2018年九年级中考人教版数学之概率初步(无答案)-最新学习文档
2018年全国中考数学真题汇编:概率
11 1
666
n 23 ﹣ ﹣ 3 ﹣ ﹣ 2﹣ ﹣ 2 3
61
61
61
mn ﹣ ﹣ 6 ﹣ 6 ﹣ ﹣ 6 ﹣ 6 ﹣ ﹣
23
2
12 3
18
12 18
mn 的值为 6 的概率是 = .
故选: B.
【点评】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出
mn=6 的概率是解题的关键.
16( 2018 ·浙江衢州 ·3 分)某班共有 42 名同学,其中有 2 名同学习惯用左手写字,其余 同学都习惯用右手写字,老师随机请 1 名同学解答问题,习惯用左手写字的同学被选中的概
率是(
)
A.0
B.
C.
D.1
【考点】概率 . 【分析】直接利用概率公式计算得出答案. 【解答】解:∵某班共有 42 名同学,其中有 2 名同学习惯用左手写字,其余同学都习惯用 右手写字,∴老师随机请 1 名同学解答问题,习惯用左手写字的同学被选中的概率是:
4 种,
4
∴ P(两次都摸到黄球) =
9
3. ( 2018?山东淄博 ?4分)下列语句描述的事件中,是随机事件的为(
)
A .水能载舟,亦能覆舟 C.瓜熟蒂落,水到渠成 【考点】 X1 :随机事件.
B .只手遮天,偷天换日 D .心想事成,万事如意
【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.
) ”最适合的调查方式是全面调查
B.甲乙两人跳绳各 10 次,其成绩的平均数相等, S 甲
2 ,则甲的成绩比乙稳定
2> S 乙
C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图
K12推荐学习2018-2019学年九年级数学上册 单元测试(五)概率初步 (新版)新人教版
单元测试(五) 概率初步(满分:120分 考试时间:100分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求) 1.下列事件中是必然事件的是(B)A .投掷一枚硬币正面朝上B .明天太阳从东方升起C .五边形的内角和是560°D .购买一张彩票中奖 2.“水中捞月”事件发生的概率是(D)A .1 B.12 C.14 D .03.从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是(C)A.15B.25C.35D.45 4.下列说法正确的是(A)A .必然事件发生的概率为1B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次5.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为(D)A.12B.13C.512D.146.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是(C)A .点数都是偶数B .点数的和为奇数C .点数的和小于13D .点数的和小于27.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的概率是(A)A.14B.13C.12D.348.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是(B)A.18B.16C.14D.129.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是(A)A.12B.13C.23D.5610.如图,△ABC 是一块绿化带,将阴影部分修建为花圃.已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为(B)A.16B.π6C.π8D.π5 二、填空题(每小题3分,共15分)11.“清明时节雨纷纷”是随机事件.(填“必然”“不可能”或“随机”)12.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是13.13.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有12个白球.14.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK 之后,则选中的车牌号为8ZK86的概率是13.15.在如图所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是13.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本大题共2小题,每小题5分,共10分)(1)一个袋中装有2个红球,3个白球,和5个黄球,每个球除了颜色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率; 解:∵袋中装有2个红球,3个白球,和5个黄球共10个球, ∴摸到红球的概率为210,即15;摸到白球的概率为310;摸到黄球的概率为510,即12.(2)随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),求这粒豆子落在黑色方格中的概率.解:∵共有12个方格,其中黑色方格占4个, ∴这粒豆子落在黑色方格中的概率是412=13.17.(本题6分)在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个. (1)当n 为何值时,这个事件必然发生? (2)当n 为何值时,这个事件不可能发生? (3)当n 为何值时,这个事件可能发生?解:(1)当n >6时,即n =7或8或9时,这个事件必然发生. (2)当n <3时,即n =1或2时,这个事件不可能发生.(3)当3≤n≤6时,即n =3或4或5或6时,这个事件可能发生.18.(本题7分)如图是一个正六边形转盘被分成6个全等的正三角形,指针位置固定.转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个三角形的公共边时,当作指向右边的三角形),这时称转动了转盘1次. (1)下列说法不正确的是(B) A .出现1的概率等于出现3的概率 B .转动转盘30次,6一定会出现5次C .转动转盘3次,出现的3个数之和等于19,这是一个不可能发生的事件 (2)当转动转盘36次时,出现2这个数大约有多少次? 解:∵转动转盘1次时,出现2的概率为16,∴转动转盘36次,出现2这个数大约有36×16=6(次).19.(本题9分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同. (1)小明选择去蜀南竹海旅游的概率为14;(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率. 解:画树状图分析如下:两人选择的方案共有16种等可能的结果,其中都选择兴文石海的方案有1种, 所以小明和小华都选择去兴文石海旅游的概率为116.20.(本题9分)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券”紫气东来”、”花开富贵”、”吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得”谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10 000张奖券的抽奖结果如下:(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由. 解:(1)50010 000=120.(2)平均每张奖券获得的购物券金额为100×50010 000+50×1 00010 000+20×2 00010 000+0×6 50010 000=14(元), ∵14>10,∴选择抽奖更合算.21.(本题9分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.解:(1)列表如下:由表可知,两数和共有12种等可能结果.(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴P(李燕获胜)=612=12,P(刘凯获胜)=312=14.22.(本题12分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.解:(1)总人数为6÷40%=15(人).(2)A 2的人数为15-2-6-4=3(人),补全图形如图所示. A 1所在扇形的圆心角度数为215×360°=48°. (3)画出树状图如下:由树状图可知,共有6种等可能结果,其中恰好选出一名男生和一名女生的有3种, ∴P(恰好选出一名男生和一名女生)=36=12.23.(本题13分)小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项). (1)若小颖第一道题不使用“求助”,则小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”? 解:(2)画树状图如下:(用Z 表示正确选项,C 表示错误选项)由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种, ∴小颖将“求助”留在第二道题使用时,P(小颖顺利通关)=19.(3)若小颖将“求助”在第一道题使用,画树状图如下:(用Z 表示正确选项,C 表示错误选项)由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种, ∴小颖将“求助”在第一道题使用时,P(小颖顺利通关)=18.∵18>19,∴建议小颖在答第一道题时使用“求助”.。
2017-2018九年级数学上册概率初步讲义(新版)新人教版.doc
概率初步 点睛1. 事件必然事件确定事件事件 不可能事件随机事件在一定条件下,生也可生的事件随机事件.2. 概率(于一个随机事件 A 刻生可能性大小随机事件 A 发生的概率,记为P (A) .注: 0≤ P (A) ≤ 1,P (A) 表示的是事件 A 发生的可能性大小, 当 A 为必 然事件时, P (A)=1;当 A 为不可能事件时, P (A)=0. 事件发生的可能性越大,它的概率越接近 1;反之事件发生的可能性越小, 它的概率越接近0 .(2)一般地,如果在验中,有 n 种可果,并发生的可能性都相等,事件 A 包含其中的 m 果,那m么事件生的概率 P (A)=.n(3)法求事件的概率 在验中, 如果可果只有有限个, 且 可能性大小相等, 那可结果的方法, 求出随机生的概率.常使用列表法两种方事件所有可果. ①用列表法求概率适用于求涉及验的生的概率; ②当事过多(三步或三步以上),法 来求事件的概率很有效. 率与概率 在做大量,验次数的增加,一个事率, 总在一固定数的示出一定 性.因此,可以通 过大量的验,用一个随机率它的概率.精讲精练1. 下列事件中,必然事件是()A.抛掷 1 个均匀的骰子,出现 6 点向上B.两条直线被第三条直线所截,同位角相等C.366 人中至少有 2 人的生日相同D.实数的绝对值是非负数2. 下列事件是随机事件的是()A.画一个三角形,其内角和为361 °B.任意做一个矩形,其对角线相等C.任取一个实数,其与相反数之和为0D.外观相同的10 件同种产品中有 2 件是不合格产品,现从中抽取一件为合格品3. 下列说法中,正确的是()A.不可能事件发生的概率为01B.随机事件发生的概率是2C.概率很小的事件不可能发生D.抛掷一枚质地均匀的硬币100 次,正面朝上的次数一定是50 次4. 下列说法正确的是()A.袋中有形状、大小、质地完全一样的 5 个红球和 1 个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率为10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1 000 张,一定会中奖D.连续掷一枚均匀硬币,若 5 次都是正面朝上,则第 6 次仍然可能正面朝上5. 小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,E,F 分别是矩形ABCD的两边AD,BC 上的点,E F∥AB,M,N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率为. A E DMNB F C6. 实验中学安排四辆车组织九年级学生团员去敬老院参加学雷锋活动,已知这四辆车的编号分别是1,2,3,4,小王和小李都可以从这四辆车中任选一辆搭乘,那么小王和小李搭乘的车编号相邻的概率是.7. 学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是()2 5 1 1A.B.C.D.3 6 6 28. 如图,在4× 4 正方形网格中,有 3 个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.9. 一个家庭有 3 个小孩,则:(1)这个家庭有 3 个男孩的概率是;(2)这个家庭有 2 男1 女的概率是;(3)这个家庭至少有 1 个男孩的概率是.10. 某市初中毕业男生体育测试项目有四项,其中“立定跳远”“ 1000 米跑”“掷实心球”为必测项目,另一项从“篮球运动”和“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”和“一分钟跳绳”中选择同一个测试项目的概率是.11. 在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50 元,那么他一次就能猜中的概率是.3 5 5 6 012.1,地均匀的正四面体骰子,它有四个面标有数字 1,2 ,3,4.2,正方形 A B 各有一个圈,跳:游戏 一次骰子, 骰子着地一面上的数字是几, 就沿正方 针续跳 如:若从圈 A 起跳,第得 3跳3长,落到圈 D ;若第得2,就从 D 跳2长,落到圈 B ;⋯ ⋯者从圈 A 起跳. (1)嘉嘉一次骰子,求落回到圈 A 的概率 P 1;(2)琪琪两次骰子,用列表求最后落回到 圈 A 的概 率 P 2,并指出她与嘉嘉回到圈 A 的可能性一样吗? A 4 1 DBC图1图213. 在大量验中,关于随机率和概率,法正确的是( )率就是概率验次数无关C .在相同的条 验次数相所得频也会相同D .验次数的增率一般会越来越接近概率14. 法: ①不可能生的0;②验的次 数越率就越大;③在相同条件下,验的次率就可概率值;④收集程中一步,录率.其中正确的个数是( )A .1B . 2C .3D .4415. 某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是()试验100 200 300 500 800 1 000 2 000 次数A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃频率0.365 0.328 0.330 0.334 0.336 0.332 0.333B.从一个装有2 个白球和1 个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率 D .抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是 5【参考答案】精讲精练1. D2. D3. A4. D15.236.87. A38.139. 1 3 7;;8 8 810. 1 411. 151 112;(2)P ,与嘉嘉回到圈 A 的可能性一样1 24 4131415。
九年级中考人教版数学之概率初步(无答案)
知识精讲知识点1 感受可能性1、确定事件和随机事件必然事件:在一定条件下进行重复试验时,有些事情事先能肯定它一定发生,这些事情称为必然事件.不可能事件:在一定条件下进行重复试验时,有些事情事先能肯定它一定不会发生,这些事情称为不可能事件.确定事件:必然事件与不可能事件都是确定的,我们称之为确定事件.随机事件:在一定条件下进行重复试验时,有些事情事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件.事件分类如下:2、理解必然事件、不可能事件和随机事件必然事件、不可能事件、随机事件在“一定条件下”发生或不发生.实际上,必然事件、不可能事件、随机事件都必须受到一定条件的制约.例如,在标准大气压下,水加热到100℃沸腾是必然事件;但在气压高于标准大气压时,水加热到100℃,水沸腾就不是必然事件(此时沸点提高了).3、随机事件发生的可能性有大小(1)事件发生的可能性不同.事件发生的可能性的大小常用下面的几种语言来概括:一定、很可能、可能、不大可能、不可能.(2)必然事件发生的机会是100%,不可能事件发生的机会是0,而随机事件发生的机会介于0和100%之间.随机事件发生的可能性的大小一般要经过大量重复试验才能确定.知识点2 频率的稳定性1.频率的定义:设总共做n次重复实验,而事件A发生了m次,则称事件A发生的次数m为频数,在相同条件下的大量重复的n次试验中,随机事件A发生了m次,称为事件A发生的频率.2.频率的稳定性:在大量重复试验的情况下,事件发生的频率会呈现稳定性,即频率在一个“常数”附近摆动,这就是频率的稳定性。
随着次数的增加,摆动的幅度越来越小.3.用频率估计某一事件发生的概率一般地,大量重复的试验中,常用不确定事件A发生的频率来估计事件A发生的概率,记作P(A).对于任何一个事件A,它的概率P(A)满足0≤P(A)≤1,必然事件的概率是1,不可能事件的概率是0.事件A发生的频率与事件A发生的概率是两个不同的概念.事件A发生的频率与试验的次数有关,它是一个动态的数字;事件A发生的概率p应是客观存在的,它是一个常数。
(完整版)九年级概率初步
第二十五章 概率初步1、三种事件:必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件。
不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。
随机事件: 许多事情我们无法确定它会不会发生,这些事情称为随机事件.注意:必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件; 随机事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为不确定事件.2.概率的定义:把刻划(描述)事件发生的可能性的大小的量叫做概率.概率通常用字母“P ”表示。
注意:概率通常用分数表示,有时也用小数表示。
不可能事件发生的概率为0;即P(不可能事件)=0;必然事件发生的概率为1;即P (必然事件)=1;随机事件发生的概率;0<P(随机)〈1。
3.概率的计算:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都 相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为4。
用列举法求概率列表法求概率: 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
树状图法求概率 :当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:列表格只能解决两步完成事件的概率,树状图则可解决两步及两步以上事件的概率;无论是哪一种方法在求多步事件概率时首先应分清每一步干什么,其次还应分清属于“取完后放回还是不放回”5.用频率估计概率①利用频率估计概率 :在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验.③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作.把这些随机产生的数据称为随机数。
2018-2019学年九年级数学上册 期末复习 专题5 概率初步课件 (新版)新人教版
【点悟】利用 P(A)=mn 求事件 A 的概率时要注意正确计算所有可能的结果 数 n 和事件 A 包含的可能的结果数 m.对于几何型的概率问题,要注意各部分面 积的关系,抓住“概率等于相应的面积与总面积比”,这是解决几何类型概率 问题的关键.
题型二 概率的意义及计算
[2016·石家庄模拟]一枚质地均匀的正方体骰子的六个面上分别刻有
1 到 6 的点数,掷一次这枚骰子,观察向上的面的点数,与点数 3 的差不大于
2 的概率是( D )
1
1
A.2
B.3
2
5
C.3
D.6
【解析】∵一枚质地均匀的正方体骰子的六个面上分别刻有 1 到 6 的点数, 掷一次这枚骰子,向上的面的点数与点数 3 的差不大于 2 的有 5 种情况,即 1,2,3,4,5,
图2
解:(1)画树状图为:
例 5 答图 共有 9 种等可能的结果,其中不能配成紫色的结果为 7 种, ∴小明胜的概率=79.
(2)这个游戏不公平.理由如下: ∵能配成紫色的结果为 2 种, ∴小刚胜的概率=29, 而小明胜的概率=79, 97>29,∴这个游戏不公平.
过关训练
1.[2016·商丘二模]有下列事件: ①在足球赛中,弱队战胜强队; ②抛掷一枚硬币,落地后正面朝上; ③任取两个整数,其和大于 1; ④长分别为 2,4,8 的三条线段能围成一个三角形.
题型四 用频率估计概率
[2016 春·莱芜期末]小明和小亮两位同学做投掷骰子(质地均匀的正
方体)的试验,他们共做了 100 次试验,试验的结果如下表:
朝上的点数
123456
出现的次数 14 15 23 16 20 12
(完整版)2018人教版九年级数学上《第25章概率初步》单元测试含答案
第二十五章概率初步单元测试一、单选题(共10题;共30分)1、一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是A、 B、C、D、2、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A、 B、C、D、3、如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A、 B、C、D、4、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A、 B、C、D、5、下列模拟掷硬币的实验不正确的是()A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上6、明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A、B、C、D、7、历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A、“正面向上”必会出现5次B、“反面向上”必会出现5次C、“正面向上”可能不出现D、“正面向上”与“反面向上”出现的次数必定一样,但不一定是5次8、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A、100个B、90个C、80个D、70个9、小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A、 B、C、D、10、一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A、B、C、D、二、填空题(共8题;共24分)11、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________ .12、在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是________ .13、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.14、有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .15、一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为________16、在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是________17、流传的游戏,游戏时,双方每次任意出“石头”,“剪刀”,“布”这三种手势中的一种,那么双方出现相同手势的概率为________.18、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为________.三、解答题(共6题;共46分)19、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.20、不透明的盒中装有红、黄、蓝三种颜色的小球若干个(除颜色外均相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,是蓝球的概率为.(1)求盒中黄球的个数;(2)第一次任意摸出一个球放回后,第二次再任意摸一个球,请用列表或树状图,求两次都摸出红球的概率.21、如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟试验吗?请写出试验过程.22、如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?23、一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.24、有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.(Ⅰ)用列表或画树状图的方法写出点Q的所有可能坐标;(Ⅱ)求点Q落在抛物线y=x2-2x-1上的概率.答案解析一、单选题1、【答案】 D【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与所有情况数的比.由题意得摸到白球的概率是,故选D.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.2、【答案】 B【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵书包里有数学书3本,英语书2本,语文书5本,共10本书,∴从中任意抽取一本,是数学书的概率是.故选B.3、【答案】 B【考点】概率公式【解析】【分析】先求出转盘上所有的偶数,再根据概率公式解答即可.∵在1,3,4,5,6,7,8,9中,偶数有4,6,8,∴转动转盘一次,指针指向的数字为偶数所在区域的概率=.故选B.4、【答案】 B【考点】概率公式【解析】【解答】∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.【分析】由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.【考点】模拟实验【解析】【解答】A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下,正确,不合题意;B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,正确,不合题意;C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,正确,不合题意;D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上,由于奇数与偶数个数不相同,故不能模拟掷硬币的实验,故符合题意.故选:D.【分析】利用模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,进而分析得出即可.6、【答案】C【考点】可能性的大小【解析】【解答】解:∵明明的相册里放了大小相同的照片共32张,其中与同学合影8张,∴她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是:=.故选;C.【分析】利用与同学合影的照片数量除以相片总数,即可得出答案.7、【答案】C【考点】利用频率估计概率【解析】【解答】解:A、“正面向上”不一定会出现5次,故本选项错误;B、“反面向上”不一定会出现5次,故本选项错误;C、“正面向上”可能不出现,只是几率不太大,故本选项正确;D、“正面向上”与“反面向上”出现的次数可能不一样,故本选项错误;故选C.【分析】利用频率估计概率时,只有做大量试验,才能用频率会计概率,但少数实验不能确定一定会出现和概率相符的结果.8、【答案】 D【考点】利用频率估计概率【解析】【解答】解:球的总数是:10÷=80(个),则红球的个数是:80﹣10=70(个).故选D.【分析】小亮共摸了1000次,其中有125次摸到白球,则白球所占的比例是,据此即可求得球的总数,进而求解.【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有9种等可能的结果数,其中小茜上、下午都选中球类运动的结果数为1,所以小茜上、下午都选中球类运动的概率= .故选A.【分析】画树状图展示所有9种等可能的结果数,再找出小茜上、下午都选中球类运动的结果数,然后根据概率公式计算.10、【答案】B【考点】概率公式【解析】【解答】解:∵个不透明的布袋里装有6个黑球和3个白球,∴中任意摸出一个球,是白球的概率= = .故选B.【分析】直接根据概率公式即可得出结论.二、填空题11、【答案】【考点】列表法与树状图法【解析】【解答】设三张风景图片分别剪成相同的两片为:A1, A2, B1, B2, C1, C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.【分析】把三张风景图片剪成相同的两片后用A1, A2, B1, B2, C1, C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.12、【答案】【考点】利用频率估计概率【解析】【解答】解:∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,即.故答案为:.【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率即可.13、【答案】【考点】概率公式【解析】【解答】∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:.【分析】求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.14、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有12种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为4,所以两次都为红桃,并且数字之和不小于8的概率==.故答案为.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.15、【答案】 8【考点】利用频率估计概率【解析】【解答】解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,故答案为:8.【分析】首先根据黑球数÷总数=摸出黑球的概率,再计算出摸出白球,黑球,红球的概率可得答案.16、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率==,故答案为:.【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.17、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.18、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为:= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.三、解答题19、【答案】此游戏不公平.理由如下:列树状图如下,列表如下,<img style="vertical-align:middle;"src=/97/21/97721dbd27213200cd2440eb37ed9372.png color:blue;">【考点】列表法与树状图法,游戏公平性【解析】【解答】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等。
新人教版九年级数学(上)——概率初步
知识点一、概率的有关概念1.概率的定义: 某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.2、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件. ○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,这些事情称为不确定事件.必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件.不确定事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为随机事件。
知识点二、概率的计算1、概率的计算方式:概率的计算有理论计算和实验计算两种方式,根据概率获得的方式不同,它的计算方法也不同.2、如何求具有上述特点的随机事件的概率呢?如果一次试验中共有n 种可能出现的结果,而且这些结果出现的可能性都相同,其中事件A 包含的结果有m 种,那么事件A 发生的概率P(A)=nm 。
在求随机事件的概率时,我们常常利用列表法或树状图来求其中的m 、n ,从而得到事件A 的概率.由此我们可以得到:不可能事件发生的概率为0;即P(不可能事件)=0; 必然事件发生的概率为1;即P(必然事件)=1; 如果A 为不确定事件;那么0<P(A)<1.概率初步类型一:随机事件1.选择题:4个红球、3个白球和2个黑球放入一个不透明袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情( )A.可能发生B.不可能发生C.很可能发生D.必然发生 思路点拨: 举一反三【变式1】下列事件是必然事件的是( )A.中秋节晚上能看到月亮B.今天考试小明能得满分C.早晨太阳会从东方升起D.明天气温会升高【变式2】在100张奖券中,有4张中奖.某人从中任意抽取1张,则他中奖的概率是( )A.251 B.41 C.1001 D.201类型二:概率的意义2.有如下事件,其中“前100个正整数”是指把正整数按从小到大的顺序排列后的前面100个.事件1:在前100个正整数中随意选取一个数,不大于50; 事件2:在前100个正整数中随意选取一个数,恰好为偶数;事件3:在前100个正整数中随意选取一个数,它的2倍仍在前100个正整数中; 事件4:在前100个正整数中随意选取一个数,恰好是3的倍数或5的倍数. 在这几个事件中,发生的概率恰好等于21的有( ) A.1个 B.2个 C.3个 D.4个思路点拨:事件是从前100个正整数中随意选取一个数,其中任何一个数被选取出来的可能性都是一样的,所以有100个可能的结果,而从中随意选取一个,只有一种结果,所以其中每个数被选取的概率都是1001.举一反三【变式1】从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是________.【变式2】口袋中放有3个红球和11个黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是________.类型三:概率的计算1.列表法3.有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白四个球,求分别从两只口袋中各取一个球,两个球都是黄球的概率.红黄蓝白红黄蓝解:所有可能结果共有12种,两球都为黄球只有1种.故P(两球都是黄球)=举一反三【变式1】抛两枚普通的正方体骰子,朝上一面的点数之和大于5而小于等于9的概率是多少?【变式2】在生物学中,我们学习过遗传基因,知道遗传基因决定生男生女,如果父亲的基因用X和Y来表示,母亲的基因用X和X来表示,X和Y搭配表示生男孩,X和X搭配表示生女孩,那么生男孩和生女孩的概率各是多少?【变式3】两个人做游戏,每个人都在纸上随机写一个-2到2之间的整数(包括-2和2),将两人写的整数相加,和的绝对值是1的概率是多少?【变式4】有两组卡片,第一组的三张卡片上分别写有A、C、C;第二组的五张卡片分别写有A、B、B、C、C,那么从每组卡片中各抽出一张,两张都是C的概率是多少?2.树形图法4.将分别标有数字1、2、3的三张卡片洗匀后.背而朝上放在桌面上.(1)随机地抽取一张,求P(奇数);(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上数字,能组成哪些两位数?恰好是“32”的概率为多少?举一反三【变式1】两名同学玩“石头、剪子、布”的游戏,假定两人都是等可能地取“石头、剪子、布”三个中的一个,那么一个回合不能决定胜负的概率是多少?3.用频率估计概率5投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?举一反三射击次数10 20 30 40 50 60 70 80射中8环以上的频数 6 17 25 31 39 49 65 80射中8环以上的频率(1)计算表中相应的频率.(精确到0.01)(2)估计这名运动员射击一次“射中8环以上”的概率.(精确到0.1)类型四:概率的思想方法6.一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数.从口袋中随机摸出一个球,记下其颜色,再把它放回袋中,不断重复上述试验过程,试验中总共摸了200次,其中有50次摸到红球.7.王老汉为了与顾客签订购销合同,对自己鱼塘中鱼的总质量进进了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号的鱼有20条,王老汉的鱼塘中估计有鱼________条,总质量为________千克.类型五:概率的综合应用8.有5条线段,长度分别为2,4,6,8,10,从中任取3条线段.(1)一定能构成三角形吗?(2)猜想一下,能构成三角形的机会有多大?举一反三【变式1】某口袋中有红色、黄色、蓝色乒乓球共72个,亮亮通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率分别为35%、25%和40%,试估计口袋中3种乒乓球的数目.【变式2】某校三个年级在校学生共796名,学生的出生月份统计如图所示,根据下列统计图的数据回答以下问题.(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月份?(3)在这些学生中,至少有两个人生日在10月5日是不可能的,还是可能的?还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月份的概率最小?一、选择题1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ). A .让比赛更富有情趣 B .让比赛更具有神秘色彩 C .体现比赛的公平性 D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ). A .0 B .1 C .0.5 D .不能确定 3.关于频率与概率的关系,下列说法正确的是( ). A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等 4.下列说法正确的是( ).A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .81 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31B .32C .61D .918.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ). (1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大 (2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%” (3)小李说,这次考试我得90分以上的概率是200% (4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生 二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_______ __________.12.掷一枚均匀的骰子,2点向上的概率是______,7点向上的概率是______.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B 为“取出的是黄球”,事件C 为“取出的是蓝球”,则P (A )=______,P (B )=______,P (C )=______.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是______.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为______.16.从下面的6张牌中,一次任意抽取两张,则其点数和是奇数的概率为______.17.在一个袋子中装有除颜色外其他均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是______.18.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则n =______. 三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000 满意人数m999998100210021000m满意频率n(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.。
2018人教版九年级数学上册 第25章:概率初步
2018人教版九年级数学上册第25章:概率初步一、选择题:(每题3分) 1、下列说法中,正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率为1的事件不可能发生D.抛掷一枚均匀的硬币100次,正面朝上的次数一定是50次2、从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( )A .19B .13C .12D .233.如图所示,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯同时发光的概率为( ) A.错误!未找到引用源。
B.31 C. 21 D.错误!未找到引用源。
4.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )A.13B.16C.12D.145.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A.54B.53 C.52 D.516、在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ) A.16个 B.15个 C.13个 D.12个7、同时掷一枚质地均匀的正方体骰子,骰子的六个面分别刻有1~6的点数,下列事件中是必然事件的是( )A.正面的点数是3B.正面的点数2的倍数C.正面的点数大于0D.正面的点数小于68、有五张一面分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是( )A.51B.52 C.53 D.549、商场举行抽奖促销活动,对于宣传语“抽到一等奖的概率为0.1”,下列说法正确的是( )A .抽10次奖必有一次抽到一等奖B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 10、下列事件是必然事件的是( )A .地球绕着太阳转B .抛一枚硬币,正面朝上C .明天会下雨D .打开电视,正在播放新闻 11.下列事件中,必然事件是 ( )A.任意掷一枚均匀的硬币,正面朝上B.打开电视正在播放甲型H1N1流感的相关知识C.某射击运动员射击一次,命中靶心D.在只装有5个红球的袋中摸出1球,是红球12.掷一枚有正反面的均匀硬币,正确的说法是( )A. 正面一定朝上B. 反面一定朝上C. 正面比反面朝上的概率大D. 正面和反面朝上的概率都是0.5 13.有两个事件,事件A :掷一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中。
4.3概率初步(第1部分)-2018年中考数学试题分类汇编(word解析版)
第四部分统计与概率4.3 概率初步【一】知识点清单1、随机事件随机事件;必然事件;不可能事件;可能性的大小;概率的意义;概率公式;几何概率2、用列举法求概率直接列举法求概率;列表法与树状图法;游戏公平性;概率的应用3、用频率估计概率利用频率估计概率;模拟实验(补充)【二】分类试题及参考答案与解析一、选择题1.(2018年山西-第7题-3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答过程】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【总结归纳】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.2.(2018年河南省-第8题-3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.916B.34C.38D.12【知识考点】列表法与树状图法.【思路分析】直接利用树状图法列举出所有可能进而求出概率.【解答过程】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【总结归纳】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.3.(2018年海南省-第10题-3分)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n的值是()A.6 B.7 C.8 D.9【知识考点】概率公式.【思路分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答过程】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.【总结归纳】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.4.(2018年青海省-第14题-3分)用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.15B.13C.12D.310【知识考点】扇形统计图;几何概率.【思路分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【解答过程】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是,故选:D.【总结归纳】此题主要考查了几何概率,以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.5.(2018年福建省A卷/B卷-第6题-3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1 B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12 D.两枚骰子向上一面的点数之和等于12【知识考点】随机事件.【思路分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答过程】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【总结归纳】此题主要考查了随机事件,关键是掌握随机事件定义.二、填空题1.(2018年北京-第14题-2分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【知识考点】频数(率)分布表;可能性的大小.【思路分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答过程】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C 线路公交车用时不超过45分钟的可能性为=0.954,∴C 线路上公交车用时不超过45分钟的可能性最大, 故答案为:C .【总结归纳】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.2.(2018年天津-第15题-3分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 . 【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答过程】解:∵袋子中共有11个小球,其中红球有6个, ∴摸出一个球是红球的概率是,故答案为:.【总结归纳】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.3.(2018年上海-第13题-4分)从27,π为 .【知识考点】无理数;概率公式.【思路分析】由题意可得共有3种等可能的结果,其中无理数有π、共2种情况,则可利用概率公式求解.【解答过程】解:∵在,π,这三个数中,无理数有π,这2个,∴选出的这个数是无理数的概率为,故答案为:.【总结归纳】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.4.(2018年宁夏-第9题-3分)不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 . 【知识考点】概率公式.【思路分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【解答过程】解:∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=,故答案为:.【总结归纳】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.5.(2018年新疆-第13题-5分)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.【知识考点】列表法与树状图法.【思路分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【解答过程】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.【总结归纳】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题1.(2018年重庆A卷-第20题-8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.【知识考点】列表法与树状图法;扇形统计图;条形统计图.【思路分析】(1)先利用参与奖的人数除以它所占的百分比得到调查的总人数,再计算出一等奖的人数,然后补全条形统计图;(2)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答过程】解:(1)调查的总人数为10÷25%=40(人),所以一等奖的人数为40﹣8﹣6﹣12﹣10=4(人),条形统计图为:(2)画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.2.(2018年重庆B卷-第20题-8分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:。
4.3概率初步(第2部分)-2018年中考数学试题分类汇编(word解析版)
第四部分统计与概率4.3 概率初步【一】知识点清单1、随机事件随机事件;必然事件;不可能事件;可能性的大小;概率的意义;概率公式;几何概率2、用列举法求概率直接列举法求概率;列表法与树状图法;游戏公平性;概率的应用3、用频率估计概率利用频率估计概率;模拟实验(补充)【二】分类试题汇编及参考答案与解析一、选择题1.(2018年内蒙古包头市-第4题-3分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【知识考点】随机事件.【思路分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答过程】解:A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故选:C.【总结归纳】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键.2.(2018年广东省广州市-第6题-3分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.16【知识考点】列表法与树状图法.【思路分析】直接根据题意画出树状图,再利用概率公式求出答案.【解答过程】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C.【总结归纳】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.3.(2018年内蒙古呼和浩特市-第5题-3分)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【知识考点】频数(率)分布折线图;利用频率估计概率.【思路分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答过程】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;故选:D.【总结归纳】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.4.(2018年广西北部湾四市-南宁/北海/钦州/防城港-第8题-3分)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.23B.12C.13D.14【知识考点】列表法与树状图法.【思路分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【解答过程】解:列表如下:由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为=,故选:C.【总结归纳】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.(2018年贵州省贵阳市-第8题-3分)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A.112B.110C.16D.25【知识考点】列表法与树状图法.【思路分析】先找出符合的所有情况,再得出选项即可.【解答过程】解:恰好摆放成如图所示位置的概率是=,故选:D.【总结归纳】本题考查了列表法与树形图法,能找出符合的所有情况是解此题的关键.6.(2018年湖北省武汉市-第8题-3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.56【知识考点】列表法与树状图法.【思路分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答过程】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.7.(2018年湖南省长沙市-第8题-3分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【知识考点】随机事件;概率的意义.【思路分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答过程】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.【总结归纳】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.8.(2018年辽宁省沈阳市-第7题-2分)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【知识考点】随机事件.【思路分析】必然事件就是一定发生的事件,依据定义即可判断.【解答过程】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.【总结归纳】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(2018年浙江省杭州市-第7题-3分)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.16B.13C.12D.23【知识考点】概率公式.【思路分析】根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.【解答过程】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.【总结归纳】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.(2018年云南省昆明市-第10题-4分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件【知识考点】总体、个体、样本、样本容量;加权平均数;中位数;方差;随机事件.【思路分析】直接利用样本容量以及方差的定义以及中位数的定义和必然事件的定义分别分析得出答案.【解答过程】解:A、甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,故此选项错误;B、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D.【总结归纳】此题主要考查了样本容量以及方差、中位数和必然事件的定义,正确把握相关定义是解题关键.二、填空题1.(2018年新疆乌鲁木齐市-第11题-4分)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是.【知识考点】概率公式.【思路分析】直接利用概率公式求解即可求得答案.【解答过程】解:∵袋子中共有5+2+1=8个球,其中红球有5个,∴摸到红球的概率是,故答案为:.【总结归纳】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.(2018年深圳市-第14题-3分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【知识考点】概率公式.【思路分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答过程】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【总结归纳】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.3.(2018年内蒙古呼和浩特市-第14题-3分)已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.【知识考点】一次函数的性质;概率公式.【思路分析】直接利用一次函数增减性结合k的取值范围进而得出答案.【解答过程】解:当2k﹣1>0时,解得:k>,则<k≤3时,y随x增加而增加,故﹣3≤k<时,y随x增加而减小,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:=.故答案为:.【总结归纳】此题主要考查了概率公式以及一次函数的性质,关键是掌握概率的计算方法.4.(2018年内蒙古包头市-第15题-3分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【知识考点】列表法与树状图法.【思路分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计。
人教版2018年秋九年级数学上册第二十五章概率初步全章课件(共12份)4
总结梳理 内化目标
1.在一次试验中,当可能出现的结果只有有限个 ,且各种结果出现的可能性大小概率的计算,我们可以科学地分析随机事 件发生的结果的各种可能性,从而指导我们做事, 提高做事的成功率.
达标检测 反思目标
C
0.25
C
• • • • • •
• •
• • • • • • • • • •
• •
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦 想而竭尽全力了? 7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是 流水。 9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。 10、一句简单的问候,是不简单的牵挂;一声平常的祝福,是不平常的感动;条消息送去的是无声的支持与鼓励,愿你永远坚强应对未来,胜利属于你! 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。 14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 18、过自己喜欢的生活,成为自己喜欢的样子,其实很简单,就是把无数个"今天"过好,这就意味着不辜负不蹉跎时光,以饱满的热情迎接每一件事,让生命的每一天都有 滋有味。 19、上天不会亏待努力的人,也不会同情假勤奋的人,你有多努力时光它知道。 20、成长这一路就是懂得闭嘴努力,知道低调谦逊,学会强大自己,在每一个值得珍惜的日子里,拼命去成为自己想成为的人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识精讲知识点1 感受可能性1、确定事件和随机事件必然事件:在一定条件下进行重复试验时,有些事情事先能肯定它一定发生,这些事情称为必然事件.不可能事件:在一定条件下进行重复试验时,有些事情事先能肯定它一定不会发生,这些事情称为不可能事件.确定事件:必然事件与不可能事件都是确定的,我们称之为确定事件.随机事件:在一定条件下进行重复试验时,有些事情事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件.事件分类如下:2、理解必然事件、不可能事件和随机事件必然事件、不可能事件、随机事件在“一定条件下”发生或不发生.实际上,必然事件、不可能事件、随机事件都必须受到一定条件的制约.例如,在标准大气压下,水加热到100℃沸腾是必然事件;但在气压高于标准大气压时,水加热到100℃,水沸腾就不是必然事件(此时沸点提高了).3、随机事件发生的可能性有大小(1)事件发生的可能性不同.事件发生的可能性的大小常用下面的几种语言来概括:一定、很可能、可能、不大可能、不可能.(2)必然事件发生的机会是100%,不可能事件发生的机会是0,而随机事件发生的机会介于0和100%之间.随机事件发生的可能性的大小一般要经过大量重复试验才能确定.知识点2 频率的稳定性1.频率的定义:设总共做n次重复实验,而事件A发生了m次,则称事件A发生的次数m为频数,在相同条件下的大量重复的n次试验中,随机事件A发生了m次,称为事件A发生的频率.2.频率的稳定性:在大量重复试验的情况下,事件发生的频率会呈现稳定性,即频率在一个“常数”附近摆动,这就是频率的稳定性。
随着次数的增加,摆动的幅度越来越小.3.用频率估计某一事件发生的概率一般地,大量重复的试验中,常用不确定事件A发生的频率来估计事件A发生的概率,记作P(A).对于任何一个事件A,它的概率P(A)满足0≤P(A)≤1,必然事件的概率是1,不可能事件的概率是0.事件A发生的频率与事件A发生的概率是两个不同的概念.事件A发生的频率与试验的次数有关,它是一个动态的数字;事件A发生的概率p应是客观存在的,它是一个常数。
【例题精讲】例1 指出下列事件是必然事件、不可能事件还是随机事件.(1)购买一张彩票就中奖;(2)某射手射击一次,命中10环;(3)连续抛掷一颗骰子,三次都是点数“6”朝上;(4)在标准大气压下,水在0℃会结冰;(5)石头孵出小鸡.例2 盒中装有红球、黄球和白球共12个,每个球除颜色外都相同,每次摸1个小球,然后放回,摇匀后,再摸第2次、第3次……(1)甲同学摸球10次,没摸到“红球”,便判断“摸到红球”是不可能事件,这种说法合理吗?(2)乙同学共摸球10次,摸到白球6次,黄球3次,红球1次,这说明什么?(3)丙同学并没有去摸球,却认为摸到红球、黄球和球的可能性大小是一样的,这样说对吗?例3 在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近__________(精确到0.1).(2)假如你摸一次,你摸到白球的概率P(白球)=__________.(3)试估算盒子里黑、白两种颜色的球各有多少只?【课堂练习】1.下列说法正确的是( )A. “明天降雨的概率是80%”表示明天有80%的时间降雨B. “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C. “彩票中奖的概率是1%”表示买100张彩票一定会中奖D. 抛一枚正方体骰子朝上面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝上面的数为奇数2.4个红球,3个白球,2个黑球放入一个不透明袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这个事件()A.可能发生B.不可能发生C.很可能发生D.必然发生3.下列事件中是随机事件的是()(1)在标准大气压下的-12℃,一杯纯净水结冰;(2)打靶连续3次都命中10环;(3)两直线被第3条直线所截,同位角相等;(4)直线a既与直线b平行,又与直线b垂直.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(3)4.关于“从一布袋中随机摸出1球恰是黄球的概率为”的意思说法正确的是()A.摸球5次就一定有1次摸中黄球B.摸球5次就一定有4次不能摸中黄球C.如果摸球次数很多,那么平均每摸球5次就有一次摸中黄球D.以上都不对5.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 398 652 793 1 604 4 005发芽频率0.850 0.745 0.851 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率约为______(精确到0.1).6.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n 100 300 400 600 1000 2019 3000发芽的粒数m 96 282 382 570 948 1912 2850发芽的频数0.960 0.940 0.955 0.950 0.948 0.956 0.950则绿豆发芽的概率估计值是()A.0.96 B.0.95C.0.94 D.0.907.在一个不透明的口袋中,装着除颜色外其余完全一样的5个红球,3个蓝球,2个白球,请判断以下事件:(1)从口袋中任意取出一个球,是白球;(2)从口袋中任意取出5个球,全是蓝球;(3)从口袋中任意取出5个球,只有蓝球和白球,没有红球;(4)从口袋中任意取出6个球,恰好红、蓝、白三种颜色的都有.其中不确定事件是______,不可能事件是______,必然事件是______.知识点2 等可能事件的概率1、等可能事件设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性.2、等可能事件的概率一般地,如果一个试验有n种等可能的结果,事件A包含其中的m种结果,那么事件A发生的概率为:3、等可能条件下的概率的两个基本特征①试验的所有可能结果只有有限种(有限性);②所有可能发生的基本结果出现的可能性相同(等可能性).说明:并不是所有的试验都是等可能的,一个试验是否为等可能的,关键在于这个试验是否具备等可能条件下概率的两个特征.4、几何概型当实验的所有可能结果不是有限个,且具有某种等可能性时,实验的可能结果可以用线段或平面区域表示,此类事件的概率可以用部分线段的长度(部分区域的面积)和整条线段的长度(整个区域的面积)的比表示,这些概率与几何度量有关,数学上称为几何概率.【例题精讲】例1 一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,从中任意摸出一个球,则摸到黑球的概率为____________.例2 有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是_________.例3 在如图所示的图案中,黑、白两色的直角三角形都全等.将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜,你认为这个游戏公平吗?为什么?例4 如图所示,芳芳自己设计的自由转动的转盘,转盘被等分为12份.上面有12个有理数,求转出的数是:(1)正数的概率;(2)负数的概率;(3)绝对值小于6的概率;(4)相反数大于或等于8的概率.例5 某酒店为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘等分成16份),并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会;如果转盘停止后,指针正好对准九折、八折、七折或五折区域,顾客就可以获得此项待遇。
(1)甲顾客消费80元,“获得转动转盘的机会”是什么事件?它的概率是多少?(2)乙顾客消费150元,“获得转动转盘的机会”是什么事件?它的概率是多少?(3)乙顾客转动转盘时,获得五折待遇的概率是多少?获得打折待遇的概率是多少?【课堂练习】1.在一副扑克牌中,任意抽出一张是黑桃的可能性占()A.B.C. D.2.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是___.3.一个不透明的袋子中有4个红球,6个白球,2个黑球,这些球除颜色不同外没有任何区别。
随机地从这个袋子中摸出一个球,这个球为红球的概率是___.4.车间生产了100件产品中有95件合格产品,5件不合格产品,现从中随机抽出一件进行质量检查.请问:(1)恰好抽到合格产品的概率是多少?(2)恰好抽到不合格产品的概率是多少?(3)抽到合格产品和不合格产品的概率是多少?5.如图,转盘被等分成六个扇形区域,并在上面依次写上数字1、2、3、4、5、6.转盘指针的位置固定,转动转盘后任其自由停止。
(1)当停止转动时,指针指向奇数区域的概率是多少?(2)请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率为,并说明你的设计理由。
(设计方案可用图示表示,也可以用文字表述)6.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是.(1)试写出y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.检测小式一:选择题1、分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.B. C.D.2、小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.B. C.1 D.3、某电视台举行歌手大奖赛,每场比赛都有编号为1~10号,共10道综合素质测试题供选手随机抽取作答,在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是()A. B. C.D.4、向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于()A.B. C.D.5、如图的转盘被划分成六个相同大小的扇形,并分别标上1、2、3、4、5、6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形乙:只要指针连续转六次,一定会有一次停在6号扇形丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等丁:运气好的时候,只要转动前默默想好让指针停在6号扇形,则指针停在6号扇形的可能性就会加大其中你认为正确的见解有()A.1个 B.2个C.3个 D.4个6、义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A.B. C. D.二:填空题7、在一个不透明的盒子中装有4个黑球,个红球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黑球的概率为,则n=__________.8、如图,数轴上两点A,B,在线段AB上任取一点C,则点C到表示1的点的距离不大于2的概率是________.三:解答题1、某彩票的中奖概率为2%,买2张一定不会中奖,买100张一定会中奖.这种说法是否正确?2、一个口袋内有6个红球,2个黄球和一些蓝色球,将它们充分搅匀后从中随机摸出一个球再放回去,反复此做法200次,其中黄球被摸出10次,请你估计口袋中蓝色球的个数.3、一个地区从某年起几年之内的新生儿数及其中男婴数如下:时间范围1年内2年内3年内4年内新生婴儿数5544 9607 13520 17190第 11 页。