(教材)课后习题解答

合集下载

新人教版统编版教材小学五年级语文上册第12课《古诗三首》课后习题解答

新人教版统编版教材小学五年级语文上册第12课《古诗三首》课后习题解答

新人教版统编版教材小学五年级语文上册
第12课《古诗三首》课后习题解答
2.读懂诗歌的题目有助于我们理解诗歌的内容,从三首诗的题目中,你能了解到哪些信息?
答:“示儿”这个诗题意思是:给儿子看。

也就是说这首诗是写给儿子看的。

“题临安邸”临安:南宋的京城,今浙江杭州。

邸:客栈、旅店。

诗题意思是写在临安旅店里的诗。

题目告诉我们写诗的地点。

“己亥杂诗”,己亥:己亥年,诗题意思是写于己亥年的组诗。

诗题告诉我们写诗的时间。

3.说说下列诗句的意思。

(1)王师北定中原日,家祭无忘告乃翁。

诗句意思:当大宋军队收复了中原失地的那一天到来之际,你们举行家祭时,千万不要忘了把这个好消息告诉我!
表达情感:这首诗表达了作者对祖国必然统一的坚定信念,展现了诗人的强烈的爱国情怀,即使在即将离世之际时,也日夜想着能收复失地的事情。

(2)暖风熏得游人醉,直把杭州作汴州
诗句意思:暖洋洋的香风陶醉了享乐的贵人们,简直是把偏安的杭州当作昔日的汴京!
表达情感:这首诗辛辣讽刺了统治者醉生梦死,苟且偷安的丑态,作者对此极大的愤怒,表现他忧国忧民的情怀。

(3)我劝天公重抖擞,不拘一格降人才。

诗句意思:我奉劝上天要重新振作精神,不要拘泥一定规格以降下更多的人才。

表达情感:这句诗用奇特的想象表达了作者热烈的希望,他期待着解放人才,变革社会,让优秀杰出的人才不断出现,期待着改革大势形成的“风雷”、新的生机,一扫笼罩九州的沉闷的局面。

大学英语教材课后习题答案及解析

大学英语教材课后习题答案及解析

大学英语教材课后习题答案及解析一、选择题1. A解析:根据句意,我们需要在空格处填入一个与“unpleasant”相反的词,表示“令人愉快的”。

因此选择A项。

2. C解析:句子的主语是“student”,所以谓语动词应该用单数形式。

根据语境,我们需要用一般现在时,所以选择C项。

3. B解析:根据句子的结构,“was”是“be”的过去式,应该与句子的主语“John”保持一致。

因此选择B项。

4. A解析:根据对话的语境,我们需要回答命题句“Would you like to go to the movies tonight?”,表示愿意的语气,所以选择A项。

5. B解析:根据句意,我们需要在空格处填入一个与“cat”相关的词,表示“饲养或养育”。

因此选择B项。

二、填空题1. dangers解析:根据句意,我们需要在空格处填入一个与“risk”相关的词,表示“危险”。

因此选择“dangers”。

2. to解析:根据句意,我们需要在空格处填入一个与“leak”相关的介词,表示“漏出”。

因此选择“to”。

3. which解析:根据句意,我们需要在空格处填入一个引导定语从句的关系代词,修饰先行词“world”。

因此选择“which”。

4. happier解析:根据句意,我们需要在空格处填入一个与“happy”相关的比较级形式,表示“更幸福的”。

因此选择“happier”。

5. successfully解析:根据句意,我们需要在空格处填入一个与“pass”相关的副词,表示“成功地”。

因此选择“successfully”。

三、完形填空1. B解析:根据句意,我们需要在空格处填入一个与“alone”相对的词,表示“与他人一起”。

因此选择B项。

2. D解析:根据句意,根据语境,我们需要填入一个表示“友好地,热情地”的词,表达主人公心情的转变。

因此选择D项。

3. A解析:根据句意,我们需要在空格处填入一个与“curious”相对的词,表示“无聊的”。

初中数学教材课后习题参考答案(七年级下册)

初中数学教材课后习题参考答案(七年级下册)

初中数学教材课后习题参考答案(七年级下册)练习:一、填空:(2′×9+4′=22′)1.如图,a ∥b 直线相交,∠1=360,则∠3=________,∠2=__________2.如图,直线AB 、CD 、EF 相交于点O ,则∠AOC 的对顶角是_____________,∠AOD 的对顶角是_____________3.在同一平面内,两条直线的位置关系只有两种_________4.命题“两直线平行,内错角相等”的题设_________,结论____________5.如图,要从小河a 引水到村庄A ,请设计并作出一最佳路线,理由是:__________6.如图,∠1=700,a ∥b 则∠2=_____________,7.如图,若∠1=∠2,则互相平行的线段是________________8如图,若AB ⊥CD ,则∠ADC=____________, 9.如图,a ∥b,∠1=1180,则∠2=___________10.如图∠B 与∠_____是直线______和直线_______被直线_________所截的同位角。

11如图,在ΔABC 中,∠A=80°,∠B 和∠C 的平分线交于点O ,则∠BOC 的度数是_______。

二、选择题。

(3′×10=30′) 11.如图,∠ADE 和∠CED 是( )A 、 同位角B 、内错角C 、同旁内角D 、互为补角12.在下图中,∠1,∠2是对顶角的图形是( )13.若a ⊥b ,c ⊥d 则a 与c 的关系是( ) A 、 平行 B 、垂直 C 、 相交 D 、以上都不对14.下列语句中,正确的是( )A 、相等的角一定是对顶角B 、互为补角的两个角不相等C 、两边互为反向处长线的两个角是对顶角 D 、交于一点的三条直线形成3对对顶角321第(1)题b a O 第(2)题F E D C B A 第(5)题A 21第(6)题b a 21第(7)题D C B A 第(8)题D C B A 21第(9)题c b a 第(10)题F C B A 第(11)题A 2121B 21C 21D15.下列语句不是命题的是( )A 、 明天有可能下雨B 、同位角相等C 、∠A 是锐角D 、 中国是世界上人口最多的国家16.下列语句中,错误的是( )A 、一条直线有且只有一条垂线B 、不相等的两个角不一定是对顶角,C 、直角的补角必是直角D 、两直线平行,同旁内角互补17.如图,不能推出a ∥b 的条件是( )A 、∠1=∠3B 、∠2=∠4C 、∠2=∠3D 、∠2+∠3=180018.如图a ∥b,∠1与∠2互余,∠3=1150,则∠4等于( )A 、 1150B 、 1550C 、 1350D 、125019.如图,∠1=150 , ∠AOC=900,点B 、O 、D 在同一直线上,则∠2的度数为()A 、750B 、150C 、1050D 、 165020、如图,能表示点到直线(或线段)距离的线段有( )A 、 2条B 、3条C 、4条D 、5条三、解答题21.读句画图(13′)如图,直线CD 与直线AB 相交于C ,根据下列语句画图(1)过点P 作PQ ∥CD ,交AB 于点Q(2)过点P 作PR ⊥CD ,垂足为R (3)若∠DCB=1200,猜想∠PQC 是多少度? 并说明理由22.填写推理理由(1′×15)(1) 已知:如图,D 、E 、F 分别是BC 、CA 、AB 上的点,D ∥AB ,DF ∥AC试说明∠FDE=∠A解:∵DE ∥AB ( ) ∴∠A+∠AED=1800 ( ) ∵DF ∥AC ( )∴∠AED+∠FED=1800 ( ) ∴∠A=∠FDE ( )(2) 如图AB ∥CD ∠1=∠2,∠3=∠4,试说明AD ∥BE解:∵AB ∥CD (已知)∴∠4=∠_____( ) ∵∠3=∠4(已知) ∴∠3=∠_____( ) ∵∠1=∠2(已知) 第(17)题4321c b a d 第(18)题4321cb a 第(20)题DCB A O 第(19)题D CBA 21B FE D C B AE C B∴∠ 1+∠CAF=∠2+∠CAF ( )即 ∠_____ =∠_____( )∴∠3=∠_____∴AD∥BE( )23.已知:如图,AB ⊥CD ,垂足为O ,EF 经过点O ,∠2=4∠1,求∠2,∠3,∠BOE的度数(10′)24。

供配电系统教材课后1-4章习题解答

供配电系统教材课后1-4章习题解答

第1章习题参考答案1-1 解释下列名词概念(1)电力系统:将一些发电厂、变电站(所)和电力用户由各级电压的电力线路联系起来组成发电、输电、变电、配电和用电的整体,即为电力系统(2)电力网:电力系统中各级电压的电力线路及其联系的变电所,称为电力网或简称电网(3)电压偏差:电气设备的端电压与其额定电压之差,通常以其对额定电压的百分值来表示(4)电力系统中性点运行方式:电力系统中作为供电电源的发电机和变压器的中性点接地方式1-2 填空题*(1)区域电网电压一般在220kV及以上;地方电网最高电压一般不超过110kV;(2)通常电力网电压高低的划分:低压1000V及以下、中压1kV~10kV或35kV、高压35kV~110kV 或220kV、超高压220kV或330kV及以上、特高压1000kV及以上。

(3)中性点不接地的电力系统发生单相金属性接地故障时,中性点对地电压为相电压,非故障相对地电压升高为线电压;(4)用户高压配电电压,从经济技术指标看,最好采用10 kV,发展趋势是20 kV;(5)我国中、小电力系统运行时,规定允许频率偏差±;(6)升压变压器高压侧的主分接头电压为121kV,若选择-%的分接头,则该分接头电压为。

1-3 单项选择题(1)电能生产、输送、分配及使用全过程(B)A.不同时间实现B.同一瞬间实现'C.按生产—输送—分配—使用顺序实现 D.以上都不对(2)中性点不接地系统发行单相接地短路时,流过接地点的电流性质(A)A.电容电流B.电感电流C.电阻电流D.由系统阻抗性质决定(3)一级负荷的供电电源(C)由两个电源供电。

A.宜B.可C.应D.不应(4)对于一级负荷中特别重要的负荷(D)A.可由两路电源供电B.可不由两路电源供电C.必须由两路电源供电D.除由两个电源供电外,尚应增设应急电源(5)一类高层建筑的消防控制室、消防水泵、消防电梯、防烟排烟设施、火灾自动报警、自动灭火系统、应急照明、疏散指示标志等消防用电,应按(A)要求供电。

3.3.2抛物线的简单几何性质教材习题解答课件-高二上学期数学人教A版选择性

3.3.2抛物线的简单几何性质教材习题解答课件-高二上学期数学人教A版选择性

1 8
,
0
,
准线方程为x
1 ;
8
(4)
焦点坐标为
3 2
,
0
,
准线方程为x
3 2
.
2.填空题
(1)准线方程为x 2的抛物线的标准方程是 y2 8 x ;
(2)抛物线y2 8x上到焦点的距离等于6的点的坐标是 (4, 4 2 ) .
(2) 设P( x, y), 则 PF x 2 6, 解得x 4, 此时y2 32, y 4 2, 所以点P的坐标为(4, 4 2)或(4, 4 2)
x ,
2y
因为M ( x0 ,
y0 )在抛物线上,所以4 y2
2 px, 即y2
1 2
px.
即垂线段中点的轨迹方程为y2 1 px, 2
其轨迹是焦点坐标为
p 8
,
0
,
顶点在坐标原点的抛物线.
10.已知等边三角形的一个顶点位于原点, 另外两个顶点在抛物线y2 2 px( p 0)上, 求这个等边三角形的边长.
所以等边三角形的边长为4 3 p.
10.已知等边三角形的一个顶点位于原点, 另外两个顶点在抛物线y2 2 px( p 0)上, 求这个等边三角形的边长.
解法二:如图, 设等边三角形OAB的边长为a, 则A
3 2
a,
1 2
a
将A
3 2
a,
1 2
a 代入y2
2 px, 得
1 4
a2
3 pa.
(2) 设抛物线的方程为x2 ay, 把点P(6, 3)代入x2 ay, 得36 a (3), 解得a 12, 所求抛物线的标准方程为x2 12 y.
x2 12 y

税收筹划主教材(第三版)课后习题答案

税收筹划主教材(第三版)课后习题答案

项目一认识税收筹划二、多选题三、判断题项目二增值税的税收筹划四、典型案例分析1.解答:该公司实际增值率为46.67%[(150—80)/150×100%],大于23.08%的增值税税负无差别增值率,做一般纳税人比小规模纳税人税负更重。

一般纳税人应纳增值税额为9.1万元,小规模纳税人应纳增值税额为4.5万元。

因此建议该公司保持其小规模纳税人的身份更适宜。

2. 解答:{筹划前}甲企业应纳增值税=400×3%=12(万元)乙企业应纳增值税=430×3%=12.9(万元){筹划分析}首先计算甲乙两个企业的实际增值率:甲企业增值率=(400-350)/400×100%=12.5%乙企业增值率=(430-375)/430×100%12.79%通过查表2-1可知,两个企业的实际增值率均小于23.08%(销货、购货适用税率均为13%情况下的增值率税负平衡点),所以选择做一般纳税人税负较轻。

3. 解答:方案一:应纳增值税=200×70%/(1+13%)×13%-120/(1+13%)×13%=2.30(元)方案二:应纳增值税=(200+60)/(1+13%)×13%-(120+40)/(1+13%)×13%=11.50(元)方案三:应纳增值税=200/(1+13%)×13%-120/(1+13%)×13%=9.20(元){筹划结论}从以上分析可以看出,三种方案中第一种方案最优。

4. 解答:1)如果企业全部采用直接收款方式,则应在当月全部计算为销售额,计提增值税销项税额为:销项税额=4 000 /(1+13%)×13%=460.18万元在这种情况下,有1600万元的货款实际并未收到,按照税法规定企业必须按照销售额全部计提增值税销项税额,这样企业就要垫付上交的增值税金。

2)对于未收到的600万元和1 000万元的2笔应收账款,如果企业在货款结算中分别采用赊销和分期收款结算方式,即能推迟纳税,又不违反税法规定,达到延缓纳税的目的。

2020人教版小学数学六年级下册教材课后习题答案

2020人教版小学数学六年级下册教材课后习题答案

人教版小学数学六年级下册教材课后参考答案第 4 页做一做答案第 5 页做一做答案练习一答案第 8 页做一做答案第 9 页做一做答案练习二答案第 18 页做一做答案第 19 页做一做答案练习三答案第 21 页做一做答案第 22 页做一做答案练习四答案第 25 页做一做答案第 26 页做一做答案第 27 页做一做答案分析i小朋所躅水的体职等于底85旬桎聚昏rm*高妊 lCcm的圆註的解答尽 14XG亍2严XK)=2«2* 6<oi?>=Z8Z6<mL)t练习五答案第 32 页做一做答案第 34 页做一做答案练习六答案第 37 页整理和复习答案练习七答案第 40 页做一做答案第 41 页做一做答案第 42 页做一做答案练习八答案1. 不能组成比例i能组成比例「0 « 2= 120 «肌组成的比例不"g-)»不能组成比例;施组成比例,100 5=200 «】0(组成的比例不唯一)•2. 分析准四个数中,如则ft小数与最大数之积等于另外两个数之积•那么这四个敦就可灯组成比例. 否則・tt不可女组成比例.饶答Ml)可以组成比例.4 « 5-12 « 15 4 « 12-5 « 151S: 5=12 : 45« 15-4 « 1212 • 4*15 « 5(2〉不可以组成比例.(3)不可以组成比例.(4)可以组成比例.6 2 46±,±-±.1.丄丄 32643624丄丄j 丄一L,JL 4 2 6 3 4 6 2 33.5」1 10 « 2 5« 1-10 2<答案不曜一)4. CD3. 75 3 0.5=7.5.6 : 0.3=7. 5•能组成比例.3. 75 « 0. 5-6 « 0.8 或 6 ・()• 8・3・ 75 = Q 5< CZ)在3. 75 : 0. 5=6 : 0. 8中.比例的内项是0. 5 和6■比例的外顼是3. 75和Q 8$在6 « 0. 8 - 3. 75 : 0. 5中.比例的内项是0. 8和3・75.比例的 外项是6和O.5.5. (1)因为 6X12-72,9X9-81 >6X12^9X9^以和9: IZ 不能组成比例.4〉因为 1. 4 X40- 5«,2X 2« = $6,1. 4X 40 -2X 2乩所以两个比能组成比例•即1.4 : 2=28 : 40或 28* 40-1.4 ; Z.⑶因为 TX |=|,|X 4=T 4X T =yXf.所以两个比能组成比例,即* « |-(4)因为 7. 5 X3. 17.5X3. 1^13X5.7,所以 7. 5 • 1. 3 和5. 7 ; 3・ 1 不能组成比例.氐因为 1 分=60枳54 « 45 = y t 72 t 6C=-|- 比的比值相尊,说明小女孩平均毎秒心跳的次数 没变,所以小红说得对.7.能写出8个比例・24 | 8«9 | 3 3 s 9=8 - 248 « 24-3 ■ 9 &⑴工・卡 ⑵工■ 1.6 ⑶工・3 ⑷工一369. MI 设化成水后的休枳屋工dm 1 •x 1 50- 9 « 1010. (1)5 > 8・40・工解口=64(2)J »11 3 1 42 5 • 23. 25,1.3 X5. 7-7. 41. •幅个 24 « 9«8« 39« 3«24 » 8 9 : 24=3 5 8第 46 页做一做答案第 48 页做一做答案练习九答案正比例关系。

上海交通大学 线性代数教材 课后答案 习题二

上海交通大学 线性代数教材 课后答案 习题二
31.判断下列向量组是否线性相关,为什么?
(1)
(2)
(3)
(4)
(5)
(6)
解:(1)线性无关,因为
(2)线性相关,因为
(3)线性无关,因为
(4)线性无关,因为
(5)线性无关,因为
(6)线性相关,因为
32.给定向量组
(1)求此向量组的秩;
(2)求此向量组的一个极大线性无关组;
(3)用(2)中选定的极大线性无关组表示其余向量。
(1)交换矩阵A的第i行与第j行;
(2)将A的第i行乘以非零常数k;
(3)A的第j行各元素加上第i行对应元素的k倍,
则 相应地发生了什么变化?
解:(1)
(2)
(3) .
4设
(1)求可逆矩阵 使 为简化行阶梯形矩阵;
(2)求可逆矩阵 使 为简化行阶梯形矩阵
解:(1)
(2)类似的列变换求得Q
5.设
验证A可逆并将A表示成初等矩阵的乘积
(2)
解:(1)
(2)如果 是方程组的解,那么 也是方程组的根,其中 。因些可对 列变换得到
因此方程组为
37.下列线性方程组中p,q取何值时,方程组有唯一解,无穷多解,无解?在有解的情况下求出所有的解。
(1)
(2)
(3)
(4)
解:满秩有唯一解,系数矩阵与增广矩阵的秩相等且非满秩时有无穷多解,系数矩阵与增广矩阵的秩不相等时无解。

易知 , 非零,满足条件。
58.求下列方程组的通解。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
解:
(1) ;
(2) ;
(3)
(4)无解

新人教版统编版教材小学五年级语文上册第21课《古诗词三首》课后习题解答

新人教版统编版教材小学五年级语文上册第21课《古诗词三首》课后习题解答

新人教版统编版教材小学五年级语文上册第21课《古诗词三首》课后习题解答1.有感情地朗读课文。

背诵课文。

默写《枫桥夜泊》。

答:《山居秋暝》是唐代诗人王维的作品。

此诗描绘了秋雨初晴后傍晚时分山村的旖旎风光和山居村民的淳朴风尚,表现了诗人寄情山水田园并对隐居生活怡然自得的满足心情,以自然美来表现人格美和社会美。

因此朗读时要用轻松愉悦的语调;《枫桥夜泊》是唐朝安史之乱后,诗人张继途经寒山寺时,写下的一首羁旅诗。

在这首诗中,诗人精确而细腻地讲述了一个客船夜泊者对江南深秋夜景的观察和感受,勾画了月落乌啼、霜天寒夜、江枫渔火、孤舟客子等景象,有景有情有声有色。

此外,这首诗也将作者羁旅之思,家国之忧,以及身处乱世尚无归宿的顾虑充分地表现出来,是写愁的代表作。

因此,朗读时基调是深沉的,语气是低沉的,语速稍缓。

《长相思》以具体的时空推移过程,及视听感受,既表现景象的宏阔观感,更抒露着情思深苦的绵长心境,是即小见大的佳作。

因此,朗读时基调也是深沉点,语速稍缓点。

2.读一读,体会诗句中的静态描写和动态描写,想象诗句描绘的景象。

(1)明月松间照,清泉石上流。

月照松林是静态,清泉流溢是动态。

前一句写山上一尘不染的松树,皎洁的月光,以及月光穿过树叶的缝隙在林间留下斑驳的影子,都给人以明净清幽的感受——这是通过静态描写来突出山中的静谧。

第二句写山泉因雨后水量充足,流势增大,从石上流过,淙淙有声——这是动态描写,以动衬静,更反衬出山中的宁静。

(2)竹喧归浣女,莲动下渔舟。

这两句诗中“清泉潺潺的流水声”“少女们若隐若现的欢笑声”“渔船划开水面的水波声”都是是动态描写。

浣女、渔舟的热闹,正是为了烘托出山村环境的寂静、清幽。

如同“蝉噪林逾静,鸟鸣山更幽”一样。

人们从这些热闹的景物中,很自然地体味出一种和平恬静,体味出恬静中的一遍勃勃生机。

有动有静,动静结合,以动衬静。

(3)月落乌啼霜满天,江枫渔火对愁眠。

“江枫”“满天霜”是静景,“月落”“乌啼”“渔火”是动景。

最新部编人教版三年级下册数学课本课后习题参考答案

最新部编人教版三年级下册数学课本课后习题参考答案

三下数学课本课后习题参考答案(人教版)第3页做一做答案分析:可以4名同学一组,按教材图中的方法站好,互相说方向,体会东与西、南与北两组相对的方向。

解:西南第4页做一做答案略练习一答案1、提示:先在教室里辨认东、南、西、北四个方向,再结合教室的实物说一说。

2、提示:图上小朋友的房间北面摆着书桌,西面放着床,东面摆着电脑。

根据自己房间的布置,按实际情况完成此题。

3、(1)东北(2)南东(3)北西4、略5、略6、略练习二答案1、邮局在十字路口的西南角,报亭在十字路口的西北角,冷饮店和音像店在十字路口的东北角,商店和书店在十字路口的东南角。

2、略南与北相对;东与西相对;西北与东南相对;东北与西南相对。

4、(1)8 4 (2)4 6 3 95、(1)小刺猬住在森林的东北角,小兔住在森林的西南角。

(2)东南西6、(1)西北东北(2)西南东南(3)大象馆在狮山的西面,猩猩馆在狮山的北面,海洋馆在狮山的东面。

(4)西北东南(5)东北西南7、第11页做一做答案2 3 30 10 20 30 300 100 200 300 3000 1000第12页做一做答案1、3 40 30 4002、30 23 32 32练习三答案1、10 200 3000 30 200 10002、(1)90÷9=10(人)(2)90÷3=30(人)3、8 6 3 80 60 30 800 600 3004、20 80 50 60 40 305、40 800 36 48 20 400 12 246、200 90 80 21 42 337、88÷2=44(盆) 88÷4=22(盆)8、90 409、40 36 64 55 53 21 30 56010、427 414 378 8 (4)第16页做一做答案12 34 21 23 39 17第17页做一做答案(验算略)第18页做一做答案(验算略)81......3 141......2 51 (2)练习四答案1、13 31 22 11 17 25 14 142、第一个算式正确。

人教版化学教材九年级(上下册)课后习题答案超详细

人教版化学教材九年级(上下册)课后习题答案超详细

人教版化学教材九年级(上下册)详细第一章-走进化学世界课题1---化学使世界变得更加绚丽多彩课题2---化学是一门以实验为基础的科学课题3---走进化学实验室第一章小结第二章-我们周围的空气课题1---空气题号解析1 氮气氧气,氮气,氧气点拨:空气的成分注意使用的是体积分数,而不是质量分数。

2(1)B点拨:空气中含量最多的是氮气,且化学性质不活泼。

(2)C液态氧是氧气的液态存在形式,由一种物质组成,属于纯净(3)(3)A臭氧可以用化学式O3表示,有固定的组成,属于纯净物(4) C 点拨:稀有气体性质很不活泼,过去人们认为这些气体不跟其他物质发生化学反应,曾把它们叫做惰性气体。

但随着科学技术的发展,已经发现有些稀有气体在一定条件下也能与某些物质发生化学反应,生成其他物质。

故C项错误。

3 氮气、氧气、二氧化碳、水点拨:此题属于开放性习题,引导学生从具体例子中来初步认识纯净物和混合物。

4 把空水杯或空饮料瓶口向下按入水中,水不能进入杯中或瓶中。

5 去过;感受不一样;在城镇繁华街道附近,空气质量较差,农村广阔的田野空气质量好,清新,安静。

点拨:此题属于开放式的习题,学生答案可有多种,不强求一致。

造成城镇繁华街道附近空气质量差的原因是多方面的,如污染物较多、机动车尾气、尘土、细菌等,噪声也较大。

农村污染物较少,且绿色植物较多,光合作用强一些,所以空气质量好。

6 (1)氧气动植物的呼吸离不开氧气,燃料燃烧离不开氧气,炼钢、气焊以及化工生产和宇宙航行等都要用到氧气。

(2)氮气制硝酸和化肥的主要原料,焊接金属时用氮气作保护气,灯泡中充氮气以延长使用寿命,食品包装时充氮气以防腐等。

(3)稀有气体焊接金属时用稀有气体来隔绝空气,灯泡中充稀有气体以使灯泡耐用;充人灯泡制成多种用途的电光源;用于激光技术;氦可用于制造低温环境;氙可用于医疗麻醉等。

点拨:此题属于开放式的习题,学生可从多方面来认识空气是一种宝贵的自然资源。

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

人教A版高中数学必修1-5教材课后习题答案目录必修1第一章课后习题解答 (1)必修1第二章课后习题解答 (33)必修1第三章课后习题解答 (44)必修2第一章课后习题解答 (51)必修2第二章课后习题解答 (56)必修2第三章课后习题解答 (62)必修2第四章课后习题解答 (78)必修3第一章课后习题解答 (97)必修3第二章课后习题解答 (110)必修3第三章课后习题解答 (120)必修4第一章课后习题解答 (125)必修4第二章课后习题解答 (147)必修4第三章课后习题解答 (162)必修5第一章课后习题解答 (177)必修5第二章课后习题解答 (188)必修5第三章课后习题解答 (201)新课程标准人教A 版高中数学必修1第一章课后习题解答1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空: (1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ; (2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集. 解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程的所有实数根组成的集合为; (2)因为小于的素数为,所以由小于的所有素数组成的集合为;(3)由,得,290x -={3,3}-82,3,5,78{2,3,5,7}326y x y x =+⎧⎨=-+⎩14x y =⎧⎨=⎩即一次函数与的图象的交点为,所以一次函数与的图象的交点组成的集合为;(4)由,得, 所以不等式的解集为.1.1.2集合间的基本关系 练习(第7页) 1.写出集合的所有子集.1.解:按子集元素个数来分类,不取任何元素,得; 取一个元素,得; 取两个元素,得;取三个元素,得,即集合的所有子集为.2.用适当的符号填空:(1)______; (2)______; (3)______; (4)______; (5)______; (6)______. 2.(1)是集合中的一个元素;(2); (3) 方程无实数根,; (4)(或) 是自然数集合的子集,也是真子集;(5)(或) ;(6)方程两根为. 3.判断下列两个集合之间的关系: (1),;3y x =+26y x =-+(1,4)3y x =+26y x =-+{(1,4)}453x -<2x <453x -<{|2}x x <{,,}a b c ∅{},{},{}a b c {,},{,},{,}a b a c b c {,,}a b c {,,}a b c ,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅a {,,}a b c 02{|0}x x =∅2{|10}x R x ∈+={0,1}N {0}2{|}x x x ={2,1}2{|320}x x x -+={,,}a a b c ∈a {,,}a b c 20{|0}x x ∈=2{|0}{0}x x ==2{|10}x R x ∅=∈+=210x +=2{|10}x R x ∈+==∅{0,1}N {0,1}N ⊆{0,1}N {0}2{|}x x x =2{0}{|}x x x ⊆=2{|}{0,1}x x x ==2{2,1}{|320}x x x =-+=2320x x -+=121,2x x =={1,2,4}A ={|8}B x x =是的约数(2),;(3),.3.解:(1)因为,所以;(2)当时,;当时,, 即是的真子集,;(3)因为与的最小公倍数是,所以. 1.1.3集合的基本运算 练习(第11页) 1.设,求. 1.解:,.2.设,求. 2.解:方程的两根为, 方程的两根为,得, 即.3.已知,,求. 3.解:,.4.已知全集,,求. 4.解:显然,,{|3,}A x x k k N ==∈{|6,}B x x z z N ==∈{|410}A x x x N +=∈是与的公倍数,{|20,}B x x m m N +==∈{|8}{1,2,4,8}B x x ==是的约数AB 2k z =36k z =21k z =+363k z =+B A BA 41020AB ={3,5,6,8},{4,5,7,8}A B ==,A B A B {3,5,6,8}{4,5,7,8}{5,8}A B =={3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==22{|450},{|1}A x x x B x x =--===,A B A B 2450x x --=121,5x x =-=210x -=121,1x x =-={1,5},{1,1}A B =-=-{1},{1,1,5}A B A B =-=-{|}A x x =是等腰三角形{|}B x x =是直角三角形,A B A B {|}A B x x =是等腰直角三角形{|}A B x x =是等腰三角形或直角三角形{1,2,3,4,5,6,7}U ={2,4,5},{1,3,5,7}A B ==(),()()U U U A B A B {2,4,6}UB ={1,3,6,7}UA =则,.1.1集合习题1.1 (第11页) A 组 1.用符号“”或“”填空:(1)_______; (2)______; (3)_______;(4_______; (5; (6)_______.1.(1) 是有理数; (2)是个自然数; (3)是个无理数,不是有理数; (4是实数;(5)是个整数;(6) 是个自然数.2.已知,用 “”或“” 符号填空:(1)_______; (2)_______; (3)_______. 2.(1); (2); (3). 当时,;当时,; 3.用列举法表示下列给定的集合: (1)大于且小于的整数; (2); (3).3.解:(1)大于且小于的整数为,即为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即为所求.4.试选择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(){2,4}U A B =()(){6}U U A B =∈∉237Q 23N πQ R Z 2N 237Q ∈23723N ∈239=Q π∉πR Z 3=2N ∈25={|31,}A x x k k Z ==-∈∈∉5A 7A 10-A 5A ∈7A ∉10A -∈2k =315k -=3k =-3110k -=-16{|(1)(2)0}A x x x =-+={|3213}B x Z x =∈-<-≤162,3,4,5{2,3,4,5}(1)(2)0x x -+=122,1x x =-={2,1}-3213x -<-≤12x -<≤x Z ∈{0,1,2}24y x =-(2)反比例函数的自变量的值组成的集合;(3)不等式的解集.4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为; (2)显然有,得反比例函数的自变量的值组成的集合为;(3)由不等式,得,即不等式的解集为.5.选用适当的符号填空: (1)已知集合,则有:_______; _______;_______; _______;(2)已知集合,则有: _______; _______; _______; _______;(3)_______;_______.5.(1); ;; ;,即;(2);; ; =;;(3); 菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形. 6.设集合,求.2y x =342x x ≥-20x ≥244x -≥-4y ≥-24y x =-{|4}y y ≥-0x ≠2y x ={|0}x x ≠342x x ≥-45x ≥342x x ≥-4{|}5x x ≥{|233},{|2}A x x x B x x =-<=≥4-B 3-A {2}B B A 2{|10}A x x =-=1A {1}-A ∅A {1,1}-A {|}x x 是菱形{|}x x 是平行四边形{|}x x 是等腰三角形{|}x x 是等边三角形4B -∉3A -∉{2}B BA 2333x x x -<⇒>-{|3},{|2}A x xB x x =>-=≥1A ∈{1}-A ∅A {1,1}-A 2{|10}{1,1}A x x =-==-{|}x x 是菱形{|}x x 是平行四边形{|}x x 是等边三角形{|}x x 是等腰三角形{|24},{|3782}A x x B x x x =≤<=-≥-,A B A B6.解:,即,得,则,.7.设集合,,求,,,.7.解:,则,,而,, 则,.8.学校里开运动会,设,,,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1);(2).8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为.(1); (2).9.设,,,,求,,.9.解:同时满足菱形和矩形特征的是正方形,即,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即,.3782x x -≥-3x ≥{|24},{|3}A x x B x x =≤<=≥{|2}A B x x =≥{|34}A B x x =≤<{|9}A x x =是小于的正整数{1,2,3},{3,4,5,6}B C ==A B AC ()A B C ()A B C {|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数{1,2,3}A B ={3,4,5,6}A C ={1,2,3,4,5,6}B C ={3}B C =(){1,2,3,4,5,6}A B C =(){1,2,3,4,5,6,7,8}A B C ={|}A x x =是参加一百米跑的同学{|}B x x =是参加二百米跑的同学{|}C x x =是参加四百米跑的同学AB AC ()A B C =∅{|}A B x x =是参加一百米跑或参加二百米跑的同学{|}A C x x =是既参加一百米跑又参加四百米跑的同学{|}S x x =是平行四边形或梯形{|}A x x =是平行四边形{|}B x x =是菱形{|}C x x =是矩形B C A B S A {|}B C x x =是正方形{|}AB x x =是邻边不相等的平行四边形{|}SA x x =是梯形10.已知集合,求,,,.10.解:,,,,得,,,.B 组 1.已知集合,集合满足,则集合有 个.1. 集合满足,则,即集合是集合的子集,得个子集.2.在平面直角坐标系中,集合表示直线,从这个角度看,集合表示什么?集合之间有什么关系? 2.解:集合表示两条直线的交点的集合, 即,点显然在直线上, 得.3.设集合,,求.3.解:显然有集合,当时,集合,则; 当时,集合,则; 当时,集合,则;{|37},{|210}A x x B x x =≤<=<<()R A B ()R A B ()R A B()R A B {|210}A B x x =<<{|37}A B x x =≤<{|3,7}RA x x x =<≥或{|2,10}RB x x x =≤≥或(){|2,10}RA B x x x =≤≥或(){|3,7}RA B x x x =<≥或(){|23,710}R A B x x x =<<≤<或(){|2,3710}R A B x x x x =≤≤<≥或或{1,2}A =B {1,2}A B =B 4B A B A =B A ⊆B A 4{(,)|}C x y y x ==y x =21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭,C D 21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭21,45x y x y -=+=21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭(1,1)D y x =DC {|(3)()0,}A x x x a a R =--=∈{|(4)(1)0}B x x x =--=,A B A B {|(4)(1)0}{1,4}B x x x =--==3a ={3}A ={1,3,4},A B A B ==∅1a ={1,3}A ={1,3,4},{1}A B A B ==4a ={3,4}A ={1,3,4},{4}A B A B ==当,且,且时,集合,则.4.已知全集,,试求集合. 4.解:显然,由,得,即,而,得,而,即.第一章 集合与函数概念 1.2函数及其表示 1.2.1函数的概念 练习(第19页)1.求下列函数的定义域:(1); (2).1.解:(1)要使原式有意义,则,即,得该函数的定义域为; (2)要使原式有意义,则,即,得该函数的定义域为.2.已知函数, (1)求的值;(2)求的值.2.解:(1)由,得, 同理得,1a ≠3a ≠4a ≠{3,}A a ={1,3,4,},A B a A B ==∅{|010}U A B x N x ==∈≤≤(){1,3,5,7}U A B =B {0,1,2,3,4,5,6,7,8,9,10}U =U A B =UB A⊆()U UA B B=(){1,3,5,7}U A B ={1,3,5,7}UB =()UU B B ={0,2,4,6,8.9,10}B =1()47f x x =+()1f x =470x +≠74x ≠-7{|}4x x ≠-1030x x -≥⎧⎨+≥⎩31x -≤≤{|31}x x -≤≤2()32f x x x =+(2),(2),(2)(2)f f f f -+-(),(),()()f a f a f a f a -+-2()32f x x x =+2(2)322218f =⨯+⨯=2(2)3(2)2(2)8f -=⨯-+⨯-=则,即;(2)由,得, 同理得, 则,即. 3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度与时间关系的函数和二次函数;(2)和.3.解:(1)不相等,因为定义域不同,时间;(2)不相等,因为定义域不同,. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为的圆形木头锯成矩形木料,如果矩形的一边长为,面积为,把表示为的函数.1.解:显然矩形的另一边长为,,且, 即. 2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.(2)(2)18826f f +-=+=(2)18,(2)8,(2)(2)26f f f f =-=+-=2()32f x x x =+22()3232f a a a a a =⨯+⨯=+22()3()2()32f a a a a a -=⨯-+⨯-=-222()()(32)(32)6f a f a a a a a a +-=++-=222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=h t 21305h t t =-21305y x x =-()1f x =0()g x x =0t >0()(0)g x x x =≠25cm xcm 2ycm y x 2250x cm -222502500y x x x x =-=-050x <<22500(050)y x x x =-<<2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数的图象.3.解:,图象如下所示.,从到的映射4.设正弦”,与中元素相对应是“求中的元素是什么?与中的元素相对应的的中元素是什么?4.解:因为,所以与中元素相对应的中的元素是;因为,所以与中的元素相对应的中元素是. 1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:|2|y x =-2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩{|},{0,1}A x x B ==是锐角A B A 60B B 22A 3sin 602=A 60B 322sin 452=B 22A 45离开家的距离 时间 (A ) 离开家的距离 时间 (B ) 离开家的距离 时间 (C ) 离开家的距离时间 (D )(1); (2);(3); (4). 1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2),即该函数的定义域为;(3)要使原式有意义,则,即且,得该函数的定义域为;(4)要使原式有意义,则,即且, 得该函数的定义域为. 2.下列哪一组中的函数与相等?(1); (2);(3). 2.解:(1)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等;(2)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等; (3)对于任何实数,都有,即这两函数的定义域相同,切对应法则相同,得函数与相等.3.画出下列函数的图象,并说出函数的定义域和值域.3()4x f x x =-()f x=26()32f x x x =-+()1f x x =-40x -≠4x ≠{|4}x x ≠x R ∈()f x =R 2320x x -+≠1x ≠2x ≠{|12}x x x ≠≠且4010x x -≥⎧⎨-≠⎩4x ≤1x ≠{|41}x x x ≤≠且()f x ()g x 2()1,()1x f x x g x x =-=-24(),()f x x g x ==2(),()f x x g x ==()1f x x =-R 2()1x g x x =-{|0}x x ≠()f x ()g x 2()f x x =R 4()g x ={|0}x x ≥()f x ()g x 2x =()f x ()g x(1); (2); (3); (4).3.解:(1)定义域是,值域是; (2)定义域是,值域是;(3)3y x =8y x =45y x =-+267y x x =-+(,)-∞+∞(,)-∞+∞(,0)(0,)-∞+∞(,0)(0,)-∞+∞定义域是,值域是;(4)定义域是,值域是.4.已知函数,求,,,. 4.解:因为,所以,即;同理,, 即;, 即;, 即. 5.已知函数, (1)点在的图象上吗?(2)当时,求的值; (3)当时,求的值.(,)-∞+∞(,)-∞+∞(,)-∞+∞[2,)-+∞2()352f x x x =-+(2)f -()f a -(3)f a +()(3)f a f +2()352f x x x =-+2(2)3(2)5(2)2852f -=⨯--⨯-+=+(2)852f -=+22()3()5()2352f a a a a a -=⨯--⨯-+=++2()352f a a a -=++22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++2(3)31314f a a a +=++22()(3)352(3)3516f a f a a f a a +=-++=-+2()(3)3516f a f a a +=-+2()6x f x x +=-(3,14)()f x 4x =()f x ()2f x =x5.解:(1)当时,, 即点不在的图象上;(2)当时,, 即当时,求的值为;(3),得, 即.6.若,且,求的值. 6.解:由,得是方程的两个实数根,即,得,即,得, 即的值为.7.画出下列函数的图象:(1); (2).7.图象如下:3x =325(3)14363f +==-≠-(3,14)()f x 4x =42(4)346f +==--4x =()f x 3-2()26x f x x +==-22(6)x x +=-14x =2()f x x bx c =++(1)0,(3)0f f ==(1)f -(1)0,(3)0f f ==1,320x bx c ++=13,13b c +=-⨯=4,3b c =-=2()43f x x x =-+2(1)(1)4(1)38f -=--⨯-+=(1)f -80,0()1,0x F x x ≤⎧=⎨>⎩()31,{1,2,3}G n n n =+∈。

人教版五年级数学下册教材课后习题参考答案

人教版五年级数学下册教材课后习题参考答案

人教版五年级下册数学书答案课本第2页做一做答案练习一答案第5页做一做答案4是24的因数,24是4的倍数。

13是26的因数,26是13的倍数。

25是75的因数,75是25的倍数。

9是81的因数,81是9的倍数。

练习二答案1、 36的因数:1,2,3,4,6,9,12,18,36。

60的因数:1,2,3,4,5,6,10, 12, 15,20,30,60。

2、(1)10的因数:1,2,5,10。

17的因数:1,17。

28的因数:1,2,4,7,14,28。

32的因数:1,2,4,8,16,32。

48的因数:1,2,3,4,6,8,12, 16,24,48。

(2)(答案不唯一)4的倍数:4,8,12,16,20。

7的倍数:7,14,21,28,35。

10的倍数:10,20, 30,40,50。

6的倍数:6,12,18,24, 30。

9的倍数:9,18, 27, 36,45。

3、把5,35,10,55,60,100这6颗星星涂上黄色。

4、15的因数有1,3,5,15。

15是1,3,5,15的倍数。

5、(1)√ (2)×(3)√ (4)×6、1 2 47、(1)18 (2)1 (3)428、这个数可能是3,6,21,42。

思考题14和21的和是7的倍数;18和27的和是9的倍数。

发现:两个数分别是一个数的倍数,这两个数的和也是这个数的倍数。

第9页做一做答案2的倍数有24,90,106,60,130,280,6018,8100。

5的倍数有35,90,15,60,75,130,280,8100。

既是2的倍数,又是5的倍数:90,60,130,280,8100。

发现:既是2的倍数,又是5的倍数的数的个位一定是0。

第10页做一做答案3的倍数有24,96。

在24后面可放卡片:0,3,6,9。

在58后面可放卡片:2,5,8。

在46后面可放卡片:2,5,8。

在96后面可放卡片:0,3,6,9。

练习三答案1、奇数有33,355,123,881,8089,565,677。

项目管理教材课后习题答案

项目管理教材课后习题答案

项目管理教材课后习题答案项目管理教材课后习题答案在学习项目管理的过程中,课后习题是巩固知识的重要环节。

通过解答习题,我们可以检验自己对于项目管理理论和实践的理解程度,发现知识的薄弱点,并加以改进。

下面,我将为大家提供一些项目管理教材中常见的习题,并给出相应的答案,希望能够对大家的学习有所帮助。

1. 项目管理的定义是什么?答案:项目管理是一种将知识、技能、工具和技术应用于项目活动,以满足项目需求的系统性方法。

它包括项目的规划、组织、协调和控制等方面,旨在达到项目目标,确保项目按时、按质、按成本完成。

2. 项目生命周期包括哪些阶段?答案:项目生命周期通常包括项目启动、规划、执行和收尾四个阶段。

项目启动阶段确定项目的目标和范围,规划阶段制定详细的项目计划和资源安排,执行阶段实施项目计划并监控项目进展,收尾阶段完成项目交付物并进行总结。

3. 请列举并解释项目管理中常用的五个过程组。

答案:项目管理中常用的五个过程组包括启动、规划、执行、监控和收尾。

启动过程组主要是确定项目的目标和范围,明确项目的需求和约束条件。

规划过程组是制定详细的项目计划,包括时间、成本、质量、风险等方面的规划。

执行过程组是实施项目计划,按照预定的时间和成本完成项目任务。

监控过程组是对项目进展进行监控和控制,及时发现和解决问题。

收尾过程组是完成项目交付物,进行总结和评估,确保项目的顺利结束。

4. 项目管理中的三要素是什么?答案:项目管理中的三要素是范围、时间和成本。

范围是指项目的目标和任务,时间是指项目的进度安排,成本是指项目的预算和资源投入。

这三个要素相互关联,相互制约,项目管理的核心就是在这三个要素之间寻求平衡。

5. 请简要介绍项目沟通管理的重要性。

答案:项目沟通管理是项目管理中至关重要的一环。

良好的沟通可以促进团队成员之间的合作与协调,提高工作效率。

同时,有效的沟通还可以减少误解和冲突,避免项目风险的发生。

项目经理需要具备良好的沟通技巧,能够清晰地传达项目目标、任务和进展情况,以及及时获取团队成员的反馈和意见。

在线MOOC教材《高等数学》教材课后习题参考解答

在线MOOC教材《高等数学》教材课后习题参考解答

第一本在线课程配套教材,“十三五”普通高等教育本科国家级规划教材,国防科技大学朱健民、李建平主编,高等教育出版社出版的 《高等数学》教材课后习题解答.这些课后习题都是非常经典的,学习高数课程应知应会,必须熟练掌握的基本典型练习题,不管是对于课程学习、还是考研、竞赛等相关内容的学习、复习、备考,都应该逐题过关!参考习题解答列表第一章 映射与函数习题1.1 《集合与映射》部分练习参考解答习题1.2 《函数》部分练习参考解答习题1.3 《曲线的参数方程与极坐标方程》部分练习参考解答第二章 数列极限与数值级数习题2.1 《数列极限的概念与性质》部分练习参考解答习题2.2 《数列收敛的判定方法》部分练习参考解答习题2.3 《数值级数的基本概念与性质》部分练习参考解答习题2.4-《同号级数的敛散性判别方法》部分习题参考解答习题2.5-《变号级数收敛性判别方法》部分习题参考解答第三章 函数极限与连续习题3.1-《函数极限的概念》部分习题参考解答习题3.2-《函数极限运算法则及存在性的判定准则》部分习题及参考解答 习题3.3-《无穷小的比较与渐近线》练习题及参考解答习题3.4-《函数的连续性与间断点》练习题及参考解答第四章 导数与不定积分习题4.1 《导数的概念及基本性质》练习题及参考解答习题4.2-《导数的计算》专题练习及参考解答习题4.3-《一元函数的微分》专题练习与参考解答习题4.4-《变化率与相关变化率》专题练习与参考解答习题4.5-《不定积分基本概念、性质和基本计算》专题练习与参考解答 第五章 导数的应用习题5.1-《极值与最优化》专题练习专题练习与参考解答习题5.2-《微分中值定理及其应用》专题练习专题练习与参考解答习题5.3-《泰勒公式及其应用》专题练习与参考解答习题5.4-《函数单调性与凹凸性及其应用》专题练习及参考解答习题5.5-《曲率》专题练习及参考解答第六章 定积分及其应用习题6.1-《定积分基本概念与性质》专题练习及参考解答习题6.2-《变限积分及其应用》专题练习及参考解答习题6.3-《不定积分与定积分》专题练习及参考解析习题6.4 -《定积分的应用》专题练习及其参考解析习题6.5 -《反常积分》专题练习及其参考解析第七章 常微分方程习题7.1-《微分方程的基本概念》专题练习与参考解答习题7.2-《一阶微分方程》专题练习及参考解答习题7.3 -《可降阶微分方程》专题练习及参考解答习题7.4 -《线性微分方程》专题练习及参考解答第八章 空间解析几何习题08-01 《向量及其运算》专题练习与参考解答习题08-02 《空间平面与直线》专题练习与参考解答习题08-03-《空间曲面及其方程》专题练习与参考解答习题08-04-《空间曲线及其方程》专题练习与参考解答第九章 向量值函数的导数与积分习题09-123-《向量值函数》专题练习与参考解析第十章 多元函数的导数及其应用习题10-01-《多元函数基本概念与性质》专题练习与参考解答习题10-02《偏导数与全微分》专题练习与参考解答习题10-03 《多元复合函数和隐函数求偏导》专题练习与参考解答习题10-04 《方向导数与梯度、泰勒公式》专题练习与参考解析习题10-05《多元函数的极值与最值》专题练习,知识点与典型习题视频解析 第十一章 重积分习题11-01 《重积分基本概念与性质》专题练习与参考解答习题11-02 《重积分直角坐标计算法》专题练习及典型习题视频解析习题11-03 《重积分的柱坐标、球坐标、换元法》专题练习与参考解答 习题11-04 《重积分的应用》专题练习与参考解答第十二章 曲线积分与曲面积分习题12-01《曲线积分的基本概念与计算》专题练习及参考解答习题12-02《格林公式、积分与曲线无关》专题练习与参考解答习题12-03 《曲面积分的基本概念、基本计算》专题练习与参考解答习题12-04 《高斯公式与斯托克斯公式》专题练习与参考解答第十三章 幂级数与傅里叶级数习题13-01《幂级数及其展开》专题练习与参考解答习题13-02 《傅里叶级数及其收敛性》内容总结、视频解析与专题练习。

人教版高中数学必修二教材课后习题答案及解析【精品】

人教版高中数学必修二教材课后习题答案及解析【精品】

•教材习题解答练习0M1.⑴(6“21 略,瓷⑴四梭柱(闍略打(引匮锥与半除俎成的向单组命怵(圏略X (3)13棱柱与珠组成的简单组台体(图略门(4>«个麗台组合而成的筒单姐台■体(图略】.x(i)Ea^(~視图略儿(幼四十黑柱组成的简单爼合怵(三视国略几4三楼耗.•敦材习也孵答⑴如图1-2 - 3 -门/13听小'yA.「门如1痢11 门2 3H t圈1 i所示’14图I 2 3 19点评木懸舟省工州图卅的二P见却询制法.2. <1)三懂拄H刀isfn〔希四fttt*⑴)四磧柱与恫柱组合血磴的简羊组合林.証略*札卷5用B组1:略:签咯*乳此題菩徐不唯一冷一种省秦擡樹15个4、止方体齟會閔施的他单址合怩+如RJ1 - 2 - 3 2L♦教材习题擀答练习(『)1,解:设圆锥的底面半径为严母线畏沟h別由JS意得乂岡讹的削山111科图为T-J.-1-K J. (1 S 皿即I A捋◎代入①式得Q=3JI F.畀。

如|划t 2 220F3 1 2 3 21SirJu哉園隼的底面(8直卷为彩鬲二点评柠畫俯面堰幵国右側锥的不变关泵辰公式的应用,2 .解*机器零件的表面机pf# fti 是圆柱的«面积加上桂柱的全面积.VHIS 的側商報 Si /-2ftXXX2G- 15O!E=sl71(mm )*棱柱的它而积 > 12X j <ft-2 X 6 X -i- X 12> 12 迖孕切 ms. 2 Him )*二一牛机器的金面S=St-h*-l 579.25(mm >.JN IQ 000个零杵的全而积为15 7t?2 500 nun 15.旳2 5 m\故需锌的重虽为】$, 792 5XO P U^l t 7l kfi,点评 本IB 哮査良余儿何的驶働税求孝和鮮实际问昭及埸算能力. ♦教材习题解答K 卩}1. 刑大到原来的8倍戈2, *¥:il :A 休的钊'fO 检为尽!*球的壯栓R 舟 *点评 以上三1»常直公貳的灵活运用能力+ 习题I 3(1\JA 组1 •解’傭而都星等禮梯形・R 上底为8 cm,下底为18 cm.Wft-fc U erm 可得斜高(由『号)‘ =12, S«=5xi^^X 12=780( cm 2h答:780 cm\点评本題夸曹棱台申的庖制梯形的应用和棱幷的1W 面面祝公式+乙鸠:恤台的M Efii ft! $ ―只“+孙・/•捌台底附积节一乩亠:S,.—煮厂+R X rtl 己知得就"R )/=(r-R g :・t 七圣.恵评木题有直对iifiitt 面积、底而和、表面积概急的理解•要将三者区别幵来* 男蚪考査了解方程的能力.3.解假止方休的楼辰协•刚V 命_T x T /r "T*剩.余儿何休的V-V,.lt V "二川―彳―土才”S=inR £ = 4n/(鬻)'皿 >/.^60 OOOjr^sl04(cw- 3.解八 *= -yrK —所权播惟怖休积与霖F的几何休的林积之比为1 1二点评辰题槽査三杭惟体积的求法和"割补注”求M何住的休枳的方迭.4,当三棱柱形客器的憶面AA.B.B水平枚置时,液面部分是四棱柱形*其商为原三棱柱障寻器的髙*憫陵A-1, 乳设十底面AEC水平放置时・液而高为乩由已卿条件知•四桂柱底面与原三桂柱诧酣啣积2比为工;4•由于两种状态下我体休枳相3X8=4XAM=6-Pljt AfJC*Tftt置时*菠面高为£点评展塵考査休砂变換能力,奥註总在几何徉转换过包"「+水旳休枳妁终干变+ 5•解*由J8意*需贴瓷砖的部分为网梅柱与网複台的啊倆积之和・民心十二1> U),■,»{)- 12St>)ii;rii )*四楼合的斜离"二JltV -(迪「=5再『<m)・吕叶” =I》即打曲吃"-1 55S(cni ),故捕翼■«*的面報數为13 800+1 55»=14酹9仪“」>点评辰矚毒查倚单组合护的傭面积求法和解决致:际问題的能力氐攝示*先求出竽嚴梯形的面祝•再乘以化京到上海的铁路険长0P可•请冋学们自已完城”H W1.解,由三视图逝出它的言观国如l¥l 1 - 3 - 2 16所娠..Fl A | H| —(| f J| —.A B —C D -'- H cut ♦A t D, ■ ('i /J - A r D'™C B' 4 cm*球的苴悴为彳EF= (Hl12 cm J XI) f;「16 rm<EJf 1^(i8 rm*A L A"=B0=「|广=1」|打CTU.伍求出料棱育AHEF而上的料髙和-JP宁亍了之疗cm.再求E四債舍UF(^ Ifll上的卅高h —買”?12;' - 2 ^/7LILI+则久=用幷=% *严TWmV)■几=+卫=亠・2 -芋和冋Sn ttlf-S n KH B=<8-4) X2 X20=^480 mv 卫側” =4 XH X2()=肌0 cm . 也汁—给时”匚亠九—2(匚严p 皿亠2(工^)卞2听亠豹X !fit 12X6 = (11275 ^416)cm?=-1( 12X 8^2OX lfi+/12XSX2OX16) X 2•>=十(更7^+ 1】们rm .•5代奖杯的表而探s+ snia(1-FS H44ifiir !曲-J 12^5 -F 4 16^-1 193( m T杯的体机卩一'j 9 夕_匕|+巧.耐+较“卄=yK+64D + y (32 阿+ 416)*1067 cm\答t豐杯ffl我血枳约为I 193 g •悴积约为 1 067 cm\点评転題考煮吧察国闿想線力,运尊能力據解综合|^ 139 17题的能力.2.证期’如图1 - 3 - 2 - 17所示•因为三棱柱的侧面制是矩形•則傭面积为底乘以高.而髙相等•所以要证任意啊个侧面的面积和去于第三个侧面的tfliffi-H要证明三Stt±.底面匕任意H边的和大f第三边即可<而这是显ffi的.点评本題痔査将空佃问應转化城平丽间趣的能力.3. 为釉的直观即如阳】3 2 1SC1 >所示”三规阳如图】3 2 3S(2)所示.图】3 2 19点评本题考査画直观图和三槻图的能力,2 18(2)以直帝边为轴雌縛而戚的儿何体的直现將如阳】如用1 3 219(2)所示+汕(1〉所示.三觇图(I >iF■枫♦教材习题解答塩习参考JRIJMAffi(幼三橈柱或是三陵育t(3川j丄*{」打』川■”;(5ht・石\玄如1 舲所示,朗I 32点评 号育市三视图还原咸丈抑悶和将实詢圏同成直氐團的能力* 4.略.5”解巾癒蔥得三梭柱的底面三角形外接圆足E1拄的底面三角瑶F 卜接的亶植 是碉柱的底面直栓或母縊,植岡桂的廣面羊栓为尺"则卩=竄曙*2R=2nR' •化疋=彩. 征中股边长为s 则轧・寻—氏即 心冲・5心—%」普R . X 钳—$ 一心* 21i •芈说 0 学/?-翠 € 乩解丸求出一乍接头需要的铁皮玄「热后再计阜恵量且r rs, =n(r t +n)^=it(25+L0) XS5=1 225^(^),Z* S - lOgDQOXSj = 1Z 250 ^>()K12 25OD0()X 3t iTO 1 3】-37 &75 000(cm ) =3 797t 5(m H 7»8<m 答 制作l 万个这惮的接1需屢3缺列的铁皮. 点评 启匮考査■台需面积前求法及单经换1T 7,表面积肉为◎匸怵稅约为176,H 视图略. 8用9*<1)64;(2)S ;(3)2^;(4)24I (5)S T 48 cm cm . 10.它ff J fi'J 董面积分别对36K cm *21 JT w *里巧;B&(P>n)匚(1)三视宙如国I - 33两就.直观圏如图1 -:甘所示. 点评 程题痔查空河担象能JJ 和呦阳能力. 怕)» =8> ^0X 30X^1)60 二! 800#<CTTI 几 V^SX-j-S^n, • A=2XyX30X30X 丿30;■尸=9 0007?(cjn ). 点评 术■■卜题喝資齐面休的衣而积和休稅求沈. 〔:1 略.圏1 - U乙解 V-f '. F J? 4 XX ].[ X2;/ -63 H7h!Df ),■J2水巾球的怵积为匕 V. ■— 13 6115 几 卩“呻=期 X60K55 = 264 OOOlcm^hA V 4 200 000 2fiJ 000 200 000 = 61 ODO>43 fill. 故水槽中水不会镒昭*rm ■ 12n rm + 144J3 r cm图1 34点评示題哮育训搔方法.点评本題哮責休枳公试的求法和解窘球问赳的能力.3, 解它是由闍1恥所賦的国形L绕线f艇转而成的•其屮匸与0不相乞点评布腿韦賈观察图形的能力和魁象能力.4. 如图1 鼬”由題意得*Hd mEFF g且四边形ABCD为正方带.AOF=y(cm)t OF= /EF -OP点评考査四撓惟的休积求法和平面图形•与立体图刑z何的关系.•教材习题解答练习(P-)1.1>解汝育线sf川間两樹交•交点分别ArAJ九匚如圈? 1 1 0・则A*區C三点不在一直践上*A Ae iNF »「匸s同理廿匚i机一仏A由^.A.i二疽线可1ft定一平面. 点评本题考査公理2,2. ⑴不并面的四点町御邃4个平面.(2)共点的三旃肯线可确定1个或吕个平而.点评本地占査公理2的应用,3, (1)X (2)V (3)^/ ( Hv/(DV平面”与平面B相兗』h与君有一条公其直线二•有无数爹个公其鼠(2)在已知亘线上耽不同两点.再加上直燼外一点构成不共线三原*由您理2知确定一平潮.⑶抚两备直线t分SM -点(T同于交点)・朝构虑不其线-点・rtl公理2可知砸定一令平面.H J•三个不共耀的点•可确定一个平面•化两平而範合.1/3II 爭 1 35£ yi()O~~(cm>,* yi 00 X'.图I 361^ 2 1 1 ?21^2 I 1 23♦教材习题解答练习2J因为“与平【帀厘金乎廿吐却则^与口的也逹先糸为相交+即4与住台一节公捷点.所W(A)UD)两选项排除*苦“内存在一餐线仃与4平行.则不妨设应与“ 交J柑点•住Q内‘过O盘作亶线c#緘则由公理4可知口〃一这与口与{交于”点矛盾,所以选答索(BX点评此魁考査直线与平面的位賈关泵•同时为将来判斷直线与平面平和罢宦了基础+♦教材习题解答阁 2 ! - 4 9 点评本壮舟宜空间平而的垃国关条歴空何悴阁能力+习题2-KP.J三个平而两两相交川;么它门的交线冇-荒或三金.如盟2 1 1 9人组匕如惘2】1 10b3•门2 (梯形的h,T底平帕由平厅线定文知共而)⑵X(肖附上两点恰好为直径两端点时冷过这三点不能确定平面)[加W (由平杼公理4可得结论)(!)X 导\胡卜吋*/也无公其点)(5)X (“鼻可能平忏•也可能相交)点评木題考資平面的tt痕+空阖两直线的位罢关盘4. 【1眉£由斥面苣线所成柏定又或等角定理)⑵* (由界面直錢所虜角取垂面内蛹纽垂直的郷定)<3)2 f由公理2可得结论)〔门平行戒在平面内【5)平行或护交(仍ftl交或痒潮点评車魁考查空间购直线的位掘关乘+5. 典而点评本圍考査參理2的应用.6. 证明’ *:AA f//bK W AA'= ”用・/.四边能盘且F削为平行四边形.7J f+ 同理Ii('£ Ii\'f.AZAfJ('=Z.VB'C\二△AM 宜△ATfL”点评本趙哮査公理4蜃其应用.m直线悶购平打且不共面,一共前建三个平面•妁果三条直域交于一点剧最参确定三卜平面.8.正方休餐而所在平面分空何成27部分.点评松考査孕生的空何怨象能力TB组1.(l)C ⑵D ⑶1:点评加题考背空间想喩能力•异面育线所成角的求法.2.证明t fcM 平面ABC.所以PE甲喲Ati(\pe^.所以卩在平面ABC:与晋面«的灾红上.同理可证,Q 和R均在这条直线I:.所以畀三点共线.点评先确定一輦宜期•再证羽具他点也在这条直域上.无址明:如图2 1 I 13,11接ACEF』;几TEF井别为AB .BC点*.Jj<;DU1“r= * e『--—=■-DC DA3:A\GJL丄一1「*图2 1」】3 ▼ 3AEF# HG H EF 护HG人四边磁EWH沟梯形.二梯闿関腰£H*Ff;相空.设处点为K,VFJ/C吓閒ABJ儿AK€ 平面ABD,FGU平ffi CBDt代K€平面CBD・血平而AIH)门平而CfU)-BPtr・K13UXEH.FQ.BD交于一点K,点评木起哮艸公理2和公刊:匚♦教材丁题解答练习|P“1, ⑴平面WrVD*平面A'MLry和却平面R卍「「*平面tV”门心、平面ECC®;平面 A % £01点评頁査肓线与平面平行的判定定理.2. ££^ B/J)//平面AEf'+证闍主如图2 2 1 id■连接H打交如m连接0艮在△ dBm中・OE为三用腦耳I位线,/.()E// BO,. Z V BD, C平而AEL\()?;c 平面AEGU#晋而AEC.♦教材习题解答练习(%)UI ■错谍.反长方怦为樸型+如劇222F 分别为ATT’Uir 的中点加7TU 平面A7J7?* D\EFC T 而A f lV('t I)\A t I),/f 平而 BCCE\ EF#平面BCC.但平面 EC与平面A%" LD 中交.(2」止确.点评本題考査平面与平面平存的定文和判定定理的务fF. Z 提示,餐昜证明-VIX /f EF. \A //EH.进而可证平面AMN..「平面EFDK3」A)不止确”白怏方肚为模型*如觀22 2p14则在平面A BCD 内与BC TJ T 的所有直拔都4 * <z2与平商JXL/T 平fr + (U 于面AHCD 与甲面 /Tl1;e ___________皿:足相交的./馆〕不疋蹴以长方体为模取.如陌222st14 • ATT# 平面 A BCD〃平圏 2 2211® ABCD 与面放:「少期空.f 「[不疋确*以长方怵为摸型*如圏2 • 2亠2 • 1鉄"0'〃平面BCrB^HC// 平面A^C'D K但平面BCXTB 1与"7H :P‘相交.(b 〉平面与平面平疔的定义.A(D).点评 星题迪过对两平面平行判定的分析J 音拒学生周密分析问题的能力./J"£li f7 ’一z1序Z \Z[圈 2 22 13♦教材习题解答(1) X 同时过疋』两自线的平面不符合蚤件.(2) X "与皿内直觀有平厅和异面的曲种位置癸JK. unX胡与h可能出现w种悅胃.黄系;平厅、相交,界耐(*26”‘过“作平齒P 交* 于一虎评事馳曹查线itii的平行真系的判定礙性喷.习题2.2(l\t) .X组h(A)以怅方休为模星*如阁2 2 4 —则平面AHCD与-F ^ABB 线 D平杼・S1 网f而和交-点许廉題曹靑两平而平h■的判定.(力(D)直甥口不与世平怡则心或4与a ffi*. 点评肚题E霆也线与平而前位邀关乐.(恥(「)*:0 $PGm翼由P和H线。

河南专升本高数教材(云飞)版第一章函数极限连续课后习题答案

河南专升本高数教材(云飞)版第一章函数极限连续课后习题答案

河南专升本(云飞)版高数教材课后习题答案第一章 函数 极限 连续同步练习一一、 选择题 1、 答案:C解:偶次根号下不能取负值,又在分母上,不能为0,可有012>-x ;反三角函数的定义域是[]1,1-,可得1121≤-≤-x.解这个题目只需解不等式组 210011112x x x⎧->⎪⇒≤<⎨-≤-≤⎪⎩,因此选C. 2、 答案:D解:函数相同要求定义域和对应法则都相同. A 中的对应法则不同,x 表示任意实数,而2x 则只是正实数;B 、C 定义域不同. D 只是一个函数的两种不同表达形式. 3、 答案:D解:三角函数都是周期函数,所以A 、C 一定是周期函数,对于B 有22cos 1sin 2xx y -==,显然是周期函数. 4、 答案:D解:求一函数的反函数就是反解出x 即可.对于本题就是由dcx bax y --=解得a cy b dy x --=,再将x ,y 互换即可. 5、 答案:B解:首先反三角函数的定义域是[]1,1-,因此121≤+≤-u ,可得13-≤≤-u ,即123-≤-≤-x ,从而可知x 的取值范围是[]1,1-.二、 填空题 6、 答案:[]πe,1解:)(x f 的定义域是[]π,0,即π≤≤x 0,那么对)(ln x f 来说,有π≤≤x ln 0,由此可解得x 的范围是[]πe,1.7、 答案:x x 22-解:由题目中)1(2)1(34)1(222242+++=++=+x x x x x f ,可知函数t t t f 2)(2+=.再用2-x 来替换t ,即x x x x x f 2)2(2)2()2(22-=-+-=-就可得到结果了. 8、 答案:21x x+ 解:要求)(x f 的表达式,可令x t 1=,即t x 1=.由21)1(xx x f +=可知21)(t t t f +=,所以)(x f =21x x+. 9、 答案:x解:本题已知)(x f 的表达式,求)1(xf 得表达式.所以只需把函数式中的自变量x 换成x1即可.10、答案:π解:正弦函数的周期是π2,x x f sin )(=则是将正弦函数图像中在x 轴以下的部分翻到上面去,具体图形如下由图可知,其周期是π.11、解:()f x 在真数的位置,故有()0f x >,又ln ()f x 在分母上,故ln ()0f x ≠.由此可解得()0f x >且()1f x ≠. 12、答案:11(3)2x y e -=- 解:求反函数就是将原函数中的x 反解出来.由111ln(23)ln(23)1(3)2y y x x y x e -=++⇒+=-⇒=-,再将x 和y 互换位置即可.三、解答题13、求下列函数的定义域.(1)解:由题意可知:cos 0x >;从而解得(2,2)(0,1,2,)22x k k k ππππ∈-+=±±, 所以该函数的定义域就是(2,2)(0,1,2,)22k k k ππππ-+=±±.(2)解:由题意可知:10ln(1)010x x x -≠⎧⎪+≥⎨⎪+>⎩;从而解得)()0,11,x ∈⋃+∞⎡⎣,所以该函数的定义域是)()0,11,⋃+∞⎡⎣.(3)解:由题意可知:2302113x x ⎧-≥⎪⎨--≤≤⎪⎩;从而解得x ⎡∈-⎣,所以该函数的定义域就是⎡-⎣.(4)解:由题意可知:sin 010110x x x x ≥⎧⎪+⎪>⎨-⎪-≠⎪⎩;从而解得)0,1x ∈⎡⎣, 所以该函数的定义域就是)0,1⎡⎣.14、解:因为()f x 的定义域是[]0,1,所以对2()f x 来说就有201x ≤≤,解得有11x -≤≤;对(cos )f x 来说就有0cos 1x ≤≤,解得有[2,2(0,1,2,)22x k k k ππππ⎤∈-+=±±⎥⎦. 所以2()f x 的定义域就是[]1,1-,(cos )f x 的定义域是[2,2(0,1,2,)22k k k ππππ⎤-+=±±⎥⎦.15、解:(1)xf e +的定义域是[]1,1-,也就是说11x -≤≤,从而有1111x e e e -+≤+≤+,所以()f x 的定义域就是11,1e e -⎡⎤++⎣⎦.16、解:因为2()1f x x x =-+,所以2()12f x x x +=-+,所以[]222)1(2)(2)1f f x x x x x +=-+--++(,整理后也就是 []22)1(2)(1)1f f x x x x x +=-+-++(.17、解:令1t x =,即1x t =,则222221111()()(1)11t f f t x t t t t ⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥===⎢⎥+⎛⎫+⎢⎥ ⎪⎝⎭⎣⎦,所以221()(1)f x x x =+. 18、解:当0x ≤时,()xf x e =,所以11(1)f e e--==,0(0)1f e ==; 当0x π<≤时,()f x x π=,所以(2)2f π=,()f e e π=; 当x π>时,()ln f x x =,所以(2)ln(2)f ππ=. 19、证明:()f x 是奇函数,()g x 是偶函数,其定义域都是D ,则对任意的x D ∈,都有()()f x f x -=-,()()g x g x -=.∴()()()()f x g x f x g x --=-,也就是说()()f x g x 在定义域内是奇函数. 20、解:因为()f x 是(),-∞+∞内的奇函数,所以对任意的(),x ∈-∞+∞,都有()()f x f x -=-.从而有()(22)()(22)()()xx x x F x f x f x F x ---=+-=-+=-,所以可知()F x 在(),-∞+∞内是奇函数.21、解:当1x -∞<<时,()f x x =对应的反函数是x y =,此时1y -∞<<; 当14x ≤≤时,2()f x x =对应的反函数是x =,此时有116y ≤≤;当4x <<+∞,()2x f x =对应的反函数是ln ln 2yx =,此时有16y <<+∞. 所以()f x的反函数就是1,1()16ln ,16ln 2x x f x x x x -⎧-∞<<⎪⎪=≤≤⎨⎪⎪<<+∞⎩.22、将下列复合函数分解成几个简单函数或者基本初等函数. (1)解:32arcsin ,,1y u u v v x ===-. (2)解:2lg ,2y u v v w x x ====+. 23、解:设圆锥的底半径是R ,高是h. 由题意可知:313V R h π=,所以有R =,根据实际情况,可知该函数的定义域是()0,+∞.同步练习二一、选择题 1、 答案:D解:当0x →时,21x →,1sin x 不存在(即∞→x 1),sin 1x x→,()31sin 0x x x +→,无穷小量乘以有界变量极限是0. 2、 答案:C解:当1x →时,101x x -→+,21121x x x -=+→-,11x x +→∞-, e eeexxxx x x x x x x x ====→→--→-→1limln 11limln 11111111lim lim .3、答案:B解:当0x →时,x cos 1-与2x 等价,又因为 ∞==→→21022301lim lim x x x x x ,由定义可知23x 是比2x 低阶的无穷小量,即0x →时,23x 是比x cos 1-低阶的无穷小量. 4、答案:C解:无论x 取何值,函数x sin 、x 1sin 都是有界函数,当0x →时,x x sin 、x x 1sin 都是无穷小量乘以有界变量还是无穷小量,x1显然是无穷大量,A 、B 、D 都正确.5、答案:D解:本题考查两个重要极限中的一个,有e xx x =+∞→)11(lim 和e x x x =+→10)1(lim 这两种形式,通过对照可知答案是D.二、填空题 6、答案:0解:223225252sin lim (2sin )lim lim()2001x x x x x xx x x x x x→∞→∞→∞+++=⋅+=⋅=++. 7、答案:5,2==a m解:由题上已知的极限可知,当∞→x 时,1432++x x 与2++x ax m 是同阶无穷小,故可知2=m ,又53321143lim 2143lim 2222==++++=++++∞→∞→a x xa x x x ax x x x x ,可知5=a . 8、答案:6解:由题意知:13)(lim 3)(lim==∞→∞→x xf xx f x x ,即3)(lim =∞→x xf x ,所以可知6)(2lim =∞→x xf x . 9、答案:βα 解:βαβαααβα=⋅=→→x x x x x x sin lim sin lim00.10、答案:ab e解:ab xad ab axx xadab a x x d bx x e x a xax a x =⎥⎦⎤⎢⎣⎡+=+=++∞→+⋅∞→+∞→∞→)(lim )()1(lim )1(lim )1(lim .11、答案:x解:利用重要极限中的第一个,x x x xx xnn n n n n n nn =⋅==∞→∞→∞→22sinlim 212sinlim 2sin2lim .12、答案:同阶非等价解:当0→x 时,1-xe 与x 等价,故1lim 1lim 220202-=-=-→-→x x x e x x x ,所以12--x e 与2x 是同阶非等价的无穷小量.三、计算题13、求下列极限.(1)解:2121222lim 12222lim 33233=++++=++++∞→∞→n n n n n n n n n n n . (2)解:21)32(32lim 3)2(332lim =-⋅+=-⋅+⋅∞→∞→nn n n n n .(3)解:212lim 2)1(lim ...21lim 2222=+=+=+++∞→∞→∞→nn n n n n n n n n n . (4)解:22lim 2lim 211)211(2121...4121==--∞→+++∞→n n n n .(5)解:)121121...5131311(lim )12)(12(1...531311(lim +--++-+-=++++⋅+⋅∞→∞→n n n n n n 1)1211(lim =--=∞→n n . (6)解:111sin lim1sinlim==∞→∞→nn nn n n .(7)解:34)3234(lim )3234(324)311(lim )311(lim e e nn nn n n n n n ==+=+--⋅∞→-∞→∞→. (8)解:523)1(lim )2)(3()1)(2(lim 623lim 222232-=-+=+-++=--++-→-→-→x x x x x x x x x x x x x x x x .(9)解:)1)(1()1)(2(lim 131lim )1311(lim 2132131++--+=--++=---→→→x x x x x x x x x x x x x 112lim21-=++--=→x x x x .(10)解:1)sin(lim sin lim =--=-→→xx x x x x πππππ.(11)解:)13)(1()13)(13(lim 113lim2121x x x x x x x x x x x x ++--++-+--=----→→ 42)13)(1(2lim)13)(1()1(2lim121-=++-+-=++---=→→x x x x x x x x x . (12)解:e x e x x x x x x x x =++⋅=++=++∞→++∞→+∞→2525)21(3)1221(lim )1221(lim )1232(lim . (13)解:[]33sec 2sec 32)cos 1(lim )cos 1(lim e x x xx xx =+=+→→ππ.(14)解:1ln )1(lim ln )1ln(lim )1ln(lim 10100==⎥⎦⎤⎢⎣⎡+=+=+→→→e x x x x x x x x x ααα.(15)解:111)111(111lim )1(lim ----∞→∞→=⎥⎥⎦⎤⎢⎢⎣⎡+-⋅⎪⎭⎫ ⎝⎛+-=+e x x x x x x x x .(16)解:[]1)11ln(lim )11ln(lim 1lnlim ln )1ln(lim =+=+=+=-+∞→∞→∞→∞→n n n n n nn n n n n n n n . (17)解:)93()93)(93(limsin 93lim 22220220x x x x x x x x -+-+--=--→→61931lim 20=-+=→x x . (18)解:2132421lim 32421)(lim 3242lim222-=+++-=+++-=+++-∞→-∞→-∞→xxx x x x x x x x x x x . (19)解:255sin lim 533sin lim 35sin lim 3sin lim 5sin 3sin lim00000-=-=-=-→→→→→xxx x x x x x x x x x x x x x .(20)解:111lim1ln limln 11111111lim lim -----→-→====→→e eeexxx xx x xx xx x x .14、解:因为x xx tt t t e t x t x x f =⎥⎦⎤⎢⎣⎡+=+=∞→∞→)1(lim )1(lim )()0(≠x ,所以2)2(ln 2ln ==e f .15、解:当0→x 时,2221~11ax ax -+,x x ~sin ,所以12121lim sin 11lim 220220===-+→→a xax x ax x x ,即得2=a . 16、解:由题中极限32lim22=-+-→x ax x x 可知,a x x +-2和2-x 是同阶无穷小量,即当2→x 时,都是无穷小量,故有0)(lim 22=+-→a x x x ,所以可以解得2-=a .17、解:极限值是b ,可知当1-→x 时,423+--x ax x 与1+x 是同阶无穷小量,即有0)4(lim 231=+---→x ax x x ,故得4=a .又b x x x x x x x x x x x x x ==--=+-+-=++---→-→-→10)4)(1(lim 1)4)(1)(1(lim 144lim 11231,即得10=b .18、解:当-→1x 时,+∞→-x 11,从而有211arctan π→-x ;当+→1x 时,-∞→-x11,从而有211arctanπ-→-x .也就是说,2)(lim 1π=-→x f x ,2)(lim 1π-=+→x f x .19、解:当-→1x 时,11)(2--=x x x f ,所以2)1(lim 11lim )(lim 1211=+=--=---→→→x x x x f x x x ; 当+→1x 时,1)1sin()(--=x x x f ,所以有11)1sin(lim )(lim 11=--=++→→x x x f x x .同步训练三一、选择题1、 答案:A解:)(x f 在0x x =处连续需满足三个条件:在0x x =处有定义;)(x f 在0x x =处极限存在;)(x f 在0x x =处的极限值等于该点处得函数值.显然可知)(lim 0x f x x →存在是)(x f 在0x x =处连续的必要而非充分条件.2、 答案:A解:显然0=x 不在函数的定义域内,故一定是间断点.又01sinlim )(lim 0==→→xx x f x x ,也即满足左右极限存在且相等,对照定义可知0=x 是)(x f 的可去间断点. 二、填空题3、 答案:充分必要解:)(x f 在0x x =处连续需满足三个条件:在0x x =处有定义;)(x f 在0x x =处极限存在;)(x f 在0x x =处的极限值等于该点处得函数值.)(0x f 存在就表明)(x f 在0x x =处有定义,等式)()(lim 00x f x f x x =→成立又满足后两条,所以是充分必要条件.4、 答案:a ,一,跳跃解:对已知的函数没有定义的点是a x =,1lim )(lim =--=++→→ax ax x f ax ax ,而 1lim )(lim -=--=--→→ax ax x f ax ax ,显然)(lim )(lim x f x f a x a x -+→→≠,所以由定义可知a x =是)(x f 的第一类间断点,并且是跳跃间断点.5、 答案:一,可去解:1cos 1lim sin lim tan lim)(lim 0000=⋅==→→→→xx x x x x f x x x x .6、 答案:一解:0)(lim 1sin lim )(lim 00=≠==-++→→→x f xxx f x x x ,由定义可知0=x 是)(x f 的第一类间断点.7、答案:](1,-∞-,)[∞+,3 解:32)(2--=x x x f 的定义域是]()[∞+⋃-∞-,31,,又该函数是初等函数复合成的,所以在定义域内是连续的,因此连续区间就是](1,-∞-,)[∞+,3. 8、答案:31 解:)(x f 在0=x 处连续,所以有31)(sin lim sin lim)(lim 000=====→→→x f a ax ax a x ax x f x x x ,所以31=a .9、答案:2解:函数)(x f 在0=x 处连续,所以有22sin lim )(lim )23(lim )(lim 020====+-=--++→→→→xxx f k k x x x f x x x x ,所以2=k . 10、答案:-2解:函数)(x f 在1=x 处连续,因此有a x a x f x x f x x x x -=====--++→→→→πcos lim )(lim 22lim )(lim 1111,所以2-=a .11、答案:2ba =解:函数)(x f 在0=x 处连续,所以有22sin lim )(lim )(lim )(lim 020b x bx x f a bx a x f x x x x ====+=++--→→→→,因此可得到关系式2ba =. 三、解答题12、解:函数)(x f 在0=x 处连续,所以0lim )(lim )0(210===-→→x x x ex f f .13、解:由题意可知,需构造一个分段函数)(x F ,使其在0≠x 时的表达式就是222)31ln()(x x x f +=.6ln )31(lim ln )31ln(lim )(lim )(lim )0(66312022022==⎥⎥⎦⎤⎢⎢⎣⎡+=+===→→→→e x x x f x F F x x xx x x .因此构造的连续函数⎪⎩⎪⎨⎧=≠+=0,60,)31ln()(222x x x x F x .14、解:显然已知函数在每个分段区间内是连续的,关键是区间端点.先考虑点0=x 处,11lim )(lim 1)(lim 00=-===++-→→→x x f x f x x x ,)(x f 在该点处有定义且1)0(=f ,所以0=x 是)(x f 的连续点.再看点3=x ,13lim )(lim 21lim )(lim 3333==≠=-=++--→→→→xx f x x f x x x x ,所以3=x 是)(x f 的第一类间断点,并且是跳跃间断点.因此,)(x f 在()()+∞⋃∞-,33,内连续,3=x 是)(x f 的第一类间断点,并且是跳跃间断点.15、解:显然已知函数在每个分段区间内函数都是连续的,关键是区间端点.先考虑在点1-=x 处,3)3(lim )(lim 2)arcsin (lim )(lim 1111πππ=-=≠=-=--++-→-→-→-→x x f x x f x x x x ,所以1-=x 是函数)(x f 的第一类间断点,并且是跳跃间断点.再看点0=x ,函数在该点处无定义,显然是间断点,并且x x f x x f x x x x ++--→→→→===-=0lim )(lim 0)arcsin (lim )(lim ,所以0=x 是函数)(x f 的第一类间断点,并且是可去间断点.因此可知)(x f 在()()()+∞⋃-⋃-∞-,00,11,上连续;1-=x 是函数)(x f 的第一类间断点,并且是跳跃间断点;0=x 是函数)(x f 的第一类间断点,并且是可去间断点. 16、解:因为)(x f 在()+∞∞-,内是连续的,所以在1=x 处也是连续的.1)(lim )(lim 2)1(1)(lim )(lim 21111+=+====-=-=++--→→→→a x a x f f b x b x f x x x x ,也就是解等式21=-b 和21=+a ,从而有1=a ,3=b . 17、求下列函数的间断点,并指出间断点的类型. (1)解:1-=x 是xxx f +=1)(的无定义点,又因为∞=+=-→-→x x x f x x 1lim )(lim 11,所以1-=x 是)(x f 的第二类间断点,并且是无穷间断点.(2)解: x x x f --=11)(2在1=x 处无定义,又因为2)1(lim 11lim)(lim 1211=+=--=→→→x xx x f x x x ,所以1=x 是)(x f 的第一类间断点,并且是可去间断点. (3)解:1=x 是11arctan)(-=x x f 的无定义点,又因为 211arctan lim )(lim 211arctanlim )(lim 1111ππ-=-=≠=-=--++→→→→x x f x x f x x x x ,所以1=x 是)(x f 的第一类间断点,并且是跳跃间断点.(4)解:21±=x 是142)(22-+=x x x x f 的无定义点,又因为 4112lim 142lim )(lim 21222121=-=-+=-→-→-→x x x x x x f x x x ,∞=-+=→→142lim )(lim 222121x x x x f x x ,所以21-=x 是第一类间断点,并且是可去间断点;21=x 是第二类间断点,并且是无穷间断点. 18、下列函数在0=x 处是否连续? (1)解:)0(0lim )(lim 210f ex f x x x ===-→→,所以0=x 是)(x f 的连续点.(2)解:1sin lim sin lim 1sin lim sin lim )(lim 0000-=-=≠===--+++→→→→→xxx x x x xx x f x x x x x ,所以0=x 是)(x f 的第一类间断点,并且是跳跃间断点.(3)解:xx x f x x x x f x x x x x sin lim )(1)1ln(lim )1ln(lim )(lim 01000+---→→→→===+=+=,所以0=x 是)(x f 的连续点. 19、求下列极限。

八上语文课本课后习题答案

八上语文课本课后习题答案

八上语文课本课后习题答案八上语文课本课后习题答案语文课本是我们学习语文的重要教材,而课后习题则是巩固知识、提高能力的重要方式。

然而,对于一些较为难题,我们可能会遇到困惑,不知道如何解答。

因此,本文将为大家提供一些八上语文课本课后习题的答案,希望能够帮助大家更好地学习和理解。

第一单元:人生的旅程1. 读懂诗句:“行到水穷处,坐看云起时。

”的意思是在旅途中,当我们走到水的尽头时,就坐下来,静静地看云彩升起。

这句诗表达了人生旅程中的坚持和欣赏美好的态度。

2. “人生自古谁无死,留取丹心照汗青。

”这句诗意味着人生自古以来,谁都无法逃避死亡,但是我们应该保持一颗坚定的心,留下自己的印记。

第二单元:人与自然1. “白日依山尽,黄河入海流。

”这句诗描绘了太阳落山和黄河注入大海的壮丽景象,表达了自然界的壮丽和宏伟。

2. “大漠孤烟直,长河落日圆。

”这句诗描绘了大漠中孤独的烟尘和长河中夕阳的圆满,表达了自然界的辽阔和美好。

第三单元:人与社会1. “人非生而知之,孰能无惑?”这句话意味着人不是生来就知道一切的,谁能没有疑惑呢?它告诉我们要保持对知识的渴望和好奇心。

2. “知之者不如好之者,好之者不如乐之者。

”这句话意味着只是了解知识的人不如喜欢学习的人,喜欢学习的人不如享受学习的人。

它告诉我们要用心去学习,而不是只追求表面的知识。

第四单元:人与人1. “人生自古谁无死,留取丹心照汗青。

”这句诗意味着人生自古以来,谁都无法逃避死亡,但是我们应该保持一颗坚定的心,留下自己的印记。

2. “人间有味是清欢,隔座送钩映白鬓。

”这句诗表达了人与人之间的真挚情感和友谊,无论距离多远,都能感受到彼此的关怀和思念。

第五单元:人与文化1. “读书破万卷,下笔如有神。

”这句诗意味着通过阅读大量的书籍,我们可以提高自己的写作水平,写出有灵魂的作品。

2. “黄金榜上,有进士之名。

”这句诗意味着通过努力学习,我们可以在科举考试中获得进士的称号,成为社会上的精英。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1.2章建筑的传热与传湿
(7)试求出用同一种材料构成的5层厚度为20mm封闭空气间层的热阻值与1层厚度为100mm的封闭空气间层的热阻值各为多少?
(15)已知20i t C =o
;50%i ϕ=。

问:若采用如[例1.2-2]中图1.2-20所示墙体,在保证内表面不结露的
情况下,室外气温不得低于多少?若增加保温层使其传热系数不超过1.0W/(㎡·K ),此时的室外气温又不得低于多少?
解:由20i t C =o ,50%i ϕ=,查表可得出室内露点温度9.d t C =o
5
要保证内表面不结露,内表面最低温度不得低于露点温度。

平壁的总传热阻:
01233
1
2
123
2()(
)0.020.20.02
0.11(
)0.040.81 1.740.93
0.312/i e
i e i e
R R R R R R R R R d d d R R m K W λλλ=++=++++=++++=++++=⋅
根据公式1.2-20,取1m =得到
10
()i
i i e d R t t t t R θ=-
-≥ 这里,1θ表示维护结构内层表面的温度,i R 表示内表面换热阻,将数值代入得室外气温不超过:
00.312()=20(209.)9.790.11
e i i d i R t t t t C R ≥-
---=-o 5 若增加一保温层使其传热系数不超过1.0W/(㎡·K ),则增加保温层后的总热阻为
20
1()/R m K W '≥⋅ 这时外界气温不得低于01()=20(209.)75.450.11
e i i d i R t t t t C R '≥----=-o 5
P101,1.3-12题
在【例1.3-3】中,若室内的相对湿度为40%,室外相对湿度为60%,试分析该维护结构是否会出现内部冷凝?
【解】(1)根据上表,计算外墙各层材料的热阻和蒸汽渗透阻
计算列表 由此得:外墙构造的总传热阻
0=0.436+0.11+0.04=0.586 m ·K / W ;
总蒸汽渗透阻H 0=2217.28 m 2
·h ·Pa / g
(2)计算维护结构内部各层的温度和水蒸汽分压力
①室内气温16.0i t C =o
,相对湿度40%i ϕ=,查图1.2-28得:720i a P P =;
②室外气温0.0i t C =o
,相对湿度60%i ϕ=,查图1.2-28得:360e a P P =;
③根据公式(1.2-20)计算各材料层表面温度: 0.11
16(160)13.00.586
i C θ=-
-=o ,由图1.2-28得饱和蒸气压1450s i a P P =g ; 20.110.025
16(160)12.30.586
C θ+=--=o ,饱和蒸气压21420s a P P =g ;
30.110.0250.263
16(160) 5.10.586C θ++=--=o ,饱和蒸气压3850s a P P =g ;
0.5860.04
16(160) 1.10.586
e C θ-=--=o ,饱和蒸气压630s e a P P =g ;
④根据公式(1.2-51)计算维护结构内部水蒸气分压力:
2166.67
720(720360)692.942217.28
a P P =-
-=
3
166.67251.51
720(720360)652.12217.28
a P P +=--= ⑤依据以上数据,比较各层的水蒸气分压力和饱和蒸气压的关系,得知
i s i P P <g ,22s P P <g ,33s P P <g ,e s e P P <g
说明围护结构不会出现内部冷凝。

P156 第1.5章 建筑日照与遮阳
(2)计算北京(北纬3957'o
),齐齐哈尔(北纬4720'o
)、南京(北纬3204'o
)、海口(北纬2300'o
)在冬至日当地正午12时的太阳高度角。

解:太阳高度角计算公式sin sin sin cos cos cos s h φδφδ=⋅+⋅⋅Ω 式中:φ—观察点的地理纬度,deg
δ—赤纬角,deg 。

一般主要节气日可由(1.5-1)查得,其它日子可照依姆德计算式算出
28
23.45sin(360)370
n δ-=⋅⋅
Ω—时角,计算式为 15(12)t Ω=-,deg
在正午12时,o
0Ω=,则sin sin sin cos cos cos()s h φδφδφδ=⋅+⋅=-,所以
o
90s h φδ=-- 在冬至日,赤纬角o
2327δ'=-。

因此 o o o 9023276633s h φφ''=-+=-
依次将这四个地方的地理纬度代入即可算出各地的太阳高度角。

6、济南(北纬o
3641')有一组正南朝向住宅建筑,室外地坪的高度相同,后栋建筑一层窗台高1.5m (距室外地坪),前栋建筑总高15m (从室外地坪至檐口),要求后栋建筑在大寒日正午前后有两小时的日照,求必须的日照间距为多少?
解:前栋楼顶和后栋建筑一层窗台之间的相对高度为H =15-1.5=13.5m ,要求正午前后有两小时的日照,即是要求在从上午11:00到下午13:00这段时间后栋一层窗台有日照,只要从上午11:00或者下午13:00这两个极端时刻出发便可计算:
太阳所处位置的时角 o
15(1312)15Ω=-= 大寒日的赤纬角 o
20δ=- 此刻济南(北纬3641'o
)太阳高度角
o
o
o
o
o
sin sin sin cos cos cos sin 3641sin(20)cos3641cos(20)cos15s h φδφδ=⋅+⋅⋅Ω
''=⋅-+⋅-⋅=
太阳方位角 sin sin sin cos cos cos s s s h A h φδ
φ
⋅-=⋅
此时太阳光线在两栋建筑物之间传播距离沿水平方向的投影为 cot s L H h '=⋅

再计算出建筑物间距 cos s L L A '=⋅
P183 第2.1章 建筑光学基本知识
1、波长为540nm 的单色光源,其辐射功率为5W ,试求(1)这单色光源发出的光通量;(2)如它向四周均匀发射光通量,求其发光强度;(3)离它2米处的照度。

解:(1)对于波长为540nm 的单色光其光视效率是0.96,则这个光源发出的光通量是
540()68350.963278.4lm m e K V λλΦ=⋅Φ⋅=⨯⨯=,
(2)由于是向周围均匀发射光通量,取立体角4πΩ=,则发光强度
3278.4
260.89cd 4I π
Φ===Ω
(3)对于距离2米处的垂直面的照度 22
260.896.22lx 2I E r =
==5
2、一个直径为250mm 的乳白玻璃球形灯罩,内装一个光通量为1260lm 的白炽灯,设灯罩的透光系数为0.60,求灯罩外表面亮度(不考虑灯罩的内反射)。

解:灯源的发光强度1260100.27cd 4I π
Φ=
==Ω 照射到球形灯罩的内表面形成的照度为 222
21260
420160lx 0.25()2
I E D r D πΦ
Φ===== 再透过乳白玻璃(漫透射材料)的灯罩后,形成灯罩外表面的亮度为
22
22
12600.63850.28cd/m 0.25
E D L D τττππππΦ⨯⨯Φ⨯=====⨯
3、一房间平面尺寸为7×15m ,净空高为5m 。

在天棚中布置一亮度为500cd/㎡的均匀扩散光源,其尺寸为5m ×13m ,求房间正中和四角处的地面照度(不考虑室内反射光)。

解:按照公式(2.1-8)来计算:
2
cos cos cos A E L i L i r
ααα
=Ω=⋅
⋅ 式中:E —指定点的照度
L α—光源在α角方向的亮度
α—光源表面法线与光线照射方向的夹角 r —光源表面点与照射点之间的距离 i —光线远照射面法线之间的夹角 在上式中,光源表面取中心点为代表
1)由于光源是均匀扩散光源,因此对于地面上的正中点,o
0i α==,所以
2513
cos 50011300lx 5
E L i α⨯=⋅Ω⋅=⨯
⨯=中 2)在地面上的四角,2222
57.5 3.593.5r =++=
,cos cos 0.517i α===&,所以
5130.517
cos 5000.51792.91lx 93.5
E L i α⨯⨯=⋅Ω⋅=⨯
⨯=&角。

相关文档
最新文档