得分为:,当时,即有,又,时,甲的综合得分高,甲应当选为班长;当时,即有,又,时,乙的综合得分高,乙应当选为班长.12. 解:甲乙丙三人的平均分分别是.所以三人的平均分从高到低是:甲、丙、乙;因为甲的面试分不合格,所以甲首先被淘汰.乙的加权平均分是:分,丙的加权平均分是:分因为丙的加权平均分最高,因此,丙将被录用.13. 解:设一组数据的平均数是m,即,则.,,的平均数是;,,的平均数是.14. 解:根据题意得:分.即张晨这学期的体育成绩为89分.15. 解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲义09 平行四边形的性质与判定1.平行四边形不一定具有的性质是( )A.对边平行B.对边相等C.对角线互相垂直D.对角线互相平分2.下列说法正确的是().A.有两组对边分别平行的图形是平行四边形 B.平行四边形的对角线相等C.平行四边形的对角互补,邻角相等 D.平行四边形的对边平等且相等3.在四边形ABCD中,从(1)AB∥ CD,(2)BC ∥ AD (3)AB=CD(4)BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A 3种B 4种C 5种D 6种4.若A、B、C三点不共线,则以其为顶点的平行四边形共有()A.1个B.2个C.3个D.4个5.在ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A. 36°B. 108°C. 72°D. 60°6.平行四边形的周长为24cm,相邻两边长的比为3:1,•那么这个平行四边形较短的边长为().A. 6cmB. 3cmC. 9cmD. 12cm7.在ABCD中,对角线AC与BD相交于点O,则能通过旋转达到重合的三角形有().A. 2对B. 3对C. 4对D. 5对8.一个平行四边形的两条邻边的长分别是4cm和5cm,它们的夹角是30°,这个平行四边形的面积是().A.10cm2 B.103cm2C.5cm2 D.53cm29.如图,P是四边形ABCD的DC边上的一个动点.当四边形ABCD满足条件______时,△PBA 的面积始终保持不变(注:只需填上你认为正确的一种条件即可).10.如图,在ABCD中,∠A的平分线交BC于点E.若AB=16cm,AD=25cm,则BE=______,EC=________.11.平行四边形两邻角的平分线相交所成的角为________12.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是__________________(•填一个你认为正确的条件)13.一个四边形的边长依次是a、b、c、d且,则这个四边形的形状为;其理由是 .14.ΔABC的三条边为4cm、5cm和7cm,分别以ΔABC的任意两边为边做平行四边形,这样的平行四边形能做几个?;它们的周长分别为:15.如图:平行四边形ABCD的周长为32cm,一组邻边AB:BC=3:5,∠B=600,E为AB边上bdacdcba222222+=+++的任意一点,则ΔCED的面积为.16.若一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线长x的取值范围是17.如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为 .18.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是__________19.如图:平行四边形ABCD中,E、F分别为对角线BD上的点,且BE=DF,判断四边形AECF 的形状,并说明理由.20.如图,平行四边形ABCD中,AB=5cm, BC=3cm, ∠D与∠C的平分线分别交AB于F,E, 求AE, EF, BF的长?D C21.如图所示:ΔABC中,D为BC边的中点,F、E分别为AD及其延长线上的点,且CF∥BE. (1)说明:ΔBDE≌ΔCDF;(2)连结BF、CE,试判断四边形BECF的形状,并说明理由.22.如图:ΔABC中,BD平分∠ABC,DE∥BC,∠EFB=∠C,判断BE与FC的数量关系,并说明理由.23.如图:平行四边形ABCD,在AB的延长线上截取BE=AB,BF=BD,连结CE、DF交于G点,试说明:CD=CG。
24.在平行四边形ABCD中,AB:AD=1:2,M为AD的中点,求∠BMC的度数.25.已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.26.已知:O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F. 求证:四边形AECF是平行四边形.27.如图,□ABCD中, AE、AF分别为BC、CD上的高,AE=2㎝,AF=5㎝,∠EAF=30°,求,□ABCD各内角度数和周长。
28.如图,ABCD中,AE⊥BC,AF⊥CD,∠EAF=30°,AE=4cm,AF=3cm,求ABCD周长.29.如图所示,在ABCD中,对角线AC与BD相交于点O,过点O•任作一条直线分别交AB,CD于点E,F.(1)求证:OE=OF;(2)若AB=7,BC=5,OE=2,求四边形BCFE的周长.30.如图所示,在形状为平行四边形的一块地ABCD中,有一条小折路EFG.•现在想把它改为经过点E的直路,要求小路两侧土地的面积都不变,•请在图中画出改动后的小路.31.如图,为公园的一块草坪,其四角上各有一棵树,现园林工人想使这个草坪的面积扩大一倍,又要四棵树不动,并使扩大后的草坪为平行四边形,试问这个想法能否实现,若能请你设计出草图,否则说明理由.32.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD和延长线上取点E,使DE=DC,连接AE、BD。
(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连结AF,求∠AFE的度数。
课堂小练-08 期中综合复习题姓名:1.如图所示,在ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对 B.4对 C.3对 D.2对2.在ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.133.已知ABCD的一条边长是5,则两条对角线的长可能是()A.6和16 B.6和6 C.5和5 D.8和184.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,•则这样的折纸方法有()A.1种 B.2种 C.3种 D.无数种5.如图所示,在ABCD中,若∠A=45°,AD=6,则AB与CD之间的距离为()A.6 B.3 C.2 D.36.在ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.7.如图所示,在ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则ABCD的周长为______cm.8.已知点O是□ABCD两条对角线的交点,对角线AC=24mm,BD=38mm,一边BC=28mm,则△OAD的周长为mm.9.在□ABCD中,两邻边的差是4cm,较短的一条边长是6cm,在□ABCD的周长是10.在□ABCD中,对角线AC、BD相交于点O,△OAD的面积为3,则□ABCD的面积为11.□ABCD的周长为120,对角线AC、BD相交于点O,若△AOB的周长比△BOC的周长大10,则CD= ,AD=12.若一个平行四边形的一条边长为10,一条对角线为7,则另一条对角线长x的取值范围是13.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE。
14.如图,平行四边形ABCD中,AC交BD于O,AE⊥BD于E,∠EAD=60°,AE=2cm,AC+BD=14cm, 求三角形BOC的周长。
15.如图所示,在ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.请探索BM,DN与AB的数量关系,并证明你的结论.讲义10 平行四边形02 矩形性质:(1)具有平行四边形的一切性质. (2)矩形的四个角都是直角. (3)矩形的对角线相等. (4)矩形是轴对称图形. 判定:(1)定义:有一个角是直角的平行四边形是矩形. (2)定理1:有三个角是直角的四边形是矩形. (3)定理2:对角线相等的平行四边形是矩形.课堂练习:1.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( ).A.98B.196C.280D.2842.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E ,F 分别是AM ,MR 的中点,则EF 的长随着M 点的运动( )A.变短B.变长C.不变D.无法确定3.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连接各边中点E ,F ,G ,H 得四边形EFGH ,则四边形EFGH 的周长为4.如图,长方形ABCD 中,E 点在BC 上,且AE 平分∠BAC .若BE=4,AC=15,则△AEC 面积为( ) A.15 B.30 C.45 D.605.如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF等于( ) A.75 B.125 C.135 D.1456.如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
若梯形ODBC 的面积为3,则双曲线的解析式为( )A.x y 1=B.x y 2= C.x y 3= D.xy 6=7.如图(1)将矩形纸片ABCD 沿AE 折叠,使点B 落在直角梯形AECD 的中位线FG 上,若AB=3,则AE 的长为( ) A.23 B.3 C. 2 D.3328.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm9.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE的长是( )A .1.6B .2.5C .3D .3.410.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A.3B.2C.3D.3211.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处 12.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO的周长为________.13.如图2,根据实际需要,要在矩形实验田里修一条公路(•小路任何地方水平宽度都相等),则剩余实验田的面积为________.14.如图,在矩形ABCD 中,M 是BC 的中点,且MA ⊥MD .•若矩形ABCD•的周长为48cm ,•则矩形ABCD 的面积为_______cm 2.15.如图,在矩形ABCD 中,E 为DC 上一点,且BE=BA ,∠EAD=150,则矩形两边AD:AB 的值为16.如图,在矩形ABCD 中,BC=6cm ,AE=23AD ,∠a=300,且点A 与点F 关于BE 对称,则BE= ,AB= 。