PCB布线前的规则设置
pcb布线规则及技巧
使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。
PCB板铺铜规则设置
PCB板铺铜规则设置在PCB设计中,铺铜规则设置是非常重要的,以确保电路板的电气性能和可靠性。
以下是一些常用的PCB板铺铜规则设置:1. 铜层厚度:在PCB设计中,一般使用的铜层厚度有1oz(约35um),2oz(约70um)和3oz(约105um)。
较高的铜层厚度能够提供更好的电流承载能力,但同时也会增加成本和板厚。
2.铺铜间距:铺铜之间的间距是保证电路板绝缘性能的关键因素。
一般来说,铜层之间的最小间距应该满足安全距离要求,以避免短路和击穿等问题。
具体的间距要根据实际的设计要求和制造能力来决定。
3.铺铜间距规则:根据设计要求,可以在布线规则中设置最小和最大铺铜间距规则。
这样,在进行布线时,设计软件就会根据这些规则自动检查和调整布线的间距,确保满足安全距离要求。
4.功率线铺铜:在高功率电路设计中,为了提供足够的热释放能力,需要在功率线上增加铺铜面积。
一般来说,功率线需要设置足够宽度的铺铜,以降低线路电阻、提升散热效果,并减少线路噪声和干扰。
5.地线铺铜:在PCB设计中,地线的铺铜面积通常要比信号线大。
这是为了提供更好的接地和屏蔽效果,并减少地回路的电阻和干扰。
地线铺铜规则可以根据具体的设计要求和层次来决定。
6.信号线铺铜:对于高速信号线,为了降低信号引线阻抗和噪声,一般需要增加铺铜面积。
这可以通过增加信号线的宽度或者在信号线附近添加铺铜区域来实现。
7.铺铜连接性:在PCB设计中,为了确保铺铜层之间的连接性,可以在PCB布局和布线规则中设置与铺铜相关的连接规则。
这样,在铺铜之间会自动生成连线以实现电气连接和散热。
总结:铺铜规则设置对于PCB设计的电气性能和可靠性来说非常重要。
合理的铺铜规则可以提高信号完整性,降低线路电阻和噪声,提升电路板的可靠性和稳定性。
因此,在PCB设计过程中,需要根据具体的设计要求和制造能力来设置合适的铺铜规则。
AltiumDesignerPCB布局布线及规则设置
– 需要在PCB中切除部分,可使用菜单快捷键“D - S - C”(Define Board Cutout)
– 绘制完成后,可重新定义原点位置,“E - O - S”,一般可定义在板子左下角、 某个定位孔处或板子中央
• 可将所有Room拖动(会连带room中的元件)到PCB中 • 将room的大小拖放到比PCB稍稍大一些 • 可在图层显示选项中(“L”),将room设置为隐藏
2021/9/17
20
布局
• 布局
– 如果觉得丝印层字符过大,可以使用“Find Similar Objects”(在对象上单击右 键)工具和PCB检视器(PCB Inspector)批量修改
– 或将PCB中的更改导入到原理图中
• 在PCB编辑环境中,菜单“D - U”
– 同步过程中如有错误,应检查后再次同步,常见错误有:
• 封装错误 • 封装库未引用 • 封装中焊盘与元件引脚
不配对 • 元件标号重复 • 等等
2021/9/17
17
元件属性
• 双击元件可编辑元件属性
元件所在层,可以 修改,修改后AD 会自动翻转封装
– 两种方法:
• 使用菜单快捷键“D - S - R”(Redefine Board Shape),可绘制边框的外形(绘制过程中可按 “Space”更改出线方向,按“Shift+Space”更改线型)绘制至最后一边时可单击右键结束,AD会自 动完成最后一边
• 在Keepout层使用绘图工具绘制任意形状的封闭线条,选中它们,然后使用菜单快捷键“D - S - D” (Define From Selected Objects),AD会根据选中的线条形状定义PCB外形
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧
敬迎:翼彳1.一般规则
1.1PCB板上预划分数字、模拟、DAA信号布线区域。
1.2数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3高速数字信号走线尽量短。
1.4敏感模拟信号走线尽量短。
1.5合理分配电源和地。
1.6DGND、AGND、实地分开。
1.7电源及临界信号走线使用宽线。
1.8数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2.元器件放置
2.1在系统电路原理图中:
a)划分数字、模拟、DAA电路及其相关电路;
b)在各个电路中划分数字、模拟、混合数字/模拟元器件;
c)注意各IC芯片电源和信号引脚的定位。
2.2初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3初步划分完毕彳爰,从Connector和Jack开始放置元器件:
a)Connector和Jack周围留出插件的位置;
b)元器件周围留出电源和地走线的空间;
c)Socket周围留出相应插件的位置。
2.4首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):
a)确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;。
pcb布局布线技巧及原则(全面)
pcb布局布线技巧及原则[ 2020-11-16 0:19:00 | By: lanzeex ]PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8 mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB板布局原则布线技巧
PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。
2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。
3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。
4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。
5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。
二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。
2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。
3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。
对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。
4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。
对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。
5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。
同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。
6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。
7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。
三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。
2.尽量减小信号线的面积,减少对周围信号的干扰。
3.尽量采用四方对称布线,减少线路不平衡引起的干扰。
4.尽量降低线路阻抗,提高信号的传输质量。
pcb布线规则及技巧
当发现电源线(如左图DOVDD)引脚 在内部时,0.2粗细的电源线会超出安 全距离,此时可以打过孔布线或者将电 源线一分为二走向芯片引脚,左图一分 为二影响DVDD走线,否则不应在芯片 内部打过孔
(一分为二)
当电源线或地线引脚成排时,可采用图示方法布线
当电源线走线与其他走线相交,若走外围绕圈 将导致空间不足以包地时,可打过孔布线
5. 电源线尽可能走0.2MM,如若空间允许,可调整为0.25MM;电源线与 地线之间有空间可将地线空间补大。
6. 一般情况下,电源线应先经过电容在进入芯片的引脚;模拟电源AVDD
和I2C数据线尽量不在一起,即AVDD不可从SCL、SDA中间通过。 7. 电源AVDD、DVDD、DOVDD应尽量分开,DVDD和DOVDD允许相邻,但其间 最好能隔地;电源线均应尽量少打过孔,尽量走总分结构,少有一路到 底。
模拟电源和数字电源应尽量远离,电源尽量放在板子外围
该图布线存在一个警告,在一个layout图中,电源 线与地线在有空间时都应尽量保证在0.2mm 地线布线中空间不足可采用0.1mm
该图布线存在一个警告,电源引脚成排时,除了可以采用U型布线外,还可以以两个引脚为一组引出一条线, 如右方图片所示
EMI是英文Electro Magnetic Interference 的缩写,是 电磁干扰的意思。电源是发生EMI的重要来源。电源 电路中EMI电路的作用是滤除由电网进来的各种干扰信号,防止电源开关电路形成的高频扰窜电网,或对设备 和应用环境造成干扰。在其它电路或设备中,也往往要用到EMI电路或采取其它措施防止和抑制EMI的发生, 以防止和抑制干扰,如通讯电缆的终端电阻,电脑的机箱,变压器的屏蔽罩,用顺磁材料或抗磁材料来疏导或 阻止电磁场的穿行等等。EMI是产品投放市场前电工认证的一个必检内容。 我们平时经常见到一些产品由于 EMI不过关的报告或投诉。我们常见的开关电源入口处,有一个两个绕组的电感,这个电感是共模抑制电感, 也起到减少EMI的作用。另外,一些数据线的两头,会鼓出来一个大包包(例如电脑彩显的数据线上,一些数 码相机的数据线上),其实里面就是一个减少EMI的磁环。
PCB设计布局及布线规则
PCB设计布局规则1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。
按工艺设计规范的要求进行尺寸标注。
2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区。
3. 综合考虑PCB性能和加工的效率选择加工流程。
加工工艺的优选顺序为:元件面单面贴装--元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)--双面贴装--元件面贴插混装、焊接面贴装。
4.布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。
G. 如有特殊布局要求,应双方沟通后确定。
5. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。
当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。
9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。
第八讲PCB板图绘制前规则的设置,自动布线及Fanout应用
自动布线器打开后的一些设置及布线启动
如果我们从板图中打开的 布线器,图示界面如右图 所示。假设我们的布线规 则都已设置完成。但这里 面可能选择那种类型孔还 没有设置,因此要特别注 意红中下两个红圈所示部 分,在Via Types中点击 自己想选择的孔,在其下 面的视窗中红圈所圈定的 部分点击。即为选中该过 孔做为布线时所用的过孔。
点击Modify按钮,在弹出左下图板中输入4, 确定。
在新弹出的图栏中,点击2所对应的层如上左 图示,在下面的单选项中将其设置为Delete。
将光标下移到3所对应的层,如上右图所示, New Layer设置为2,再移光移到4所对应 的层,将新层设置为3,再下移到5,将其设 置为删除,除到6将其设置为4,OK后完成
ToolsAutoRouteSt art开始布线,或按F9。
自动布线器下元件Fanout的设置
在自动布线器窗口选中一个元件,点击鼠标右键在弹出的菜单中选择Properties, 会弹出上图所示窗口。把上图窗口切换到Fanout项下,注意红圈和红框所示部分。
对于管脚来讲,最好都设置成Fanout,如方框上的红圈所示部分都在复选框中选中 对于Allow Multiple这项最好都不要选,以保证每个管脚都有线和过孔扇出,没有
本讲结束
本讲十分关键,自行练习Fanout功能。 本节下有可以练习Fanout的板图。
谢谢聆 听
共同学习相互提高
课程目的:掌握PCB布线规则设置及布板原则与 Fanout应用。
讲座时间:40分钟
本节主要内容
主要是布板规则设定和Fanout应用
PCB布局布线基本规则
PCB布局布线基本规则1.尽量减少电路板的层数。
每增加一层电路板的层数会增加制造成本和设计复杂度,同时也会增加信号传输的延迟。
因此,尽量保持电路简单,减少层数。
2.分离高频和低频信号。
高频信号容易受到干扰,因此应当尽量与低频信号分离。
可以采用不同的层或区域来布置高频和低频信号的元件,或者使用地平面分离高频和低频信号。
3.分割地平面和电源平面。
电路板上应该有专门的地平面和电源平面,以提供良好的电源和地引线。
这样可以减少信号线和引线的长度,降低电磁干扰。
4.保持信号线和供电线的最小间隔。
信号线和供电线之间的间隔越小,电磁干扰就越小。
因此,在布局时要尽量将信号线和供电线保持一定的距离,避免相互干扰。
5.将相互影响的元件放在一起。
相互影响的元件包括开关、驱动器、传感器等。
将它们放在相邻的位置可以减少互相作用产生的干扰。
6.避免产生环形信号线。
环形信号线会产生反射和干扰,影响信号传输稳定性。
因此,布线时应尽量避免产生环形信号线。
7.避免交叉布线。
交叉布线会产生互相干扰,影响信号传输质量。
因此,布线时应尽量避免信号线交叉。
如果无法避免,可以采用信号线层间的穿越或使用防干扰技术。
8.尽量使用直线布线。
直线布线可以减小信号的传输延迟和损耗。
此外,直线布线还可以提高电子产品的散热性能,提高整体性能。
9.保持信号线、供电线和地线的长度一致。
信号线、供电线和地线的长度一致可以减少信号的传输延迟和损耗,提高信号质量。
10.避免布线在电源和地线附近。
电源和地线附近会有较高的电磁干扰和噪声。
因此,布线时应尽量避免信号线在电源和地线附近。
以上是PCB布局布线的一些基本规则,通过遵循这些规则可以提高电路的可靠性和稳定性,减少噪声和电磁干扰,提高电子产品的整体品质。
当然,不同的电路和产品可能有更具体的规格和要求,设计者还需要根据具体情况进行布局和布线。
PCB布线基本规则
PCB布线基本规则1.分区布线法:将电路板划分为多个区域,根据电路功能的不同,将相应的器件进行分组布线。
这样做可以减少信号之间的干扰。
2.地线设计:地线是指回路的参考电平,良好的地线设计可以减少电路的噪声和互连的电磁辐射。
应尽量使用大面积的地铜,将其与电源引脚和地引脚连接。
3.信号与电源线分离:信号线和电源线应尽量分开布线,避免干扰和串扰。
一般来说,信号线与电源线之间的距离应保持在最小。
4.信号线和地线平行布线:信号线和地线的平行布线可以减少串扰和电磁辐射。
尽量使得信号线与地线的长度相同,以减小阻抗不匹配引起的问题。
5.信号线与电源线的过孔分离:过孔是将电路板的不同层连接的通道。
为了减少信号线与电源线之间的串扰和干扰,应将它们通过过孔连接的位置分开。
6.差分信号线的布线:差分信号线是指具有相反电压波形的一对信号线。
差分信号线布线要求两根线的长度相同且平行,以减少串扰和噪声。
7.高频信号线的长度控制:对于高频信号线,其长度是一个非常重要的因素。
频率越高,布线长度应控制在更短的范围内,以减小信号的传输损耗和干扰。
8.地面的铺设:在PCB布线中,应尽量铺设大面积的地面,以减小信号线与地线之间的阻抗不匹配和串扰。
9.避免导线的环形布线:布线过程中,尽量避免导线的环形布线,以减少信号传输时的噪声和反射。
10.考虑电磁兼容性(EMC):在PCB布线中,需要考虑电磁兼容性,尽量减小电磁辐射和相互干扰。
总之,良好的PCB布线设计可以提高电路的性能和可靠性,减少干扰和噪声的影响。
尽量遵循上述基本规则,可以制定出符合需求的布线策略。
需要注意的是,每个PCB设计都有其特定的要求和限制,例如电路复杂性、尺寸和功耗等,设计时应根据具体情况进行布线。
PCB布线的技巧及注意事项
PCB布线的技巧及注意事项1.合理规划电路板上的元件布局:在进行布线之前,需要根据电路的功能和结构合理规划元件的布局。
合理布局可以减少跨线和交叉线,简化布线过程,并提高电路的可靠性和抗干扰能力。
例如,将相互关联的元件集中在一起,以减少连线长度和信号传输的损耗。
2.使用地平面和电源平面:地平面和电源平面是PCB布线中非常重要的一部分。
通过在PCB中设置地平面和电源平面,可以有效减少地线和电源线的长度,减小同轴电缆的干扰和耦合,提高信号完整性和抗干扰能力。
3.利用电网连接:电网连接是PCB布线中常用的一种布线方式。
电网连接可以减小线宽和线间距,减小电路板上的导线一阶传输延迟,提高信号完整性和抗干扰能力。
在布局时,应尽量合理规划电网的结构和布线的路径。
4.分析和优化信号传输路径:信号传输路径是PCB布线中需要特别关注的一部分。
通过分析信号传输路径,可以了解信号在电路板上的传输特性,并进行优化。
例如,可以采用直线传输路径,减小信号传输的损耗和干扰;可以避免信号线与电源线、地线和其他高频信号线的交叉,减小互相干扰。
5.处理高频和高速信号:在布线中,对于高频和高速信号需要特别注意。
高频信号容易受到串扰和反射的影响,因此对于高频信号,应避免长线和小弯曲。
对于高速信号,需要注意控制传输线的阻抗匹配,减小信号的反射和射频干扰。
6.使用适当的布线规则和约束:在进行布线之前,需要根据电路设计的要求和约束设置适当的布线规则。
布线规则可以包括连线宽度、线间距、最小孔径等要素。
合理设置布线规则可以减小静电干扰和交叉干扰,提高电路的性能和可靠性。
7.进行电磁兼容性(EMC)设计:在进行布线时,需要考虑电磁兼容性设计。
电磁辐射和电磁敏感性是电路板设计中常见的问题,可以通过合理的布线和使用滤波器来减小电磁干扰。
8.进行仿真和测试:在完成布线之后,需要进行仿真和测试来验证电路的性能和可靠性。
通过仿真和测试,可以检测电路中可能存在的问题,并做出相应的调整。
AD中关于PCB规则的设置
AD中关于PCB规则的设置AD(Allegro Design Entry)是一款常用的PCB设计软件,它提供了丰富的设置选项,使得在设计过程中可以根据不同的需求进行灵活的规则设置。
下面将详细介绍AD中关于PCB规则的设置。
在AD中,可以通过工具栏中的“Setup”按钮或者主菜单中的“Design”菜单找到“Rules”选项,进入规则设置界面。
在该界面中,可以设置包括尺寸、电气、信号完整性、布线、射频等多个方面的规则。
首先,在“Physical”选项卡下,可以设置PCB的尺寸规则,如最小间距、最小孔径、最小锡膏桥宽度等。
这些规则可以根据不同的生产要求进行调整,保证设计的可制造性。
其次,在“Electrical”选项卡下,可以设置电气规则,如最大/最小电压、最大电流、最大功率等。
电气规则的设置可以帮助检查设计是否符合电气要求,并在设计出现问题时提供警告信息。
第三,在“Signal Integrity”选项卡下,可以设置信号完整性规则。
信号完整性规则主要用于检查信号传输中的时序、电压和功率等参数是否满足要求。
可以设置信号线长度匹配、差分线长度匹配、信号耦合等规则,以提高信号传输的可靠性。
第四,在“Routing”选项卡下,可以设置布线规则。
布线规则主要涉及到布线层的设置、走线宽度和间距的规定、盲孔设置、走线与走迹间的最小距离等。
合理设置布线规则可以确保设计的信号和电源线路有良好的信号完整性和电性性能。
最后,在“RF”选项卡下,可以设置射频规则。
射频规则主要涉及到射频信号的特殊要求,如地平面划分、微带线参数、信号与地平面间的最小距离等。
合理设置射频规则可以提高射频电路的性能。
此外,在规则设置界面中,还可以创建和管理规则约束的集合。
通过创建不同的规则集,可以对不同的设计阶段或设计需求进行规则区分,从而方便设计师进行快速切换和管理。
需要注意的是,规则设置仅仅是为了帮助工程师在设计过程中发现潜在问题,并提供警告信息。
PCB优先选项设定设计规则设定
PCB优先选项设定设计规则设定1.PCB尺寸和形状:确定PCB的外形尺寸和形状,通常以产品外壳、组装要求和电器特性为依据。
在确定尺寸和形状时,还需要考虑到制造工艺和成本限制。
2.PCB层数:确定PCB的层数,通常根据电路复杂度、信号完整性要求和成本考虑。
一般选择多层PCB可以提供更好的EMC性能和布线密度,但也会增加制造成本和设计复杂度。
3.PCB材料:选择适当的PCB材料,在考虑电气、热学、机械和成本等因素的基础上,选择适当的材料。
常见的PCB材料有FR-4、FR-5、高频板材和金属基板等。
4.加工工艺:确定PCB的加工工艺,包括线路走向方式、电镀工艺、喷锡工艺、屏蔽工艺等。
根据产品要求和预算限制,选用适当的工艺来实现设计目标。
接下来,我们将讨论设计规则设定。
设计规则设定是指通过定义和设置一些设计规则,确保设计符合安全、可靠、稳定、高性能的要求。
以下是一些常见的设计规则设定:1.电气规则:包括电路连接、电源和地线规则、信号完整性规则和EMC规则等。
通过设置这些规则,可以确保电路的一致性和稳定性,提高产品的可靠性和性能。
2.机械规则:包括尺寸、外形、组态、连接和固定等规则。
通过合理设置机械规则,可以确保PCB与外壳、插件、线束和连接器等组件的符合要求。
3.布线规则:包括布线宽度、间距、信号引脚位置、阻抗控制和信号分层等规则。
通过设置布线规则,可以实现信号完整性、阻抗匹配和EMC性能的要求。
4.制造规则:包括焊盘尺寸、喷锡覆盖率、工艺限制和工程文件等规则。
通过设置制造规则,可以提高PCB的制造性能和一致性,降低制造成本和缺陷率。
在PCB设计过程中,PCB优先选项设定和设计规则设定是非常重要的。
通过合理设定这些选项和规则,可以减少设计错误、提高工程效率、缩短设计周期和降低成本。
因此,工程师在进行PCB设计时,应该充分考虑和利用这些设定和规则,以获得最佳设计结果。
Pcb布局规则和技巧
Pcb布局规则和技巧Pcb布局规章1、在通常状况下,全部的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在低层。
2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般状况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布匀称、疏密全都。
3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM 以上。
4、离电路板边缘一般不小于2MM.电路板的最佳外形为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。
Pcb布局技巧在PCB的布局设计中要分析电路板的单元,依据其功能进行布局设计,对电路的全部元器件进行布局时,要符合以下原则:1、根据电路的流程支配各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持全都的方向。
2、以每个功能单元的核心元器件为中心,围绕他来进行布局。
元器件应匀称、整体、紧凑的排列在PCB上,尽量削减和缩短各元器件之间的引线和连接。
3、在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件并行排列,这样不但美观,而且装旱简单,易于批量生产。
特别元器件的位置在布局时一般要遵守以下原则:1、尽可能缩短高频元器件之间的连接,设法削减他们的分布参数及和相互间的电磁干扰。
易受干扰的元器件不能相互离的太近,输入和输出应尽量远离。
2一些元器件或导线有可能有较高的电位差,应加大他们的距离,以免放电引起意外短路。
高电压的元器件应尽量放在手触及不到的地方。
3、重量超过15G的元器件,可用支架加以固定,然后焊接。
那些又重又热的元器件,不应放到电路板上,应放到主机箱的底版上,且考虑散热问题。
热敏元器件应远离发热元器件。
4、对与电位器、可调电感线圈、可变电容器、微动开关等可调元器件的布局应考虑整块扳子的结构要求,一些常常用到的开关,在结构允许的状况下,应放置到手简单接触到的地方。
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一环,它涉及到电路设计的优化、信号传输的质量以及电路板的可靠性等方面。
以下是一些PCB布线的基本规则与技巧。
1.分隔高频与低频信号:在布线过程中,应将高频和低频信号分隔开来,以减少相互干扰。
可以通过增加地线、使用地层或远离干扰源等方式实现。
2.避免信号线与电源线、地线交叉:信号线与电源线、地线交叉会引起互相干扰,影响信号的传输质量。
在布线时应尽量避免信号线与其他线路的交叉,并采取合适的措施进行隔离。
3.保持信号线的相互垂直:信号线之间保持垂直可以减少信号之间的干扰。
在布线时,应尽量使信号线垂直地通过其他信号线或电源线、地线。
4.尽量缩短信号线的长度:信号线的长度会对信号传输的延迟和损耗产生影响,因此在布线时应尽量缩短信号线的长度。
对于高频信号尤为重要。
5.使用平面与过孔进行地线连接:地线是电路板中非常重要的一条线路,它可以提供整个电路的参考电平。
在布线时,可以通过使用平面层与过孔来进行地线的连接,提高地线的连续性。
6.使用平面与过孔进行电源线连接:电源线的布线也是非常重要的,尤其是对于供电要求较高的芯片或模块。
在布线时,可以通过使用平面层与过孔来进行电源线的连接,减少电源线的阻抗。
7.控制线宽和线距:PCB布线中的线宽和线距对电路的阻抗、信号的传输速度以及电流的承载能力等都是有影响的。
在布线时要根据需要选择合适的线宽和线距,保证电路的性能。
8.避免信号环路:信号环路会引起信号的反馈和干扰,影响电路的正常工作。
在布线时应尽量避免信号环路的产生,可以采取断开一部分连接或改变布线路径等方式来解决。
9.保持信号对称性:对于差分信号线或时钟信号线,应保持信号的对称性。
在布线时应尽量使信号线的路径相同,长度相等,以减少差分信号之间的干扰。
10.考虑EMI(Electromagnetic Interference,电磁干扰):在布线过程中应考虑到电磁干扰的问题,采取一些措施来减少电磁辐射和干扰。
PCB主线布线规范—IO
PCB主线布线规范—I/O
一、PS/2
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;2.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;3.信号线一起走,不要穿插其他线;
4.尽量不要跨内层切割线,少打VIA。
二、COM
1.电容(或排容)尽量靠近CONNECTOR;
2.布线顺序CONNECTOR→电容→IC;
3.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;4.信号线一起走,不要穿插其他线;
5.尽量不要跨内层切割线,少打VIA。
三、VGA
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;
2.R、G、B布线走differential,必须同时换层,尽量包地且至少隔100mil打GND孔,减少EMI;
3.HSYNC、VSYNC等间距大于10mil;
4.尽量不要跨内层切割线,少打VIA。
四、PRINTER
1.布线顺序CONNECTOR→电容→电阻→IC;
2.电容尽量靠近CONNECTOR;
3.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;4.信号线一起走,不要穿插其他线;
5.尽量不要跨内层切割线,少打VIA。
五、USB
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;
2.同组布线走differential,等长,同时换层,尽量不要跨内层切割线;
3.根据guideline设置线宽间距,组之间间距大于20mil。
和其他高频线大于40mil;
4.正背面尽量铺GND铜箔,多打VIA连通,减少EMI。
AD中关于PCB规则的设置
AD中关于PCB规则的设置在AD软件中,PCB规则设置对于电路设计和布局来说非常重要。
通过正确设置PCB规则,可以确保电路板的可靠性、稳定性和性能,并减少电磁干扰和信号完整性问题。
首先,PCB规则设置包括以下几个方面:1.尺寸和布局规则:设置电路板的尺寸、层堆叠、引线宽度、间距等尺寸规则。
这些规则确保布局的有效性和一致性,并确保避免尺寸和布局冲突。
2.电气规则:设置信号传输线的布线规则,如最小/最大信号间距、最小/最大引线宽度、差分线规则等。
这些规则保证了电流和电信号的准确传输以及可靠性。
3.电源规则:设置电源供应的规则,包括电源引线宽度、电源平面和电源区域的设置。
这些规则可以确保电源的稳定性和可靠性,并减少电源噪声和电磁干扰。
4.信号完整性规则:设置信号的阻抗匹配、终端电阻、阻抗控制、克服信号反射等规则。
这些规则可以提高信号传输的质量和稳定性,并减少信号丢失和干扰。
5.堆栈规则:设置电路板的层堆叠结构,包括层分布、内部电源引线和平面设置等。
这些规则能够优化电路板的阻抗匹配、冷却效果和EMI性能。
6.安全规则:设置电路板的安全规则,如最小间距、引线尺寸、焊盘尺寸等。
这些规则确保电路板的安全性和可靠性,以防止短路、电弧和其他意外情况。
7.设备规则:设置连接器、器件封装、机械孔和固定件的规格和布局。
这些规则确保了设备的可靠性和适配性,同时简化了组装和制造过程。
如何设置这些规则取决于具体的电路板设计要求和约束。
一般来说,可以通过以下步骤来设置PCB规则:1.根据设计要求和制造能力,确定合适的规则和约束。
4.按照设计要求和制造能力,检查并修改设置的规则,确保规则的合理性和一致性。
5.保存并应用规则设置,以确保在后续的布局和布线过程中遵循这些规则。
需要注意的是,PCB规则设置是一个动态的过程,可能需要在设计过程中进行多次调整和修改。
同时,为了确保电路板的可靠性和稳定性,还需要结合其他设计和验证工具,如电路模拟仿真、布局验证和信号完整性分析等。
PCB板铺铜规则设置
一、pcb覆铜技巧:1、如果PCB的地较多,有SGND、AGND、GND,等等,就要根据PCB板面位置的不同,分别以最主要的“地”作为基准参考来独立覆铜,数字地和模拟地分开来敷铜自不多言,同时在覆铜之前,首先加粗相应的电源连线:5.0V、3.3V等等,这样一来,就形成了多个不同形状的多变形结构。
2、对不同地的单点连接,做法是通过0欧电阻或者磁珠或者电感连接;3、晶振附近的覆铜,电路中的晶振为一高频发射源,做法是在环绕晶振敷铜,然后将晶振的外壳另行接地。
4、孤岛(死区)问题,如果觉得很大,那就定义个地过孔添加进去也费不了多大的事。
5、在开始布线时,应对地线一视同仁,走线的时候就应该把地线走好,不能依靠于覆铜后通过添加过孔来消除为连接的地引脚,这样的效果很不好。
6、在板子上最好不要有尖的角出现(《=180度),因为从电磁学的角度来讲,这就构成的一个发射天线!对于其他总会有一影响的只不过是大还是小而已,我建议使用圆弧的边沿线.7、多层板中间层的布线空旷区域,不要敷铜.因为你很难做到让这个敷铜“良好接地"8、设备内部的金属,例如金属散热器、金属加固条等,一定要实现“良好接地”。
9、三端稳压器的散热金属块,一定要良好接地。
晶振附近的接地隔离带,一定要良好接地。
总之:PCB上的敷铜,如果接地问题处理好了,肯定是“利大于弊”,它能减少信号线的回流面积,减小信号对外的电磁干扰。
二、pcb覆铜设置:1、pcb覆铜安全间距设置:覆铜的安全间距(clearance)一般是布线的安全间距的二倍。
但是在没有覆铜之前,为布线而设置好了布线的安全间距,那么在随后的覆铜过程中,覆铜的安全间距也会默认是布线的安全距离。
这样与预期的结果不一样。
一种笨方法就是在布好线之后,把安全距离扩大到原来的二倍,然后覆铜,覆铜完毕之后再把安全距离改回布线的安全距离,这样DRC检查就不会报错了。
这种办法可以,但是如果要重新更改覆铜的话就要重复上面的步骤,略显麻烦,最好的办法是单独为覆铜的安全距离设置规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB布线前的规则设置
PCB布线前的规则设置(1)安全间距设置
设置安全间距对应Routing中的Clearance Constraint项,它规定了板上不同网络的走线、焊盘、过孔之间必须保持的距离。
一般PCB的安全距离可设为0.254mm,较空的板子可设为0.3mm,较密的贴片板子可设为0.2~0.22mm。
PROTEL 995E中的设置如图1所示。
(2)走线层面和方向设置
走线层面和方向对应RouTIng中的RouTIng Layers项,此处可设置使用的走线层和每层的主要走线方向。
请注意贴片的单面板只用顶层,直插型的单面板只用底层,但是多层板的电源层不是在这里设置的。
PROTEL 99SE中的设置如图2所示。
(3)过孔形状的设置
过孔形状对应RouTIng中的RouTIng Via Style项,它规定了手工和自动布线时自动产生的过孔内外径的最小值、最大值和首选值,其中首选值最重要。
PROTEL 995E中的设置如图3所示。
(4)走线线宽的设置
走线线宽对应Routing中的Width Constraint项,它规定了手工和自动布线时走线的宽度,整个板范围的首选项一股取0.2~0.6mm。
另添加一些网络或网络组Net Class的线宽设置,如地线电源线、交流电源输入线、功率输出线、电源组等可以事先在Design-NetlistManager 中定义好。
地线一般可选1mm宽度,各种电源线一般可选0.5~1mm。
PROTEL 995E中的设置如图4所示。