肌电图的测试与分析ppt课件
合集下载
肌电图课件
患者在接受肌电图检查时应保持 放松状态,配合医生完成操作。 同时应告知医生自身健康状况和 用药情况,以便医生更好地评估
结果。
03
肌电图的解读与解析
肌电图的波形解读
正弦波
正弦波是肌电图中最常 见的波形之一,代表肌
肉的正常活动状态。
周期性复合波
周期性复合波是由多个 肌肉纤维电位组成的波 形,具有特定的周期和
。
肌电图参数异常
肌电图参数异常可能是由于肌肉功 能异常、神经传导异常等原因引起 的,表现为肌肉纤维密度、长度等 参数的异常变化。
肌电图诊断价值
肌电图对于诊断神经肌肉疾病、评 估肌肉功能和运动能力等方面具有 重要的价值,可以为临床诊断和治 疗提供重要的参考依据。
04
肌电图的临床意义
神经源性疾病的诊断
神经肌肉疾病的诊断
01
针对神经肌肉疾病的肌电图检查,有助于早期发现和诊断疾病
。
康复医学的评估
02
在康复医学领域,肌电图可用于评估肌肉功能恢复情况,指导
康复训练。
运动医学的监测
03
在运动医学领域,肌电图可用于监测运动员肌肉疲劳程度和损
伤风险。
肌电图在科研领域的发展方向
01
02
03
基础研究
深入研究肌电图信号产生 的机制和影响因素,为技 术改进提供理论支持。
肌电图与诱发电位的关系
诱发电位
通过特定刺激引发的大脑电活动,以评估神经系统功能。
肌电图与诱发电位的关联
肌电图主要关注肌肉电活动,而诱发电位关注大脑电活动,两者在评估神经系 统功能方面具有互补性。
肌电图与超声的关系
超声
利用高频声波显示组织结构的影像,常用于医学诊断。
结果。
03
肌电图的解读与解析
肌电图的波形解读
正弦波
正弦波是肌电图中最常 见的波形之一,代表肌
肉的正常活动状态。
周期性复合波
周期性复合波是由多个 肌肉纤维电位组成的波 形,具有特定的周期和
。
肌电图参数异常
肌电图参数异常可能是由于肌肉功 能异常、神经传导异常等原因引起 的,表现为肌肉纤维密度、长度等 参数的异常变化。
肌电图诊断价值
肌电图对于诊断神经肌肉疾病、评 估肌肉功能和运动能力等方面具有 重要的价值,可以为临床诊断和治 疗提供重要的参考依据。
04
肌电图的临床意义
神经源性疾病的诊断
神经肌肉疾病的诊断
01
针对神经肌肉疾病的肌电图检查,有助于早期发现和诊断疾病
。
康复医学的评估
02
在康复医学领域,肌电图可用于评估肌肉功能恢复情况,指导
康复训练。
运动医学的监测
03
在运动医学领域,肌电图可用于监测运动员肌肉疲劳程度和损
伤风险。
肌电图在科研领域的发展方向
01
02
03
基础研究
深入研究肌电图信号产生 的机制和影响因素,为技 术改进提供理论支持。
肌电图与诱发电位的关系
诱发电位
通过特定刺激引发的大脑电活动,以评估神经系统功能。
肌电图与诱发电位的关联
肌电图主要关注肌肉电活动,而诱发电位关注大脑电活动,两者在评估神经系 统功能方面具有互补性。
肌电图与超声的关系
超声
利用高频声波显示组织结构的影像,常用于医学诊断。
肌电图学PPT课件
肌电图学
1
• 肌电图系记录神经和肌肉的电 活动,借以判定神经和肌肉功 能状态。它可以帮助区别神经 源性疾病和肌源性疾病;在神 经源性疾病中,可区别脊髓前 角细胞病变或周围神经病变。
2
• 周围神经操作的检查中,可 以确定操作的程度,并可对 神经损伤后的再组和预后方 面进行判断,在神经根压迫 性疾病的诊断上亦有帮助。
19
• 正常运动单位电位的波幅差异较 大,故其诊断价值较小,若其幅 度大于6000uV时,称为波幅增 高巨大电位。长时间和高波幅的
电位见于脊髓前角细胞疾病和陈
旧性周围神经损伤,低波幅和短
时限电位则见于肌原性疾病及神 经再生早期。
20
• 多相电位增加:多相电位的数量超 过12%
• 复合电位:位相繁多呈簇的多相电 位,多见于周围神经损伤。
27
肌电图的检测项目
28
F波
• 概念:周围神经接受超强刺 激后,神经冲动逆行沿近端 运动纤维向脊髓传导,兴奋 前角细胞后返回的电位
17
• (3)运动单位电位的改变 运动单位电位时限处长或缩 短,波幅的增高或降低,多 相电位数量增加时,常提示 异常。
18
• 运动单位电位的时程,随不同年 龄不同肌肉而异,通常需要测定 20个以上运动单位电位计算出平 均值。为迅速作出比较,可粗略 的将时限大于12mS者称为运动 单位时限增宽;小于3mS者为运 动单位电位时限缩短。
11
• (2)自发性电位 正常肌肉 在静息时无自发性电位,在神 经肌肉病变时见下列几种自发 性电位:
12
• ① 纤颤电位 肌肉放松时出现 的短时限,低电压自发电位, 称纤颤电位。时限为0.5-4mS, 大部分在2mS以下;波幅为50 -500uV,大部分小于300uV; 波形呈单相或双相,起始相为 正相;
1
• 肌电图系记录神经和肌肉的电 活动,借以判定神经和肌肉功 能状态。它可以帮助区别神经 源性疾病和肌源性疾病;在神 经源性疾病中,可区别脊髓前 角细胞病变或周围神经病变。
2
• 周围神经操作的检查中,可 以确定操作的程度,并可对 神经损伤后的再组和预后方 面进行判断,在神经根压迫 性疾病的诊断上亦有帮助。
19
• 正常运动单位电位的波幅差异较 大,故其诊断价值较小,若其幅 度大于6000uV时,称为波幅增 高巨大电位。长时间和高波幅的
电位见于脊髓前角细胞疾病和陈
旧性周围神经损伤,低波幅和短
时限电位则见于肌原性疾病及神 经再生早期。
20
• 多相电位增加:多相电位的数量超 过12%
• 复合电位:位相繁多呈簇的多相电 位,多见于周围神经损伤。
27
肌电图的检测项目
28
F波
• 概念:周围神经接受超强刺 激后,神经冲动逆行沿近端 运动纤维向脊髓传导,兴奋 前角细胞后返回的电位
17
• (3)运动单位电位的改变 运动单位电位时限处长或缩 短,波幅的增高或降低,多 相电位数量增加时,常提示 异常。
18
• 运动单位电位的时程,随不同年 龄不同肌肉而异,通常需要测定 20个以上运动单位电位计算出平 均值。为迅速作出比较,可粗略 的将时限大于12mS者称为运动 单位时限增宽;小于3mS者为运 动单位电位时限缩短。
11
• (2)自发性电位 正常肌肉 在静息时无自发性电位,在神 经肌肉病变时见下列几种自发 性电位:
12
• ① 纤颤电位 肌肉放松时出现 的短时限,低电压自发电位, 称纤颤电位。时限为0.5-4mS, 大部分在2mS以下;波幅为50 -500uV,大部分小于300uV; 波形呈单相或双相,起始相为 正相;
《医学肌电图学》课件
个性化治疗
普及推广
基于肌电图的个体化特征,未来将有望开 展个性化治疗和康复方案,提高治疗效果 。
随着人们对肌肉疾病的认知不断提高,肌 电图技术将得到更广泛的普及和应用。
06
案例分析
神经源性疾病的肌电图表现
神经根病变
肌电图可显示神经传导速度减慢 ,波幅降低,肌肉无收缩反应等
异常表现。
脊髓病变
肌电图可显示神经传导速度减慢或 消失,肌肉无收缩反应等异常表现 。
肌肉源性疾病的诊断
01
肌无力综合征
肌电图检查可以检测肌肉的电生 理活动,有助于诊断肌无力综合 征。
肌萎缩症
02
03
先天性肌肉疾病
通过肌电图检查,可以观察肌肉 的电生理特征,有助于诊断各种 肌萎缩症。
肌电图可以检测先天性肌肉疾病 的肌肉电生理特征,如先天性肌 营养不良症等。
周围神经损伤的诊断与预后评估
初步发展
进入20世纪后,随着电子技术和计算机技术的进步,肌电图学得 到了初步的发展和应用。
现代应用
随着科技的不断进步和应用领域的拓展,肌电图学在医学、运动科 学、康复医学等领域得到了广泛的应用和发展。
02
肌电图的原理与技术
肌电图的原理
肌电图是通过记录肌肉活动的电信号 来反映神经肌肉功能的一种检测方法 。
采集到的肌电图信号需要进行预处理和后处理,以提取有用的信息并进行准确的解 读。
肌电图的解读与报告
解读肌电图时,需要分析肌电图的波 形、幅度、频率等特征,并与正常值 进行比较,以判断肌肉或神经的功能 状态。
报告肌电图结果时,需要详细描述检 测过程、结果解释、临床意义和建议 等信息,以便医生根据报告结果进行 诊断和治疗。
特点
肌电图的测试与分析PPT精选课件
肌电原理与应用
1
肌电与肌电图的概念
肌电------骨骼肌兴奋时,由于肌纤维 动作电位的产生、传导和扩布,而发生电位 变化称为肌电。
肌电图-------用适当的方法将骨骼肌兴 奋时发生的电位变化引导、记录所得到的图 形,称为肌电图(electromyogram, EMG)。
1 表面肌电的原理
1.1 骨骼肌的静息电位与动作电位 1.1.1 静息电位 正常骨骼肌纤维在静息状态下肌纤维膜内外存在 电位差,膜内为负,膜外为正,这一电位差称为静息 电位。
细胞内记录的动作电位为单相负波,波幅为 100-120mv持续时间较长;细胞外记录的动作电位为 双相波,波幅为1.8mv,明显低于细胞内记录。
2.表面电极测试方法 一般的表面电极是由两片Ag-
AgCL金属片组成的。测试时一般将 电极置于肌腹处或肌肉运动点处,。 将电极沿肌纤维的走行方向平行放 置,两电极间隔2-ห้องสมุดไป่ตู้厘米,进行双极 引导。
3.1肌电变化与肌肉疲劳的关系
3.1.1 肌肉工作过程中肌电幅值的变化
Biglandh和Lippold(1954)发现,当肌肉持续等长 收缩至疲劳时,积分肌电(IEMG)增大。
De Vries(1968)发现,在伸膝和屈肘进行静力工 作时,随着持续时间的延长,均方根振幅(RMS)增加。
Petrofsky等(1975)发现,肌电的振幅既取决于肌 力的大小,又取决于肌肉疲劳的程度,所以,肌电作 为评定肌力的指标只能用于肌肉疲劳之前。此后, Viitasalo和Komi(1967,1978),郭庆芳(1980)等学 者都报导过肌肉疲劳时IEMG和RMS增大。
4.2. 2 肌肉工作过程中肌电的频谱变化
4.2 肌电变化与肌肉疲劳的关系
1
肌电与肌电图的概念
肌电------骨骼肌兴奋时,由于肌纤维 动作电位的产生、传导和扩布,而发生电位 变化称为肌电。
肌电图-------用适当的方法将骨骼肌兴 奋时发生的电位变化引导、记录所得到的图 形,称为肌电图(electromyogram, EMG)。
1 表面肌电的原理
1.1 骨骼肌的静息电位与动作电位 1.1.1 静息电位 正常骨骼肌纤维在静息状态下肌纤维膜内外存在 电位差,膜内为负,膜外为正,这一电位差称为静息 电位。
细胞内记录的动作电位为单相负波,波幅为 100-120mv持续时间较长;细胞外记录的动作电位为 双相波,波幅为1.8mv,明显低于细胞内记录。
2.表面电极测试方法 一般的表面电极是由两片Ag-
AgCL金属片组成的。测试时一般将 电极置于肌腹处或肌肉运动点处,。 将电极沿肌纤维的走行方向平行放 置,两电极间隔2-ห้องสมุดไป่ตู้厘米,进行双极 引导。
3.1肌电变化与肌肉疲劳的关系
3.1.1 肌肉工作过程中肌电幅值的变化
Biglandh和Lippold(1954)发现,当肌肉持续等长 收缩至疲劳时,积分肌电(IEMG)增大。
De Vries(1968)发现,在伸膝和屈肘进行静力工 作时,随着持续时间的延长,均方根振幅(RMS)增加。
Petrofsky等(1975)发现,肌电的振幅既取决于肌 力的大小,又取决于肌肉疲劳的程度,所以,肌电作 为评定肌力的指标只能用于肌肉疲劳之前。此后, Viitasalo和Komi(1967,1978),郭庆芳(1980)等学 者都报导过肌肉疲劳时IEMG和RMS增大。
4.2. 2 肌肉工作过程中肌电的频谱变化
4.2 肌电变化与肌肉疲劳的关系
肌电图ppt医学课件
三、F波 1 检测内容 2 结果判断和意义: 反映运动神经近端的传导功能,当刺激点
远端正常时,F波异常可以提示神经根、神经丛、近端运 动神经的病变。F波的研究对周围神经病的早期诊断、病 变部位的确定以及对功能恢复的动态观察特别是累及近端 的神经损害的观察,有着重要的临床价值F波出现率下降, 是脱髓鞘病变最早的表现。 3 临床应用 (1)AIDP(急性炎性脱髓鞘性神经病)和CIDP(慢性炎性 脱髓鞘多发性神经病)等神经根神经病的诊断
2 终板活动 针极插在终板区或肌肉神经纤维引起
3 电静息 肌肉完全放松时,不出现肌电位,示波屏
上成一条直线
轻收缩时的肌电图
➢ 运动单位电位:正常肌肉随意收缩时出现的动作电位 时限:指运动单位电位变化的总时间 波幅:运动单位电位的电压代表肌纤维兴奋时所产生 的动作电位幅度的总和,可通过对最高的正向和负向 间的距离来进行测定 波形:运动单位电位的波形由离开基线的偏转次数决 定。单相、双相、多相电位
变时感觉传导异常,与根性病变不同。
➢ 周围神经 (1)多发性周围神经病 (2)多发性单神经病 (3)单神经病
➢ 神经肌肉接头: 病变时近端肌肉受累明显 (1)突触后膜病变:RNS表现为低频刺激波幅递减。 (2)突触前膜病变:RNS表现为高频刺激波幅递增。 (3)神经肌肉接头处病变SFEMG表现为颤抖增宽伴有或不
➢ 正相电位:常为双相,起始呈宽大的正相,其后接 续一负向迤迨
病理意义:失神经支配;电解质改变;肌炎;肌纤维
的破坏等
束颤电位:自发的运动单位电位,与轻收缩时运动单位电位 的区别:(1)自发的,时限宽,电压高(2)频率慢,节 律性差,发放不规则 病理意义:常见于前角病变,必须与纤颤、正向电位同时 存在才有意义
肌电图(PPT课件)
兴奋)脱髓鞘病变时,每个神经干传导速 度不一样,导致每个肌纤维不能在同一时 间兴奋,造成时程延长,波形离散
10
正中神经MNCV
11
11
12
“复合肌肉动作电位 波幅减低”(双侧对
复合肌肉动作电位 (全程)波幅减低
波幅反应的是参与动作电位的肌纤维的数量
13
1.部分轴索损伤 2.所支配肌肉萎缩
“复合肌肉动作电位 近端波幅下降”
25
正常肌肉轻收缩——时限、波幅
26
神经源性损害:神经支配比例增大,运动 单位的范围增加
肌源性损害:运动单位中肌纤维损害,运 动单位的范围减小,神经支配的比例减低
27
宽时限大于20% 高波幅大于100% (神经源性损害)
正常时限 正常波幅
28
短时限 低波幅 (肌源性损害)
正常时限 正常波幅
2.感觉神经传导正常。 3.针电极肌电图非特异性神经源性改变。 4.上肢远端受累多见,临床无症状的肌肉肌
电图多正常。
44
与CIDP及MND鉴别
MMN很少有颅神经障碍及上运动神经元受累,病程进展相对缓慢, 可达数年至数十年偶见自动缓解。肌萎缩与肌无力不成正比,受累运 动功能局限于单个周围神经支配区而非脊髓节段型 ,MND病程呈进 行性加重肌无力按脊髓节段分布,肌无力与肌萎缩程度成正比。
功能科常用组套
“6+3”
6根神经+3块肌肉
“8+5”
8根神经+5块肌肉
“糖尿病”
8根神经
“重复频率电刺激”等
四肢 双上肢 双下肢 ……
四肢+胸锁乳突肌 臂丛神经
糖尿病四肢
4
报告内容
肌电图检测分为: 1.神经传导检测:电刺激神经诱发的反应 感觉神经传导(速度) 运动神经传导(潜伏期、速度、波幅、
10
正中神经MNCV
11
11
12
“复合肌肉动作电位 波幅减低”(双侧对
复合肌肉动作电位 (全程)波幅减低
波幅反应的是参与动作电位的肌纤维的数量
13
1.部分轴索损伤 2.所支配肌肉萎缩
“复合肌肉动作电位 近端波幅下降”
25
正常肌肉轻收缩——时限、波幅
26
神经源性损害:神经支配比例增大,运动 单位的范围增加
肌源性损害:运动单位中肌纤维损害,运 动单位的范围减小,神经支配的比例减低
27
宽时限大于20% 高波幅大于100% (神经源性损害)
正常时限 正常波幅
28
短时限 低波幅 (肌源性损害)
正常时限 正常波幅
2.感觉神经传导正常。 3.针电极肌电图非特异性神经源性改变。 4.上肢远端受累多见,临床无症状的肌肉肌
电图多正常。
44
与CIDP及MND鉴别
MMN很少有颅神经障碍及上运动神经元受累,病程进展相对缓慢, 可达数年至数十年偶见自动缓解。肌萎缩与肌无力不成正比,受累运 动功能局限于单个周围神经支配区而非脊髓节段型 ,MND病程呈进 行性加重肌无力按脊髓节段分布,肌无力与肌萎缩程度成正比。
功能科常用组套
“6+3”
6根神经+3块肌肉
“8+5”
8根神经+5块肌肉
“糖尿病”
8根神经
“重复频率电刺激”等
四肢 双上肢 双下肢 ……
四肢+胸锁乳突肌 臂丛神经
糖尿病四肢
4
报告内容
肌电图检测分为: 1.神经传导检测:电刺激神经诱发的反应 感觉神经传导(速度) 运动神经传导(潜伏期、速度、波幅、
肌电图基础ppt课件
*
LEMS患者重复电刺激。A显示低频衰减;B-D分别为30个、100个和200个连续30Hz高频刺激,可见随着刺激时间的延长CMAP波幅递增更趋明显。
*
小结
肌电图——鉴别肌源性/神经源性 神经传导速度——远端神经 晚反应——近端神经 重复神经电刺激——神经肌肉接头
*
*
肌电图基础和临床应用
*
概述
肌电图检查就是利用电子仪器对神经肌肉电活动进行记录和分析并以此作为临床定位诊断的依据。
*
肌电图的适应征
肌萎缩(需除外脂肪萎缩和废用性肌萎缩) 无力(需除外上运动神经元损害引起的无力) 感觉障碍(尤其是感觉减退)
*
无力
伴感觉障碍
Dist.235 mm
CV 62 m/s
*
下肢传导检查
Recorder
Stimulation 2
Stimulation 1
运动传导检查
感觉传导检查
Recorder
Stimulation
*
特殊神经传导检查
晚反应(F波和H反射)和瞬目反射——用于检查近端神经传导功能。 重复神经电刺激——神经肌肉接头功能的电生理检查
肌肉
多发性神经病-糖尿病
重症肌无力
肌无力综合征
不伴肌肉压痛
伴有肌肉压痛
肌强直
肌营养不良
代谢性肌病
炎性肌病
动脉炎
*
肌电图检查的作用:有无损害?病变部位?
运动神经元损害 神经根性损害 周围神经病 神经肌肉接头病 肌肉疾病
*
肌电图检查的手段
针极肌电图检查 神经传导检查 诱发电位(运动和体感)
*
不伴感觉 障碍
↑腱反射—上运动神经元
LEMS患者重复电刺激。A显示低频衰减;B-D分别为30个、100个和200个连续30Hz高频刺激,可见随着刺激时间的延长CMAP波幅递增更趋明显。
*
小结
肌电图——鉴别肌源性/神经源性 神经传导速度——远端神经 晚反应——近端神经 重复神经电刺激——神经肌肉接头
*
*
肌电图基础和临床应用
*
概述
肌电图检查就是利用电子仪器对神经肌肉电活动进行记录和分析并以此作为临床定位诊断的依据。
*
肌电图的适应征
肌萎缩(需除外脂肪萎缩和废用性肌萎缩) 无力(需除外上运动神经元损害引起的无力) 感觉障碍(尤其是感觉减退)
*
无力
伴感觉障碍
Dist.235 mm
CV 62 m/s
*
下肢传导检查
Recorder
Stimulation 2
Stimulation 1
运动传导检查
感觉传导检查
Recorder
Stimulation
*
特殊神经传导检查
晚反应(F波和H反射)和瞬目反射——用于检查近端神经传导功能。 重复神经电刺激——神经肌肉接头功能的电生理检查
肌肉
多发性神经病-糖尿病
重症肌无力
肌无力综合征
不伴肌肉压痛
伴有肌肉压痛
肌强直
肌营养不良
代谢性肌病
炎性肌病
动脉炎
*
肌电图检查的作用:有无损害?病变部位?
运动神经元损害 神经根性损害 周围神经病 神经肌肉接头病 肌肉疾病
*
肌电图检查的手段
针极肌电图检查 神经传导检查 诱发电位(运动和体感)
*
不伴感觉 障碍
↑腱反射—上运动神经元
肌电图小讲座课件
第二部分 神经传导速度(NCV)
一. NCV测定 1. MCV:波幅称为
复合肌肉动作电 位(CMAPs)
CMAP波幅
2. SCV:波幅称为 感觉神经动作电 位(SNAPs)
3. 异常NCV的特点
NCV:髓鞘损害 波幅:轴索损害
4. 临床意义
诊断周围神经病 鉴别髓鞘或轴索损害 了解病变的程度
一.低频RNS正常值计算及临床意义
刺激频率: 5c/s 计算:第4,5波比第1波下降
的百分比 正常值:↓<58%或10%
以内意义 异常:波幅递减>10%~15% 意义:诊断后膜病变—MG
1. 神经源性损害 自发电位(进行性失神经或病变早期) MAUP 时 限 增 宽 、 波 幅 升 高 和 多 相 波 百
分比增高 大力收缩单纯相(运动单位丢失)
2. 肌源性损害 自发电位(肌炎活动的标志) MAUP 时 限 短 、 波 幅 降 低 和 多 相 波 百 分
比增高 大力收缩病理干扰相
第一部分 肌电图(EMG) 第二部分 神经传导速度(NCV) 第三部分 重复神经电刺激(RNS)
第一部分 肌电图(EMG)
一、基本概念 记录肌肉安静和随意收缩状态下及周围神 经受刺激时各种电生理特性的一门技术。 狭义EMG:仅指针极肌电图,即用特殊的针
插入肌肉,收集肌肉的电活动。
广义EMG:神经传导速度、重复神经电 刺激、运动电位计数、单纤维肌电图等
1. 肌肉安静状态下:自发电位(终板电位 和终板噪音)
2. 肌肉轻度自主收缩:MUAP 3. 肌肉大力收缩:募集电位
五. 异常EMG所见
1. 异常自发电位 纤颤电位:神经源性和肌源性损害 正锐波:同纤颤电位 束颤:神经源性损害 复合重复放电(CRD) 复合重复放电:见于
肌电图演示ppt课件
鉴别神经源性与肌源性损害
肌电图能够检测肌肉的神经冲动传导和肌肉的收缩反应,有助于鉴别神经源性与 肌源性损害,为治疗方案的选择提供依据。
肌电图在肌肉疾病诊断中的应用
诊断肌肉疾病
肌电图可以检测肌肉的神经冲动传导 和肌肉的收缩反应,有助于诊断肌肉 疾病如肌炎、肌无力综合征等。
评估治疗效果
通过肌电图检测肌肉的功能状态,可 以评估治疗效果,指导治疗方案调整 。
高频肌电图技术
总结词
高频肌电图技术能够提供更精细的肌肉活动信息,有助于更准确地评估和诊断肌肉疾病和神经病变。
详细描述
随着科技的进步,高频肌电图技术不断发展,其采样频率更高,能够捕捉到更多的肌肉电活动细节。 这使得医生能够更准确地评估肌肉疾病的严重程度,以及神经病变对肌肉的影响。
神经肌肉电生理技术在康复医学中的应用
肌电图与事件相关电位的区别
事件相关电位主要检测大脑的认知电活动,而肌 电图主要检测肌肉的电活动。
3
适用范围
事件相关电位常用于评估认知障碍和痴呆等神经 系统疾病。
05
肌电图的临床意义与局限 性
肌电图在神经系统疾病诊断中的应用
诊断神经根病变
肌电图可以检测神经根受压或损伤时所引起的神经传导速度减慢或阻滞,有助于 诊断神经根病变。
肌电图的局限性
假阳性与假阴性
肌电图检测结果可能受到多种因素的影响,如患者的配合程度、电 极放置位置等,可能导致假阳性或假阴性的结果。
对患者有一定的创伤
肌电图检测需要将电极插入肌肉中,对于患者有一定的创伤和不适 感。
费用较高
肌电图检测费用较高,可能限制其在临床的广泛应用。
06
未来肌电图技术的发展趋 势与展望
神经传导异常
肌电图能够检测肌肉的神经冲动传导和肌肉的收缩反应,有助于鉴别神经源性与 肌源性损害,为治疗方案的选择提供依据。
肌电图在肌肉疾病诊断中的应用
诊断肌肉疾病
肌电图可以检测肌肉的神经冲动传导 和肌肉的收缩反应,有助于诊断肌肉 疾病如肌炎、肌无力综合征等。
评估治疗效果
通过肌电图检测肌肉的功能状态,可 以评估治疗效果,指导治疗方案调整 。
高频肌电图技术
总结词
高频肌电图技术能够提供更精细的肌肉活动信息,有助于更准确地评估和诊断肌肉疾病和神经病变。
详细描述
随着科技的进步,高频肌电图技术不断发展,其采样频率更高,能够捕捉到更多的肌肉电活动细节。 这使得医生能够更准确地评估肌肉疾病的严重程度,以及神经病变对肌肉的影响。
神经肌肉电生理技术在康复医学中的应用
肌电图与事件相关电位的区别
事件相关电位主要检测大脑的认知电活动,而肌 电图主要检测肌肉的电活动。
3
适用范围
事件相关电位常用于评估认知障碍和痴呆等神经 系统疾病。
05
肌电图的临床意义与局限 性
肌电图在神经系统疾病诊断中的应用
诊断神经根病变
肌电图可以检测神经根受压或损伤时所引起的神经传导速度减慢或阻滞,有助于 诊断神经根病变。
肌电图的局限性
假阳性与假阴性
肌电图检测结果可能受到多种因素的影响,如患者的配合程度、电 极放置位置等,可能导致假阳性或假阴性的结果。
对患者有一定的创伤
肌电图检测需要将电极插入肌肉中,对于患者有一定的创伤和不适 感。
费用较高
肌电图检测费用较高,可能限制其在临床的广泛应用。
06
未来肌电图技术的发展趋 势与展望
神经传导异常
肌电图PPT课件
2、感觉神经传导(SNCV) 感觉神经传导速度(m/s)=刺激与记录点的 距离(mm)/潜伏期(ms)Biblioteka 2021/6/2426
F波
对神经施加超强刺激,在肌肉动作电位(M 波)后续一低波幅动作电位。多出现在手、 足部小肌肉,不随刺激强度增加而减小。
(3)时限延长,电压减低,见于周围神经损 伤。
2021/6/24
14
轻收缩时肌电图
正常运动单位电位: (1)位相:单相、双相、三相为主.多相电位
不超过10%,一般4%. 五相及五相以上称多相电位. (2)时限:3~15ms.
(3)电压:100~2000微伏,最高不超过5毫伏.
2021/6/24
15
其中(2)~(5)为自发电位。
2021/6/24
7
异常插入电位
(1)插入电位延长是肌肉去神经支配后肌膜 兴奋行异常增高的结果。出现强直样电位 与肌强直电位为插入电位延长改变。见于 神经源性疾病,也可见于多发性肌炎、皮 肌炎。
(2) 插入电位减弱消失,见于肌纤维严重萎 缩,被结缔组织或脂肪组织所替代。
2021/6/24
8
强直样电位与肌强直电位
1、强直样电位:针极插入后继发的一系列 高频电位。特点:突然出现,突然消失, 波幅和频率通常没有变化,扬声器上可听 到“咕咕” 样蛙鸣声。
2、肌强直电位:插入电位延长的一种特殊 形式,特点:波幅和频率递增递减,扬声 器上可听到俯冲轰炸机样特殊音响。
意义:见于肌强直疾病,少数神经源性疾 病和肌源性疾病。
轻收缩时肌电图
多相电位数量增多(相位大于5相,>12%) 1、短棘波多相电位:时限短<3.0ms,呈毛 刷子波,波幅不等,在神经再生早期称新 生电位,肌源性疾病时称为肌病电位。
F波
对神经施加超强刺激,在肌肉动作电位(M 波)后续一低波幅动作电位。多出现在手、 足部小肌肉,不随刺激强度增加而减小。
(3)时限延长,电压减低,见于周围神经损 伤。
2021/6/24
14
轻收缩时肌电图
正常运动单位电位: (1)位相:单相、双相、三相为主.多相电位
不超过10%,一般4%. 五相及五相以上称多相电位. (2)时限:3~15ms.
(3)电压:100~2000微伏,最高不超过5毫伏.
2021/6/24
15
其中(2)~(5)为自发电位。
2021/6/24
7
异常插入电位
(1)插入电位延长是肌肉去神经支配后肌膜 兴奋行异常增高的结果。出现强直样电位 与肌强直电位为插入电位延长改变。见于 神经源性疾病,也可见于多发性肌炎、皮 肌炎。
(2) 插入电位减弱消失,见于肌纤维严重萎 缩,被结缔组织或脂肪组织所替代。
2021/6/24
8
强直样电位与肌强直电位
1、强直样电位:针极插入后继发的一系列 高频电位。特点:突然出现,突然消失, 波幅和频率通常没有变化,扬声器上可听 到“咕咕” 样蛙鸣声。
2、肌强直电位:插入电位延长的一种特殊 形式,特点:波幅和频率递增递减,扬声 器上可听到俯冲轰炸机样特殊音响。
意义:见于肌强直疾病,少数神经源性疾 病和肌源性疾病。
轻收缩时肌电图
多相电位数量增多(相位大于5相,>12%) 1、短棘波多相电位:时限短<3.0ms,呈毛 刷子波,波幅不等,在神经再生早期称新 生电位,肌源性疾病时称为肌病电位。
肌电图的测试与分析
4.2 肌电变化与肌肉疲劳的关系 4.2. 2 肌肉工作过程中肌电的频谱变化
3.1 肌电变化与肌肉疲劳的关系
3.1. 2 肌肉工作过程中肌电的频谱变化
Petrofsky让受试者以20%、40%、60%、80%和 100%最大摄氧量强度蹬踏功率自行车。20%、 40%、60%最大摄氧量强度工作80分钟未见明显 疲劳。在20%、40%最大摄氧量强度时,中心频 率(FC)有所增加;60%最大摄氧量强度时,FC 稍有下降;80%和100%最大摄氧量强度时,FC 明显下降。
3.2肌力与肌电的关系
当肌肉以不同的负荷进行收缩时, 其肌电信号的积分值(IEMG)同肌力成 正比关系,即肌肉产生的张力越大 IEMG越大。
3. 2肌力与肌电的关系
Komi让受试者以4.5cm/秒的速度作匀 速的屈肘运动。肌肉的收缩形式分别为向 心收缩和离心收缩。不论是疲劳前还是疲 劳后,肱桡肌在工作中的IEMG都随着肌张 力的加大而增高。并存在线性关系。
柯菲因(Chaffin)等人发现当肌肉用40%最大肌力 (MVC)以下强度收缩时,肌力与肌电呈线性关系。 60%MVC以上强度时,肌力与肌电也呈线性关系。但此 时的直线斜率较大。而肌力在40-60%MVC时,肌力与 肌电之间的线性关系往往就不存在了。这可能因为, 在40%MVC以下强度时,肌电的变化反应慢肌运动单位 的电活动。60%MVC以上的强度时,肌电的变化反应快 肌运动单位的电活动。40-60%MVC之间的强度,可能 两种运动单位都参与活动,固肌力与肌电之间的线性 关系就不存在了。
4.2 肌电变化与肌肉疲劳的关系 4.2. 2 肌肉工作过程中肌电的频谱变化
3.1 肌电变化与肌肉疲劳的关系 3.1. 2 肌肉工作过程中肌电的频谱变化
C.J.De Luca 等人的研究了手指肌以20%、40%、 60%、80%和100%MVC收缩时的肌电变化,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 肌电变化与肌肉疲劳的关系 3.1.1 肌肉工作过程中肌电幅值的变化
3.1 肌电变化与肌肉疲劳的关系
3.1.1 肌肉工作过程中肌电幅值的变化
浅井英典(1982)对不同的研究结果做了概括和总结。 指出:
以最大强度以下的肌力进行等长收缩时,肌电的 幅值随着时间的延长而增加;而用最大肌力进行等长 收缩时,随着肌力的下降肌电的幅值也逐渐下降。并 指出伴随疲劳而出现的肌电幅值变化,是由于运动时 运动单位的募集数量和运动单位兴奋的频率发生变化 而引起的。
肌电原理与应用
肌电与肌电图的概念
肌电------骨骼肌兴奋时,由于肌 纤维动作电位的产生、传导和扩布,而发生 电位变化称为肌电。
肌电图-------用适当的方法将骨骼肌兴 奋时发生的电位变化引导、记录所得到的图 形,称为肌电图(electromyogram, EMG)。
1 表面肌电的原理
1.1 骨骼肌的静息电位与动作电位 1.1.1 静息电位 正常骨骼肌纤维在静息状态下肌纤维膜内外存在 电位差,膜内为负,膜外为正,这一电位差称为静息 电位。
猫的骨骼肌肌纤维的静息电位 为-79.5毫伏;
鼠的骨骼肌肌纤维的静息电位 为-99.8毫伏;
豚鼠的骨骼肌肌纤维
为-85.5毫伏;
小白鼠的骨骼肌肌纤维为-61.0~-88.9毫伏;
人类骨骼肌肌纤维为
-65~-87.4毫伏。
1.1.2 动作电位
肌纤维兴奋时,产生的可传导的电位变化称为 动作电位。 动作电位的幅度为100~120毫伏,持续 时间为2~4毫秒。
3.1 肌电变化与肌肉疲劳的关系 3.1.1 肌肉工作过程中肌电幅值的变 化 肌肉疲劳时肌电幅值下降的可能原因是: ①中枢传出的神经冲动减少; ②神经肌肉接点处的传递速度减慢; ③肌纤维的传导速度减慢; ④运动单位的非同步活动。
3.1 肌电变化与肌肉疲劳的关系
3.1. 2 肌肉工作过程中肌电的频谱变化
反应肌电信号频率特性的指标有平均功率 频率(MPF)和中心频率(FC)。
在研究肌肉持续工作至疲劳过程中发现, 随着疲劳程度的加深,肌电信号的频谱左移, 即平均功率频率(MPF)和中心频率(FC)降低。 肌肉工作的负荷强度越大,疲劳的程度越大, MPF和FC降低越明显。
4.2 肌电变化与肌肉疲劳的关系
3.1肌电变化与肌肉疲劳的关系
3.1.1 肌肉工作过程中肌电幅值的变化
Biglandh和Lippold(1954)发现,当肌肉持续等长 收缩至疲劳时,积分肌电(IEMG)增大。
De Vries(1968)发现,在伸膝和屈肘进行静力工 作时,随着持续时间的延长,均方根振幅(RMS)增加。
Petrofsky等(1975)发现,肌电的振幅既取决于肌 力的大小,又取决于肌肉疲劳的程度,所以,肌电作 为评定肌力的指标只能用于肌肉疲劳之前。此后, Viitasalo和Komi(1967,1978),郭庆芳(1980)等学 者都报导过肌肉疲劳时IEMG和RMS增大。
3.1 肌电变化与肌肉疲劳的关系 3.1.1 肌肉工作过程中肌电幅值的变化
Petrofsky(1980)让受试者的抓握肌以 20%-70%MVC的五种不同张力做等长收缩至疲劳 的过程中,发现RMS呈线性增加。70%MVC以上 的等长收缩至疲劳时,虽然RMS在整个收缩过 程中也随疲劳的加深而增大,但增大的幅度逐 渐减小。
4.2 肌电变化与肌肉疲劳的关系 4.2. 2 肌肉工作过程中肌电的频谱变化
3.1 肌电变化与肌肉疲劳的关系
3.1. 2 肌肉工作过程中肌电的频谱变化
Petrofsky让受试者以20%、40%、60%、80%和 100%最大摄氧量强度蹬踏功率自行车。20%、 40%、60%最大摄氧量强度工作80分钟未见明显 疲劳。在20%、40%最大摄氧量强度时,中心频 率(FC)有所增加;60%最大摄氧量强度时,FC 稍有下降;80%和100%最大摄氧量强度时,FC 明显下降。
3 表面肌电分析 在体育科研中的应用
3.1 肌电变化与肌肉 疲劳的关系
3.1 肌电变化与肌肉疲劳的关系
3.பைடு நூலகம்.1 肌肉工作过程中肌电幅值的变化 反应肌电幅值的指标有积分肌电
(IEMG)和均方根振幅(RMS)。 在肌肉等长收缩至疲劳的研究过程中
发现,在一定的范围内,肌电幅值随着肌 肉疲劳程度的加深而增加。
4.2. 2 肌肉工作过程中肌电的频谱变化
4.2 肌电变化与肌肉疲劳的关系
4.2. 2 肌肉工作过程中肌电的频谱变化
4.2 肌电变化与肌肉疲劳的关系
4.2. 2 肌肉工作过程中肌电的频谱变化
3.1 肌电变化与肌肉疲劳的关系 3.1. 2 肌肉工作过程中肌电的频谱变 化 Viitasalo(1978)发现,用30%MVC、50%MVC和 70%MVC强度令股四头肌进行疲劳性等长收缩时, 平均功率频率(MPF)随着工作时间的延长而降 低,并且负荷越大降低越明显。
细胞内记录的动作电位为单相负波,波幅为 100-120mv持续时间较长;细胞外记录的动作电位为 双相波,波幅为1.8mv,明显低于细胞内记录。
2.表面电极测试方法 一般的表面电极是由两片Ag-
AgCL金属片组成的。测试时一般将 电极置于肌腹处或肌肉运动点处,。 将电极沿肌纤维的走行方向平行放 置,两电极间隔2-3厘米,进行双极 引导。
3.1 肌电变化与肌肉疲劳的关系 3.1.1 肌肉工作过程中肌电幅值的变化
3.1 肌电变化与肌肉疲劳的关系
3.1.1 肌肉工作过程中肌电幅值的变化
Petrofsky(1979)也观察了等张收缩至疲劳 过程中的RMS的变化。让受试者在功率自行车上 以20-100%最大摄氧量(VO2 max)的负荷蹬踏功 率自行车,同时测试并分析了股四头肌肌电。 发现在20-40%VO2 max的负荷下,RMS随着疲劳 程度的加深,其增大程度不明显;而负荷为60100%VO2 max时,RMS却随着疲劳的增加而明显 增加。并且,负荷越大其增加越明显。
4.2 肌电变化与肌肉疲劳的关系 4.2. 2 肌肉工作过程中肌电的频谱变化
3.1 肌电变化与肌肉疲劳的关系 3.1. 2 肌肉工作过程中肌电的频谱变化